
Journal for Geometry and Graphics
Volume 29 (2025), No. 1, 1–5

Some Remarks on Arne Dür’s Equation for
Oblique Axonometry

Renato Manfrin
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Abstract. This paper provides a derivation of A. Dür’s necessary and sufficient
condition for an axonometric reference system to be, up to a uniform scale factor,
the parallel image of an orthonormal reference system. After that, simple formulas
relating the uniform scale factor and the projection direction are given. Finally,
A. Dür’s condition is extended to the case of the Pohlke-Schwarz theorem.
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1 Introduction

In [2, p. 139] A. Dür stated, without proof, a generalized form of the well known Gauss’
fundamental equation of orthogonal axonometry (see [1, p. 308], [5, Eq. (3)]). This condition
characterizes oblique axonometry when the direction of the parallel projection onto the image
plane, say ω, is expressed in the form n + v with vectors n, v such that

n ⊥ ω, ∥n∥ = 1 and v ∥ ω. (1)

In details, given a plane ω in the Euclidean 3-space E3 and a point O ∈ ω, we choose cartesian
coordinates x, y, z such that ω = {(x, y, z) ∈ E3 | z = 0} and O = (0, 0, 0). We then identify
vectors #    »

OP ∥ ω with complex numbers: if P = (a, b, 0) ∈ ω, we say that
#    »

OP ≃ p with p = a + bi ∈ C.

Then, the following holds:
Theorem 1 (A. Dür). Under parallel projection onto ω in the direction n + v, three non-
collinear vectors #       »

OW1,
#       »

OW2,
#       »

OW3 ⊂ ω are images of three pairwise orthogonal vectors #      »

OQ1,
#      »

OQ2,
#      »

OQ3 with equal norm if and only if, setting
#       »

OWk ≃ wk and v ≃ v (v, wk ∈ C),

w1, w2, w3 and v satisfy the equation

w2
1 + w2

2 + w2
3 = 1

2

(
|w1|2 + |w2|2 + |w3|2 − |w2

1 + w2
2 + w2

3|
)

v2. (2)
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2 Main Results and Motivations

The first goal of this paper is to provide a simple derivation Theorem 1. To this end, we
apply the results of [3] where Pohlke theorem is proved and the projection direction and the
reference trihedron (i.e., vectors #    »

OQk) are analytically determined.
In particular from [3] we get that the projection direction is uniquely determined up

to symmetry with respect to the image plane ω. Thus, if we express the direction of the
projection in the form n + v, with n and v as in (1), we know that v in uniquely determined,
except for the sense. Taking these considerations into account, to prove Theorem 1 it will
be sufficient to show that the projection directions determined by Dür’s equation (2) are the
same as found in [3]. See Section 3.

By means of an explicit formula for the common norm of vectors #    »

OQk (which is uniquely
determined), we can also improve Theorem 1 somewhat. Let

ρ = |OQk| (1 ≤ k ≤ 3), (3)
an let n, v as in (1). In Section 4 we get that
Claim 1. Under projection onto ω in the direction n + v, three non-collinear vectors #      »

OW 1,
#      »

OW 2,
#      »

OW 3 ⊂ ω are images of three pairwise orthogonal vectors with norm ρ if and only if
w2

1 + w2
2 + w2

3 = ρ2v2 (4)
and

|w1|2 + |w2|2 + |w3|2 − |w2
1 + w2

2 + w2
3| = 2ρ2. (5)

Finally, using an argument from [4], in Section 5 we extend Theorem 1 to the more general
case of Pohlke-Schwarz theorem. In details, given three non-collinear vectors #      »

OW 1,
#      »

OW 2,
#      »

OW 3 in ω, with Wk = (xk, yk, 0), and three non-coplanar vectors #   »

OT 1,
#   »

OT 2,
#   »

OT 3, with
Tk = (x̃k, ỹk, z̃k), we consider the matrices

W =

x1 x2 x3
y1 y2 y3
0 0 0

 , T =

x̃1 x̃2 x̃3
ỹ1 ỹ2 ỹ3
z̃1 z̃2 z̃3

 . (6)

Furthermore, we define

U = WT −1 =

x′
1 x′

2 x′
3

y′
1 y′

2 y′
3

0 0 0

 , (7)

and then we indicate with #    »

OU1,
#    »

OU2,
#    »

OU3 the non-collinear vectors of ω corresponding to
the columns of the matrix U , that is, we set

Uk = (x′
k, y′

k, 0) (1 ≤ k ≤ 3). (8)
With n, v as in (1), the following holds.
Claim 2. Under parallel projection onto ω in the direction n + v, three non-collinear vectors
#      »

OW 1,
#      »

OW 2,
#      »

OW 3 ⊂ ω are images of three non-coplanar vectors #    »

OZ1,
#    »

OZ2,
#    »

OZ3 that show
reciprocal ratios and angles like #   »

OT 1,
#   »

OT 2,
#   »

OT 3 if and only if, setting
#    »

OUk ≃ uk and v ≃ v (uk, v ∈ C),
u1, u2, u3 and v satisfy the equation

u2
1 + u2

2 + u2
3 = 1

2
(
|u1|2 + |u2|2 + |u3|2 − |u2

1 + u2
2 + u2

3|
)
v2. (9)
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3 A Proof of Theorem 1

As remarked in the previous section it will be enough to prove that Dür’s Equation (2) gives
the same projection directions as found in [3].

Let Wk = (xk, yk, 0), for 1 ≤ k ≤ 3. As in [3], we consider the row vectors

A1 = (x1, x2, x3) and A2 = (y1, y2, y3), (10)

which are linearly independent because we assume #      »

OW 1,
#      »

OW 2,
#      »

OW 3 non-collinear.
It is then easy to see that

|w1|2 + |w2|2 + |w3|2 = ∥A1∥2 + ∥A2∥2, (11)
w2

1 + w2
2 + w2

3 = ∥A1∥2 − ∥A2∥2 + 2(A1 · A2)i. (12)

This means that (2) is equivalent to

v2 =
2
[
∥A1∥2 − ∥A2∥2 + 2(A1 · A2)i

]
∥A1∥2 + ∥A2∥2 −

√
(∥A1∥2 − ∥A2∥2)2 + 4(A1 · A2)2

. (13)

To prove (13), according to [3, Defs. (3.6), (3.21)] we define the quantities:

γ ≑ arccos
(

A1 · A2

∥A1∥∥A2∥

)
, λ ≑

∥A1∥
∥A2∥

, (14)

η ≑
λ2 + 1 +

√
(λ2 + 1)2 − 4λ2 sin2 γ

2λ2 sin2 γ
.1 (15)

Then, by [3, Formulas (3.10), (4.6)], the direction of the parallel projection π : E3 → ω

such that π( #    »

OQk) = #      »

OW k (1 ≤ k ≤ 3, #    »

OQk pairwise orthogonal and with equal norm) is
given by the vector #    »

OU , with U = (−α, −β, 1) and

(α, β) ≑ ±
(√

ηλ2 − 1, sgn(cos γ)
√

η − 1
)
.2 (16)

So, taking into account (1), it will be sufficient to show that the right-hand side of (13) is
equal to (α + βi)2. To begin with, noting (15), we can rewrite η as

η = 2
λ2 + 1 −

√
(λ2 − 1)2 + 4λ2 cos2 γ

. (17)

Then, from (16) and (17), we immediately have

α2 − β2 = η(λ2 − 1) = 2(λ2 − 1)
(λ2 + 1) −

√
(λ2 − 1)2 + 4λ2 cos2 γ

. (18)

1Note that η is well defined because γ ̸= 0, π.
2Here, sgn(t) = 1 if t ≥ 0, sgn(t) = −1 otherwise.



4 R. Manfrin: Some Remarks on Arne Dür’s Equation for Oblique Axonometry

Still from (16) and (17), for α2β2 we find the expression

α2β2 = (ηλ2 − 1)(η − 1)

=
(

λ2 − 1 +
√

(λ2 − 1)2 + 4λ2 cos2 γ

λ2 + 1 −
√

(λ2 − 1)2 + 4λ2 cos2 γ

)(−(λ2 − 1) +
√

(λ2 − 1)2 + 4λ2 cos2 γ

λ2 + 1 −
√

(λ2 − 1)2 + 4λ2 cos2 γ

)

= 4λ2 cos2 γ(
λ2 + 1 −

√
(λ2 − 1)2 + 4λ2 cos2 γ

)2 . (19)

This means that

αβ = sgn(cos γ)
√

ηλ2 − 1
√

η − 1 = 2λ cos γ

λ2 + 1 −
√

(λ2 − 1)2 + 4λ2 cos2 γ
. (20)

Then, from (18) and (20), we obtain

(α + βi)2 = 2[λ2 − 1 + 2(λ cos γ)i]
λ2 + 1 −

√
(λ2 − 1)2 + 4λ2 cos2 γ

. (21)

Finally, noting the definitions of (14) and substituting into the right hand side of (21) we
obtain the right hand side of (13). Dür’s equation (2) is therefore verified.

4 Proof of Claim 1

It will be enough to show that (4), (5) give the same value of ρ and the same projection
directions as found in [3]. By [3, Formula (1.4)] and the definition of γ, we have

ρ =
√

2∥A1∥∥A2∥ sin γ√
∥A1∥2 + ∥A2∥2 +

√
(∥A1∥2 + ∥A2∥2)2 − 4∥A1∥2∥A2∥2 sin2 γ

. (22)

Then, an easy calculation gives

ρ2 =
∥A1∥2 + ∥A2∥2 −

√
(∥A1∥2 + ∥A2∥2)2 − 4∥A1∥2∥A2∥2 sin2 γ

2

=
∥A1∥2 + ∥A2∥2 −

√
(∥A1∥2 − ∥A2∥2)2 + 4∥A1∥2∥A2∥2 cos2 γ

2 .

(23)

Taking (11), (12) into account, from (23) we get (5). Also noting (13), we have

ρ2v2 = ∥A1∥2 − ∥A2∥2 + 2(A1 · A2)i = w2
1 + w2

2 + w2
3. (24)

So, Equation (4) is proved.

5 Proof of Claim 2

This statement follows from the explicit determination, given in [4, § 2], of the projection
direction in the case of Pohlke-Schwarz’s theorem. In fact, it has been shown that in the case
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of Pohlke-Schwarz theorem the projection direction is the same as in the Pohlke theorem, but
with the vectors #    »

OU1,
#    »

OU2,
#    »

OU3 instead of #      »

OW 1,
#      »

OW 2,
#      »

OW 3.
More precisely, let V be the column vector3 with elements given by the components of

the projection direction, that is, the vector n + v. Besides, let Z be the matrix with the
columns given by the coordinates of the points Z1, Z2, Z3.4 Then, taking into account (6), it
is immediate to note that the following facts are equivalent:

(i) Under projection in the direction n + v, #      »

OW 1,
#      »

OW 2,
#      »

OW 3 are the images of three
vectors #    »

OZ1,
#    »

OZ2,
#    »

OZ3 that show reciprocal ratios and angles like #   »

OT 1,
#   »

OT 2,
#   »

OT 3;
(ii) Z − W = VΛ and Z = QT , with Q a nonzero multiple of an orthogonal matrix and

Λ = (λ1, λ2, λ3) a suitable row vector.3

To proceed, recalling (7), we rewrite the equations of (ii) simply as

Q − U = (Z − W)T −1 = (VΛ)T −1 = V(ΛT −1) = VΛ̃, (25)

where Λ̃ = ΛT −1 is still a row vector. Therefore, (ii) is equivalent to requiring

Q − U = VΛ̃, (26)

with Q a nonzero multiple of an orthogonal matrix and Λ̃ = (λ̃1, λ̃2, λ̃3) a suitable row vector.
Noting that the column vector V in (26) has remained the same, we deduce that the direction
of the projection has not changed. In over words, by indicating with Q1, Q2, Q3 the points
corresponding to the columns of Q we obtain that (ii) is equivalent to the following:

(iii) Under projection in the direction n + v, the non-collinear vectors #    »

OU1,
#    »

OU2,
#    »

OU3 are
the images of three pairwise orthogonal vectors #    »

OQ1,
#    »

OQ2,
#    »

OQ3 with equal norm.
The last statement is exactly the first part of Theorem 1, with the vectors #    »

OUk instead
of #      »

OW k. This means that (iii) holds if and only if v satisfies Dür’s Equation (2) with the
complex numbers u1, u2, u3 instead of w1, w2, w3. That is, Equation (9).
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3That is, a 3 × 1 matrix. Similarly, we consider Λ a 1 × 3 matrix.
4As already done in (6) for the matrices W, T and in (7), (8) for U .
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