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Abstract. We consider the following configuration. Let ABCD be a cyclic
quadrilateral with circumcenter O, and for each vertex X, let HX be the ortho-
center of the triangle formed by the other three. Then A, B, C, D, HA, HB, HC ,
HD all lie on a single conic. In this paper we study a certain generalization of
this fact as follows. For an arbitrary point PD on the Euler line of △ABC, we
define corresponding points PA, PB, PC on the respective Euler lines such that
the ratio PXHX : PXO is constant for all X. We show that the four vertices A, B,
C, D and the four isogonal conjugates QA, QB, QC , QD of the points PX all lie
on a single conic. This result is given distinct treatments, synthetic, projective,
and algebraic. Furthermore, we situate the points PX within the list of triangle
centers.
Key Words: Euler line, isogonal conjugate, conic, cyclic quadrilateral, triangle
center, orthocenter, Shinagawa coefficients
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1 Introduction

Consider a triangle △ABC with orthocenter H. It is well established that if one considers
a rectangular hyperbola Φ passing through the vertices of △ABC, then H lies on Φ [1, 9].
From this fact, it immediately follows that if one considers D as the point of intersection of
Φ with the circumcircle of △ABC, the orthocenters of △ABD,△ACD,△BCD lie on Φ [6].
We state this below.
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Proposition 1. Let ABCD be a cyclic quadrilateral, and by HA denote the orthocenter of
triangle △BCD, similarly define HB, HC, HD. Then, A, B, C, D, HA, HB, HC, HD all lie
on a single conic.

This paper studies a generalization of this fact, extending it to a family of points defined
on the Euler line. This generalization was first stated in [8]; however the proof offered was
found to contain a fatal error, leading to the paper’s retraction. This paper provides three
distinct geometric treatments and establishes a connection to the modern theory of triangle
centers [4, 5, 9].

Notation. We work in the projective plane, denoting the line at infinity as ℓ∞ and points on
this line as ∞X or ∞k if we are referring to the infinity point of a line k. Moreover, for a given
segment AB: MAB denotes its midpoint, |AB| denotes its Euclidean length. Furthermore,
by X(Y ) 7−→ X ′(Y ′) we will denote a projectivity from Y to Y ′ in which X ∈ Y maps to
X ′ ∈ Y ′, by L(X) we denote the set of lines passing through point X.

2 Main Result

2.1 Preliminaries
We recall a list of Lemmas.

Lemma 2 (Steiner’s Theorem). Given two pencils of lines, P and Q, let ϕ be a projective
map between them. Then:

1. If ϕ(PQ) = PQ, the locus of points x ∩ ϕ(x) for x ∈ P forms a straight line Γ.
2. If ϕ(PQ) ̸= PQ, the locus of points x ∩ ϕ(x) for x ∈ P forms a conic Γ that passes

through points P and Q.
Moreover, the transformation

x(P ) 7−→ x ∩ ϕ(x) (Γ) (1)
is projective.

For the proof of Lemma 2 and related theory see [2]. A direct corollary of Steiner’s
Theorem is the following.

Lemma 3 (Isogonal Conjugate of a Line). Given a triangle ABC and a line ℓ, the locus of
the isogonal conjugates of points on ℓ with respect to △ABC is:

1. a line Γ, if ℓ passes through any of the vertices of △ABC;
2. a circumconic Γ of △ABC, otherwise.

Moreover, the transformation
X(ℓ) 7−→ X ′(Γ) (2)

is projective, where X ∈ ℓ and X ′ is the isogonal conjugate of the point X with respect to
triangle ABC.

Remark 4. In the case of the Euler line, this circumconic is the Jeřábek hyperbola [4], whose
center is X125 in the ETC.

Lemma 5. Let H be a rectangular hyperbola, and let A, B, C be distinct points on it, and
let H denote the orthocenter of △ABC. If H intersects the circumcircle of △ABC for the
fourth time at D, then the midpoint of HD is the center of H.



K. Chomicz et al.: A Family of Eight-Point Conics Associated with. . . 175

Proof. Let O be the circumcenter of △ABC. By ∞D denote the isogonal conjugate of D
with respect to △ABC. Let the line O∞D intersect the circumcircle of △ABC at K and L,
and by ∞K and ∞L we denote the isogonal conjugates of K and L with respect to △ABC
respectively. Then, we have

−1 = (O,∞D;K,L) = (H,D; ∞K ,∞L), (3)

which implies that the asymptotes of H intersect each other on HD. By symmetry, the
intersection point must be in the midpoint – which is the center of H.
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Figure 1: A, B, C, D, QA, QB, QC , QD lie on a conic.

Now we state the main result of this paper (Fig. 1).

Theorem 6. Let A, B, C, D be distinct ordered points lying on a circle, denoted by Ω
with center O. By HD, HB, HC, HA denote the orthocenters of △ABC, △ACD, △ABD,
△BCD, and let PD be any point on the Euler line of △ABC. Let PA be the point on the
Euler line of △BCD such that

PAHA

PAO
= PDHD

PDO
, (4)

where HA is the orthocenter of △BCD. Define PB, PC similarly on the Euler lines of △ACD
and △ABD. Let QD be the isogonal conjugate of PD with respect to △ABC, and define QA,
QB, QC analogously in their respective triangles. Then the points

A, B, C, D, QA, QB, QC , QD (5)

all lie on a single conic.
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Without loss of generality, we will prove that the points A, B, C, D, QA, and QD lie on
a single conic. By symmetry, an analogous argument can be constructed for the remaining
pairs of Q points. Since five points, no three collinear, uniquely determine a conic, this is
sufficient to establish that all eight points lie on a single conic.

Furthermore, we assume that no sub-triangle is equilateral. For an equilateral triangle,
the Euler line degenerates to a single point where the orthocenter and circumcenter coincide.
In such a case, Theorem 6 reduces to that of Proposition 1.

2.2 More (or Less) Synthetic Treatments
We give the first proof, using projective and synthetic tools.
Remark 7 (Degenerated cases). In all the proofs presented in this paper, whenever we refer
to Lemma 3 and Lemma 5, we assume that the locus of points described in these lemmas is a
conic. If the locus happens to be a line, such cases can be handled separately by an argument
of continuity in geometry, since degenerate cases are finitely many.

Proof. By ∞A and ∞D denote the isogonal conjugates of points A and D with respect to
triangles DBC and ABC, respectively. Since the quadrilateral ABCD is cyclic, the isogonal
conjugates ∞A and ∞D lie on the line at infinity.

CB
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Figure 2: Point T lies on the perpendicular bisector of the segment BC.

Let line k be the line passing through the points PD and ∞D, and let line ℓ be the line
passing through the points PA and ∞A. Denote T as the intersection of k and ℓ. Note
that since ∞A and ∞D are fixed and independent of the specific choice of PA and PD, and
PAPD ∥ HAHD, the locus of the point T is a fixed straight line passing through O. We will
show that this line is the perpendicular bisector of the side BC – denoted by m (Fig. 2).

Now consider the case PA = HA, which implies PD = HD. It suffices to demonstrate that
T lies on the perpendicular bisector of the side BC. Consider A′, D′, H ′

A and H ′
D – reflections

of A, D, HA and HD, respectively, in the perpendicular bisector of BC. We have AD′ ∥ k



K. Chomicz et al.: A Family of Eight-Point Conics Associated with. . . 177

A

B C

D

T

T1

T2

T3 O

Figure 3: TT3 goes through the point ∞D.

and DA′ ∥ ℓ from the definition and that AD′ and DA′ are reflections of each other in our
bisector. Moreover,

|AHD| = 2|OMBC | = |DHA| = |D′H ′
A|. (6)

Now, from AHD ∥ D′H ′
A, we find that AD′HDH

′
A is a parallelogram, which gives AD′ ∥

HDH
′
A =⇒ ℓ = HDH

′
A. Similarly we get that k = HAH

′
D, and our claim follows.

Let T1 and T2 denote the isogonal conjugates of the point T with respect to △ABC
and △DBC, respectively. By Lemma 3, the line ℓ, under isogonal conjugation with respect
to △DBC, maps to a circumconic of △DBC. Since the point ∞A lies on ℓ and is the
isogonal conjugate of point A with respect to △DBC, it follows that A also lies on this conic.
Furthermore, by the definition of point T2 and the fact that point PA lies on ℓ, both T2 and
QA lie on this conic.

By a similar argument, conjugating the line k with respect to △ABC yields that the
points A, B, C, D, T1, and QD lie on a single conic. Therefore, to establish that A, B, C,
D, QA, and QD lie on a single conic, it suffices to prove that points A, B, C, D, T1, and T2
lie on a single conic.

Now let T3 denote the isogonal conjugate of T2 with respect to △ABC. We will show
now that line TT3 goes through point ∞D (Fig. 3).

Now, from Lemma 3 it follows that T2 moves along a conic passing through D, B, and
C, as the isogonal conjugate of T ∈ m with respect to △DBC. Let us denote this conic by
Γ1. We then have the following maps:

T (m) 7−→ T2(Γ1), (7)
T2(Γ1) 7−→ CT2(L(C)) 7−→ CT3(L(C)), (8)
T2(Γ1) 7−→ BT2(L(B)) 7−→ BT3(L(B)). (9)
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From Equations (8) and (9), we obtain the following projective map:

CT3(L(C)) 7−→ BT3(L(B)). (10)

By Lemma 2, we conclude that T3 lies on a conic passing through points B and C, which we
denote by Γ2. Thus, we have the following projective map:

BT3(L(B)) 7−→ T3(Γ2). (11)

Note that since D ∈ Γ1, it follows that ∞D ∈ Γ2. Therefore, we have the following projective
map:

T3(Γ2) 7−→ ∞DT3(L(∞D)) 7−→ m ∩ ∞DT3(m). (12)

By composing the above projective maps, we find that:

T (m) 7−→ m ∩ ∞DT3(m). (13)

We will show that this map is the identity mapping. It is enough to show this in three cases,
as a projective map is a Möbius transformation.

1. T = ∞m =⇒ T2 ∈ Ω =⇒ T3 ∈ ℓ∞ =⇒ T , T3, ∞D are collinear. Therefore, the map
(13) is the identity mapping.

2. Let T = O. By Lemma 3, we obtain that the conic passing through A, B, C, HD,
and HA is the isogonal conjugate of TT3 with respect to △ABC. Furthermore, by
Proposition 1, we know that A, B, C, HD, HA, and D lie on a single conic. Hence
∞D ∈ TT3, which proves the collinearity of T , T3, and ∞D. Therefore, the map (13) is
the identity mapping.

3. T = M =⇒ T2 = D =⇒ T3 = ∞D. Thus ∞DT3 is tangent to Γ2. Therefore by
Lemma 8 (proved below) we obtain that this tangent line DT3 passes through point
M = T . Therefore, the map (13) is the identity mapping.

We have shown that map (13) is the identity mapping in three cases. Therefore, it is the
identity mapping in general. It follows directly that T , T3, and ∞D are collinear.

Now we take the isogonal conjugates of points on the line TT3 with respect to △ABC.
Then, by Lemma 3 and by taking the isogonal conjugates of the points T , T3, and ∞D with
respect to △ABC, we obtain that points

A, B, C, D, T1, T2 (14)

lie on a single conic. Which completes our proof.

Lemma 8. Let A, B, C, D be four distinct points on a circle Ω. Denote ℓ to be the perpen-
dicular bisector of BC. Denote H1 to be the isogonal conjugate of ℓ with respect to △BCD
and H2 to be the isogonal conjugate of H1 in with respect to △ABC. Then, H1 and H2 are
rectangular hyperbolas, and the midpoint of BC is their center (Fig. 4).

Remark 9. To finish the proof of Theorem 6, we only really need the part that MBC is the
center of H2, but for completeness, we include the other result too.

Proof. First, it is clear that H1 is a rectangular hyperbola – the intersections of ℓ with Ω
are antipodal on Ω, hence it follows that the asymptotes of H1 are perpendicular. Let H1
intersect Ω for the fourth time at D′, and let H be the orthocenter of △BCD. Notice that
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Figure 4: MBC is the center of the hyperbolas.

D′ is the antipode of D on Ω, as ∞D′ – the isogonal conjugate of D′ with respect to △BCD
is the point at infinity of ℓ, and as ℓ ⊥ BC =⇒ D∞D ⊥ BC =⇒ H ∈ D∞D, we must
have DD′ passing through the center of Ω (in the exceptional case where D ∈ ℓ, its isogonal
conjugate will be a line. For our lemma to make sense, in such case we assume that the
isogonal conjugate of D with respect to △BCD is the whole line BC, and H1 degenerates
to two perpendicular lines – namely BC and ℓ). From Lemma 5, the center of H1 is the
midpoint of HD′, but it is clearly also the midpoint of BC.

Now, as H1 is a conic passing through B and C, H2, being its isogonal conjugate with
respect to △ABC, must also be a conic passing through B and C (in the exceptional case
where A ∈ H1, we again assume that H2 degenerates to two perpendicular lines – the same
as before). Isogonal conjugates of D and D′ with respect to △ABC lie on H2 and are
at infinity. Because AD ⊥ AD′ (as DD′ is the diameter of Ω), we get that H2 is also a
rectangular hyperbola. Now label the points at infinity of H1 as ∞K and ∞L, and let K and
L be their isogonal conjugates with respect to △ABC, respectively. It is clear that K and L
lie on Ω as well as on H2. K and L are also the antipodes of each other on Ω, because

∢KAL = ∢∞KA∞L = 90◦. (15)

Let K ′ be the reflection of K in ℓ. Now KK ′ ∥ BC and ∢KK ′L = 90◦ =⇒ K ′L ⊥ BC. Let
K ′′ be the reflection of K ′ in BC. It follows that K ′′ is the orthocenter of △BCL, and from
Lemma 5, the midpoint of KK ′′ is the center of H2. As BC passes through the midpoint of
K ′K ′′ and BC ∥ KK ′, we get that the midpoint of KK ′′ lies on BC.

A more synthetic proof of the main result can be seen below.

Proof. Consider the isogonal conjugate of the circumconic ABCDQD with respect to △ABC.
It will be a line, denoted k, through PD and ∞D, where ∞D is the isogonal conjugate of D
with respect to △ABC. Similarly define the line ℓ through PA and ∞A, where ∞A is the
isogonal conjugate of A with respect to △BCD.
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Repeating the same treatment as at the start of the first proof of Theorem 6, we get that
k and ℓ are reflections of each other in the perpendicular bisector of BC.

B

A
D

C

O

HD

HA PA

PD

D′

A′

k

ℓ

L1

L2 K2

K1

Figure 5: k and ℓ are reflections of each other in the perpendicular bisector of BC.

We have to prove that the isogonal conjugate of ℓ with respect to △BCD and the isogonal
conjugate of k with respect to △ABC are the same conic. To do this, we first assume that
the conics are hyperbolas, that is, lines k and ℓ intersect the circle on ABCD, each at two
points.

As the aforementioned isogonal conjugates of k and ℓ share points A, B, C, D, it is
sufficient to prove that they have the same points at infinity. Let k intersect Ω at K1 and
K2, and let ℓ intersect Ω at L1 and L2 (Fig. 5).

As k and ℓ are reflections of each other in the perpendicular bisector of BC, we can
see that K1K2L1L2 is a trapezoid with its bases parallel to BC. Without loss of generality,
assume that K1 and L2 lie on the same side of the aforementioned bisector. Now because
arcs A′K2 and AL2 have the same length and L1L2 ∥ DA′, we get that DK2 ∥ AL1. Now
from the trapezoid, the line DK2 is clearly the isogonal conjugate of the line DL2 in the
angle BDC, and AL1 is the isogonal conjugate of the line AK1 in the angle BAC, hence,
from DK2 ∥ AL1, the isogonal conjugate of L2 in BCD is the same point at infinity as the
isogonal conjugate of K1 in ABC, which proves our claim.

Now there are clearly infinitely many instances of PA, so that k and ℓ have intersections
with Ω (when PA is inside the circle), hence, we have proven our Theorem for infinitely many
cases. To get from this to the Theorem for all the cases, we can use a polynomial moving
points argument. When PA moves on OHA, QA, being its isogonal conjugate, by Lemma 2,
moves on a conic Γ1, and the map

PA(OHA) 7−→ QA(Γ1) (16)

is projective. Similarly QD also moves on a conic Γ2, and the map

PA(OHA) 7−→ PD(OHD) 7−→ QD(Γ2) (17)
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is also projective. Now we get that the map

QA(Γ1) 7−→ PA(OHA) 7−→ PD(OHD) 7−→ QD(Γ2) (18)

is projective, since projective maps are bijective. Therefore we can express coordinates of the
point QD, as a polynomial of coordinates of the point QA, which lies on a fixed conic. Thus,
to prove that A, B, C, D, QA, QD lie on a single conic it is sufficient to check some finite
number of cases, but we have infinitely many.

2.3 A More Algebraic Approach
As it turns out this result also comes about purely projectively, using techniques well known
in algebraic geometry. To proceed with the proof, consider the space of all conics considered
as homogeneous forms of degree 2. Conics passing through any four non-collinear points P1,
P2, P3, P4 form a line in that space; let us call this line C(P1, P2, P3, P4) ∼= P1. We will need
the following Lemma.
Lemma 10. Let ABC be a triangle, ℓ be a line different from the line in infinity that passes
through at most one vertex of the triangle, X be a point in the plane not lying on any of
the triangle’s sides such that its isogonal conjugate does not lie on ℓ. Then there exists a
projectivity from ℓ to C(A,B,C,X) that maps each point possessing an isogonal conjugate
to a conic passing through the isogonal conjugate, which moreover satisfies the two following
conditions:

1. if X lies on the circumcircle of ABC, the image of the point in infinity is the circumcircle
of ABC,

2. if ℓ passes through the circumcenter O of △ABC then the image of O is a rectangular
hyperbola (perhaps one reducing to two perpendicular lines).

Proof. First consider the case when ℓ does not pass through any of the triangle’s vertices.
Take the conic Γ and the parametrisation γ : ℓ → Γ from Lemma 2; had X lied on Γ, it would
be the image of some point X ′ in γ. It is easy to see X ′ must not lie on any of the triangle’s
sides, meaning that X is the isogonal conjugate of X ′, a contradiction. The parametrisation
γ induces a map in the reverse direction: from the space of homogeneous forms of degree 2 on
P2 restricted to Γ to the space H4(2) of homogeneous forms of degree 4 on ℓ. In particular,
we have a map ϕ from C(A,B,C,X) to H4(2). 0 does not lie in the image of ϕ, as X
does not lie on Γ – hence ϕ is a well-defined projectivity from C(A,B,C,X) to Imϕ. Now,
three of the roots of any form in the image of ϕ correspond to the preimages of A, B, C
in the aforementioned parametrisation; we can compute the fourth root by Viete’s formulas,
inducing a projective map ψ from Imϕ to ℓ. Both ψ and ϕ are projectivities – denote the
inverse of their composition by f . By our construction, it is a map from ℓ to C(A,B,C,X)
that sends every point to the conic passing through its image in γ; thus f is the sought after
projectivity.

In the case where ℓ passes through one of the triangle’s vertices (say A), the reasoning is
very similar except we directly restrict conics to the line Γ given by Lemma 2.2. We know
one of the resulting form’s roots will be A, and we extract the second one by Vieta’s formulas
as above.

The last two claims are easy to prove synthetically except two nuances; the first propo-
sition has a slight problem when ℓ is parallel to one of the triangle’s sides, and the second –
when ABC is right-angled. These issues can be addressed manually or with an argument by
continuity.
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Now we can give another proof of the main result of this paper.

Proof. We will assume the isogonal conjugate of A with respect to △BCD does not lie on
OHA and similarly for D; otherwise, it is not hard to see the conic degenerates to a rectangular
hyperbola through A, B, C, D.

By ∞HAHD
denote the point at infinity on line HAHD. We will use our previous Lemma

for the line OHA, the triangle BCD and the point A, as well as the line OHD, the triangle
ABC and the point D; call the obtained projectivities ϕA and ϕD. Consider the following
diagram:

OHA C(A,B,C,D)

L(∞HAHD
) OHD

ϕA

π∞HAHD

πOHD

ϕD

where π∞HAHD
is a map which assigns each point X on OHA the line ∞HAHD

and πOHD
is

a map which assigns each line through ∞HAHD
its intersection with OHD. If the diagram

commutes, then applying the relevant maps to PA will get us that the conic passing through
its isogonal conjugate is the same as the conic passing through the isogonal conjugate of PD,
ending the proof. But all maps on the diagram are projectivities; hence it suffices to prove
that ϕA(X) = ϕD(πOHD

(π∞HAHD
(X)) for three cases of X.

1. For X at infinity, π∞HAHD
(X) is at infinity as well; by Lemma 10, both conics are the

circumcircle.
2. For X at HA, ϕA(X) passes through A, B, C, D, O; there is exactly one such conic,

and it must also be equal to ϕD(π∞HAHD
(X)), ending the proof for this case.

3. For X at O, ϕA(X) is a rectangular hyperbola by Lemma 10. The same follows for
ϕD(π∞HAHD

(X)); both conics pass through A, B, C, D, implying they are one and the
same.

3 Connection to the Encyclopedia of Triangle Centers

3.1 Centers with Constant Shinagawa Coefficients
Theorem 6 holds for any point PD on the Euler line, which in turn establishes a ratio PDHD :
PDO = λ0. Since this condition is satisfied by triangle centers such as the orthocenter, it is
natural to investigate the cases where PA, PB, PC , PD correspond to other triangle centers.
To this end, we consult the Encyclopedia of Triangle Centers (henceforth ETC) [4].

Let Xn denote the n-th Kimberling center cataloged in the ETC. We consider the subset
of these centers that lie on the Euler line. The homogeneous barycentric coordinates of such
points, relative to the affine frame defined by triangle ABC, are conveniently expressed using
Shinagawa coefficients [4]. We use the convention where A = (1 : 0 : 0), B = (0 : 1 : 0),
C = (0 : 0 : 1), and the Conway symbols for △ABC with side lengths a, b, c are given by
S = 2 · Area(△ABC) and SA = 1

2(b2 + c2 − a2), with SB and SC defined cyclically [9].

Definition 11 (Shinagawa coefficients). Let Xn be a triangle center on the Euler line. Its
homogeneous barycentric coordinates are expressed as (f(a, b, c) : f(b, c, a) : f(c, a, b)), where
f is the triangle center function of Xn [4]. The Shinagawa coefficients of Xn is the pair of
functions (G(a, b, c), H(a, b, c)) that satisfy the relation:

f(a, b, c) = G(a, b, c) · S2 +H(a, b, c) · SBSC , (19)
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and analogous cyclic conditions hold.

Remark 12. Note that Shinagawa coefficients are homogeneous.

It is often the case that the Shinagawa coefficients (G(a, b, c), H(a, b, c)) are constants for
all possible a, b, c. For example, the coefficients of the orthocenter, X4, are (0, 1) (see [5] for
more examples).

In this context, we claim that our points PA, PB, PC , PD are always centers with constant
Shinagawa coefficients. To establish this, we first present the following lemma from [7], where
lowercase letters of points denote their positional vectors.

Lemma 13. Let ABC be a triangle on the unit circle with center O and orthocenter H. Let
X be a center with constant Shinagawa coefficients (u, v). Then there exists a unique scalar
λ ∈ R ∪ {∞} such that x = λh, where

λ = u+ v

3u+ v
. (20)

Proposition 14. The points PA, PB, PC, PD satisfy the condition in (4) if and only if they
correspond to the same triangle center with constant Shinagawa coefficients in their respective
triangles.

Proof. Assume the condition in (4) holds. This gives a constant λ0 such that

pD − hD

pD

= λ0, (21)

which implies pD = λhD for λ = (1 − λ0)−1. The condition ensures this same λ applies to all
four points, so pX = λhX for X ∈ {A,B,C,D}. By Lemma 13, this single λ determines a
unique ratio of Shinagawa coefficients (u, v):

u

v
= 1 − λ

3λ− 1 . (22)

Since this ratio is the same for all four points, they must correspond to the same center with
constant Shinagawa coefficients.

Conversely, assume PA, PB, PC , PD are the same center with constant Shinagawa coef-
ficients (u, v). By Lemma 13, these coefficients determine a unique scalar λ via (22). This
implies pX = λhX for each point, which is equivalent to the ratio condition in (4).

Following Proposition 14 the isogonal conjugates of centers with constant Shinagawa
coefficients are exactly the family of points that satisfy the main result of this paper, meaning
it can be rephrased as follows.

Theorem 15. Assume X is a triangle center with constant Shinagawa coefficients (u, v).
Let ABCD be a cyclic quadrilateral, by XA, XB, XC, XD denote the X points of △BCD,
△ACD, △ABD and △ABC, respectively. Furthermore by YA denote the isogonal conjugate
of XA with respect to △BCD, similarly define YB, YC, YD. Then A, B, C, D, YA, YB, YC,
YD lie on a conic, denoted by Φ(u, v).
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Xn X ′
n Xn X ′

n Xn X ′
n

X2 X6 X3 X4 X5 X54
X20 X64 X30 X74 X381 X3431
X140 X1173 X376 X3426 X547 X57714
X382 X11270 X546 X57713 X550 X16835
X548 X57715 X549 X14483 X1656 X13472
X631 X3527 X632 X57730 X3091 X14528
X1657 X13452 X3090 X43908 X3523 X52518
X3146 X3532 X3522 X22334 X3534 X11738
X3524 X3531 X3529 X43719 X3830 X20421
X3543 X43713 X3628 X34567 X5071 X44731
X5054 X14491 X5059 X43691 X12100 X14487
X8703 X13603 X10304 X14490 X46853 X46851
X33703 X44763 X33923 X46848 X61138 X61137

Table 1: Pairs (Xn, X ′
n), where Xn is a center with constant Shinagawa coefficients.

3.2 A Catalog of Centers that Satisfy the Main Result
We now identify all cataloged pairs of centers Xn and their isogonal conjugates X ′

n that satisfy
Theorem 15. See Table 1.
Remark 16. Note that for n ≤ 61371, there exist 721 centers with constant Shinagawa coef-
ficients; however, most of them do not have a cataloged isogonal conjugate pair [4, 5, 7] (as
of 20th of July 2025).

3.3 Equation of the Eight-Point Conic Family
We conclude our study by providing the explicit equation for the conic Φ(u, v) from Theo-
rem 15. We first recall two results concerning barycentric coordinates [9].

Lemma 17. Let D = (d : e : f) and X = (p : q : r) be two distinct points, with homogeneous
barycentric coordinates given relative to the affine frame defined by △ABC. The conic passing
through the five points A, B, C, D, X has the equation:∑

cyc
frxy(ep− dq) = 0. (23)

Lemma 18 (Isogonal conjugate coordinates). Let a point P have homogeneous barycentric
coordinates (x : y : z) relative to the affine frame defined by △ABC. Its isogonal conjugate
with respect to △ABC is the point Q given by:

Q =
(
a2

x
: b

2

y
: c

2

z

)
, (24)

where a, b, c are the lengths of sides BC, AC, AB respectively.

Proposition 19. In the affine frame of △ABC, the equation of the conic passing through A,
B, C, D, YA, YB, YC, YD, denoted Φ(u, v) where (u, v) are the Shinagawa coefficients of Xi,
is given by ∑

cyc

c2rxy

uS2 + vSASB

(
b2p

uS2 + vSASC

− a2q

uS2 + vSBSC

)
= 0, (25)
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where D = (p : q : r) are the homogeneous barycentric coordinates of the fourth vertex.

Proof. By Theorem 6, all eight of our points lie on a single conic, which in turn is uniquely
determined by the five points A, B, C, D, and YD. To find its equation, we can, without loss
of generality, work within the affine frame of △ABC.

By Proposition 14, YD is the isogonal conjugate of the center XD with constant Shinagawa
coefficients (u, v). Applying Lemma 18, the coordinates of YD in the frame of △ABC are:

YD =
(

a2

uS2 + vSBSC

: b2

uS2 + vSASC

: c2

uS2 + vSASB

)
. (26)

Substituting the coordinates of D = (p : q : r) and YD into the five-point conic formula
(Lemma 17) directly yields the equation for Φ(u, v) as stated.

Remark 20. A computational verification that all eight points lie on Φ(u, v) is also possible.
The procedure involves performing an affine transformation [3] to reframe the coordinates of
each point Yi from its native triangle into the affine frame of △ABC. One can then confirm
by direct substitution that these transformed coordinates are zeros of Equation (25).
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