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Abstract. Theorem 1 is to prove angle sum conditions for a skew quadrilateral to
be planar. Theorem 2 is about the angle sum of a non-planar skew quadrilateral.
Theorem 3 proves that a tetrahedron must have a vertex with all three angles
acute.

A skew quadrilateral with pairwise equal opposite edges is called reversible. A
tetrahedron that contains a reversible skew quadrilateral is reversible. An equal-
angled skew quadrilateral may not be reversible. However, Theorem 4 states that
if a tetrahedron contains an equal-angled skew quadrilateral, then the tetrahedron
must be reversible. Our last Theorem 5 is on an angle condition of an isosceles
tetrahedron.
Key Words: skew quadrilateral, quadrilateral, law of cosines, spherical law of
cosines, reversible skew quadrilateral, reversible tetrahedron, isosceles tetrahedron
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1 Introduction

Let A, B, C and D be distinct points in the space R3. The line segment AB with its endpoints
is denoted by [AB], the segment AB without its endpoints is denoted by (AB), and its length
is denoted by |AB|. By joining the points A, B, C, D with line segments [AB], [BC], [CD]
and [DA], we obtain a skew quadrilateral, denoted by SQ(ABCD), if (1) [AB] ∩ [CD] = ∅
and [DA]∩ [BC] = ∅, and (2) if X, Y, Z are distinct elements from the set {A, B, C, D}, then
(XY ) ∩ (Y Z) = ∅ (see Figure 1). If SQ(ABCD) is planar, then we say that SQ(ABCD) is
a quadrilateral, and denote it by Q(ABCD).

The angle of a skew quadrilateral SQ(ABCD) at D is, denoted by ∠CDA, is (1) the
angle of the triangle △CDA at D if C, D, A are non-collinear, or (2) ∠CDA = π if C, D,
A are collinear in this order: (If C, D, A are collinear in this order, then SQ(ABCD) is the
triangle △ABC having the point D on the edge (CA).) So, an angle of a skew quadrilateral
is at most π (see Remark 1 below). If there is no confusion, we denote ∠CDA by ∠D. A
skew quadrilateral SQ(ABCD) is said to be equal-angled if ∠A = ∠B = ∠C = ∠D.

Skew quadrilaterals are discussed in [1]. However, no discussions on angles are given
there. We will investigate angles of skew quadrilaterals and of tetrahedra.
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Figure 1: These are examples that are not Q(ABCD).

Figure 2: The marked angle φ is the angle ∢CDA of (planar) Q(ABCD) with our definition. The
conventional angle ∢CDA of Q(ABCD) is the interior angle 2π − φ.

Remark 1. We’d like to point out our angle measurements of a quadrilateral can be different
from the conventional angle measurement. Suppose Q(ABCD) is the non-convex one in
Figure 2. Then the angle indicated by φ is our definition of the angle ∠CDA, while the
conventional angle measurement of ∠CDA is the interior angle of Q(ABCD) at D, which is
2π − φ and larger than π. While a quadrilateral has the conventional angle sum of 2π, this is
not true by our definition of the angle measurement. Clarification of this is Lemma 1 below.
Please be noted.

Lemma 1. The four angles of a quadrilateral can be labeled α, β, γ, δ so that α+β+γ+δ = 2π
or α = β + γ + δ.
Proof. Suppose Q(ABCD) is a quadrilateral. We will consider two cases; (Case 1), for any
distinct X, Z in {A, B, C, D}, [XZ] is inside or an edge of Q(ABCD); or (Case 2) for some
distinct X, Z in {A, B, C, D}, (XZ) is outside of Q(ABCD).

(Case 1) Suppose for any distinct points X, Z in {A, B, C, D}, [XZ] is inside or an edge
of Q(ABCD). Then the union of △DBC and △DAB with their interior is Q(ABCD) with
its interior. (In this case, the conventional angle measurement and ours are the same.) Then

∠CDA + ∠DAB + ∠ABC + ∠BCD

= (∠CDB + ∠BDA) + ∠DAB + (∠ABD + ∠DBC) + ∠BCD

= (∠CDB + ∠DBC + ∠BCD) + (∠BDA + ∠DAB + ∠ABD) = 2π.

(Case 2) Suppose for some distinct X, Z in {A, B, C, D}, (XZ) is outside of Q(ABCD).
Suppose (AC) is outside of Q(ABCD). Then D and B are on the same side of AC. (This is the
case of Figure 2.) Then ∠BDA > π

2 and ∠CDB > π
2 . Since (∠DAB +∠ABD+∠BDA) = π

and (∠DBC + ∠BCD + ∠CDB) = π are the angle sums of △DAB and △DBC, we have

∠DAB + ∠ABC + ∠BCD = ∠DAB + (∠ABD + ∠DBC) + ∠BCD

= (∠DAB + ∠ABD) + (∠DBC + ∠BCD) = (π − ∠BDA) + (π − ∠CDB)
= 2π − (∠BDA + ∠CDB) = ∢CDA.
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Therefore, the four angles of a quadrilateral can be labeled α, β, γ, δ so that α+β+γ+δ =
2π, or α = β + γ + δ.

Theorem 1 is the converse of Lemma 1. Theorem 2 is to show that a non-planar skew
quadrilateral has the four-angle sum being less than 2π and the three-angle sum being not
equal to the fourth angle.

If edges [AC] and [BD] are added to a non-planar skew quadrilateral SQ(ABCD), the
resulting solid is a tetrahedron, denoted by ∇ABCD, and ∇ABCD is said to be generated by
SQ(ABCD). Equivalently, a tetrahedron ∇ABCD is said to contain or to have three skew
quadrilaterals SQ(ABCD), SQ(ACBD), and SQ(ACDB) (see Figure 3).

Figure 3: The figure on the left is a tetrahedron ∇ABCD. Then the remaining three figures are
the skew quadrilaterals SQ(ABCD), SQ(ABDC), and SQ(ACBD) that are contained in
∇ABCD. Any one of SQ(ABCD), SQ(ABDC), and SQ(ACBD) can generate ∇ABCD.

An angle of a triangular face of a tetrahedron is said to be an angle of the tetrahedron.
Hence, a tetrahedron ∇ABCD has twelve angles, and three angles ∢ADB, ∢ADC, ∢BDC
are said to be angles of ∇ABCD at D. Theorem 3 will show that a tetrahedron must have
a vertex with three acute angles. (An angle θ is acute if 0 < θ < π

2 , and obtuse if θ ≥ π
2 .)

If |AB| = |CD| and |AD| = |BC|, then SQ(ABCD) is said to be reversible. A reversible
quadrilateral is a parallelogram.

A tetrahedron that contains a reversible skew quadrilateral is said to be reversible. A
tetrahedron ∇ABCD is said to be isosceles if |AB| = |CD|, |AC| = |BD| and |AD| = |BC|.
An isosceles tetrahedron has four congruent triangular faces.
Example 1. Note that if SQ(ABCD) is a reversible skew quadrilateral, then ∢DAB = ∢BCD
and ∢ABC = ∢CDA. However, the converse is not true. We will construct an equal-angled
SQ(ABCD) such that |BC| ̸= |DA|. Let ∇ABCD be a tetrahedron such that |AB| = |BC| =
|CD| = 2, |BD| = |AC| =

√
2, and |DA| = 1. (The volume,1 of ∇ABCD is

√
2

6 .) Hence,
△ABD ∼= △DCA and △ABC ∼= △BCD so that ∢DAB = ∢ADC and ∢ABC = ∢BCD.
From the law of cosines, we have

2 = |BD|2 = |AB|2 + |DA|2 − 2|AB||DA| cos∠DAB = 5 − 4 cos∠DAB and
2 = |AC|2 = |AB|2 + |BC|2 − 2|AB||BC| cos∠ABC = 8 − 8 cos∠ABC.

Hence, cos∠DAB = 3
4 = cos∠ABC. Therefore, ∠DAB = ∠ABC = ∠BCD =

∠CDA = cos−1 3
4 so that SQ(ABCD) is equal-angled. Since |BC| = 2 and |DA| = 1,

1If (a and α), (b and β), (c and γ) are pairs of opposite edges of a tetrahedron of volume V , then

144V 2 =a2α2(−a2 − α2 + b2 + β2 + c2 + γ2) + b2β2(a2 + α2 − b2 − β2 + c2 + γ2)
+ c2γ2(a2 + α2 + b2 + β2 − c2 − γ2) − (a2b2c2 + a2β2γ2 + a2b2γ2 + α2β2c2).

A positive righthand side of this equation is a necessary condition for the existence of such tetrahedron.
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SQ(ABCD) is not reversible. SQ(ACBD) is not reversible, either. However, SQ(ACDB) is
reversible since |AC| = |DB| =

√
2 and |CD| = |BA| = 2, and therefore, the tetrahedron

∇ABCD is reversible.
Even though an equal-angled skew quadrilateral may not be reversible as we saw in the

above example, Theorem 4 is to show that if a tetrahedron contains an equal-angled skew
quadrilateral, then the tetrahedron must be reversible. The converse of Theorem 4 is not true
(see Example 3 below).

Lastly, Theorem 5 is to show that a tetrahedron is isosceles if, and only if, it contains two
equal-angled skew quadrilaterals.

2 Angle Sum of a Skew Quadrilateral

The sum of four angles of a skew quadrilateral can be made very close to 0 as well as 2π (see
Lemma 2). We will prove that for a non-planar skew quadrilateral, the sum of four angles is
less than 2π, and the sum of three angles is not equal to the fourth angle.

Lemma 2. Let 0 < θ < π
2 . Then there is a skew quadrilateral SQ(ABCD) such that ∢A =

∢B = ∢C = ∢D = θ.

Proof. Let Q(ABCD1) be a quadrilateral such that |AB| = |BC| = |CD1| = |D1A| and
∢AD1C = ∢ABC = θ. So △AD1C and △ABC are congruent isosceles triangle. Since
∢BAD1 = (π − θ) > π

2 > θ, we can rotate △AD1C about the edge [AC] so that ∢BAD1
become θ, and relabeling this D1 by D. Then we obtain ∢BAD = ∢BCD = θ. Then
SQ(ABCD) is a skew quadrilateral such that ∢A = ∢B = ∢C = ∢D = θ.

The interior angle between the triangular faces △ABC and △ADC at the edge [AC] of
a tetrahedron ∇ABCD is said to be the dihedral angle at the edge [AC], and it is denoted
by ∢AC. The next lemma is called spherical law of cosines and it is well-known.

Lemma 3. (Spherical Law of Cosines) Let ∢BDC = α, ∢ADC = β, ∢ADB = γ and
∢AD = θ for a tetrahedron ∇ABCD. Then

cos∢AD = cos α − cos β cos γ

sin β sin γ
and cos∢α = cos∢AD + cos∢BD cos∢CD

sin∢BD sin∢CD
.

Additional tools to prove Theorem 1 are the next three lemmas.

Lemma 4. Let ∇ABCD be a tetrahedron. Then ∢DAB < ∢DAC + ∢CAB.

Proof. Let ∢DAC = α, ∢CAB = β, and ∢DAB = θ. We have to show that θ < α + β. If
α + β ≥ π, then α + β > θ since 0 < θ < π. We assume that α + β < π. By Lemma 3, we
have cos∠AC = cos θ−cos α·cos β

sin α·sin β
. Hence,

cos θ − cos α · cos β

sin α · sin β
= cos∠AC > −1

= cos α · cos β − sin α · sin β − cos α · cos β

sin α · sin β
= cos(α + β) − cos α · cos β

sin α · sin β
.

This implies that cos θ > cos(α +β) since sin α · sin β > 0. Since 0 < α +β < π, and since the
cosine function is decreasing on the interval [0, π], cos θ > cos(α + β) implies that θ < α + β
or ∢DAB < ∢DAC + ∢CAB.
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Lemma 5. The four-angle sum of a non-planar skew quadrilateral is less than 2π.

Proof. Suppose SQ(ABCD) is non-planar. Hence, SQ(ABCD) generates ∇ABCD. By
Lemma 4, we have ∠DAB < ∠DAC + ∠CAB and ∠BCD < ∠BCA + ∠ACD. Then

∠A + ∠B + ∠C + ∠D = ∠DAB + ∠ABC + ∠BCD + ∠CDA

< (∠DAC + ∠CAB) + ∠ABC + (∠BCA + ∠ACD) + ∠CDA

= (∠CDA + ∠DAC + ∠ACD) + (∠ABC + ∠BCA + ∠CAB).

Since ∠CDA+∠DAC +∠ACD and ∠ABC +∠BCA+∠CAB are the angle sums of triangles
∆ACD and ∆ABC, respectively, we have

∠A + ∠B + ∠C + ∠D < (∠CDA + ∠DAC + ∠ACD) + (∠ABC + ∠BCA + ∠CAB) = 2π.

This proves the lemma.

Lemma 6. If the sum of some three angles of a skew quadrilateral is equal to the remaining
fourth angle, then the skew quadrilateral is a (planar) quadrilateral.

Proof. Suppose SQ(ABCD) is a skew quadrilateral such that ∢A + ∢B + ∢C = ∢D. Let
∢DAB = α, ∢ABD = β1, ∢DBC = β2, ∢BCD = γ, ∢ADB = δ1, ∢CDB = δ2, and
∢CDA = θ. The dihedral angle ∢BD of ∇ABCD at the edge BD is give by

cos∢BD = cos θ − cos δ1 cos δ2

sin δ1 sin δ2
.

We will show that ∢BD = π so that △ABD and △CBD are on the same plane. Since
∢A + ∢B + ∢C = ∢D and ∢B = β1 + β2, we have α + β1 + β2 + γ = θ.

We have δ1 = π − (β1 + α) and δ2 = π − (β2 + γ) from ∆ADB and ∆CDB. Hence,

cos δ1 = cos[π − (β1 + α)] = − cos(β1 + α), cos δ2 = cos[π − (β2 + γ)] = − cos(β2 + γ),
sin δ1 = sin[π − (β1 + α)] = sin(β1 + α), and sin δ2 = sin[π − (β2 + γ)] = sin(β2 + γ),

Thus, cos θ − cos δ1 cos δ2 = cos[(β1 + α) + (β2 + γ)] − cos(β1 + α) cos(β2 + γ) = − sin(β1 +
α) sin(β2 + γ) = − sin δ1 sin δ2. Therefore,

cos∢BD = cos θ − cos δ1 cos δ2

sin δ1 sin δ2
= − sin δ1 sin δ2

sin δ1 sin δ2
= −1.

This implies that ∢BD = π. Hence, △ABD and △CBD are on the same plane so that
SQ(ABCD) is a quadrilateral.

Now we have our first theorem.

Theorem 1. A skew quadrilateral is a (planar) quadrilateral if, and only if, the sum of four
angles is 2π or the sum of three angles is equal to the fourth angle.

Proof. By Lemmas 1 and 6, we only have to prove that if the sum of four angles is 2π, then
the skew quadrilateral is quadrilateral. Suppose a skew quadrilateral has the four-angle sum
is 2π. Then it cannot be a non-planar skew quadrilateral by Lemma 5, i.e., it has to be a
quadrilateral. This proves the theorem.
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Corollary 1. Suppose SQ(ABCD) is non-planar and equal-angled. Then ∢A = ∢B = ∢C =
∢D < π

2 .
Proof. This is because ∢A + ∢B + ∢C + ∢D < 2π.
Corollary 2. Support SQ(ABCD) is a skew quadrilateral such that ∢A = ∢B = ∢C =
∢D = π

2 . Then SQ(ABCD) is a rectangle.
Proof. Since ∢A + ∢B + ∢C + ∢D = 2π, SQ(ABCD) must be a quadrilateral having each
angle being π

2 so that it is Q(ABCD), and Q(ABCD) is a rectangle.
Theorem 2. For a non-planar skew quadrilateral, the sum of four angles is less than 2π,
and the sum of three angles is not equal to the fourth angle.
Proof. By Lemma 5, the sum of four angles of a skew quadrilateral is less than 2π and the
sum of three angle cannot be equal to the fourth angle by Lemma 6.

Conjecture. The sum of three angles of a non-planar skew quadrilateral is larger than the
fourth angle.

3 Angles at a Vertex of a Tetrahedron

A tetrahedron may have four obtuse triangular faces, but Theorem 3 shows that four obtuse
angles cannot be distributed to four distinct vertices.
Theorem 3. A tetrahedron must have a vertex with all three angles acute.
Proof. On the contrary to the theorem, suppose ∇ABCD does not have a vertex with three
acute angles. A triangle has at most one obtuse angle. Hence, ∇ABCD is a tetrahedron
having four obtuse angles, one obtuse angle at each vertex. First, we establish a simple
way to denote twelve angles of ∇ABCD. Since the angle ∢ABC is on the plane ABC (not
containing the point D) at the vertex B, we denote ∢ABC by DB. In a similar way, we can
denote the twelve angles of ∇ABCD by AB, AC , AD; BA, BC , BD; CA, CB, CD; DA, DB,
DC . (Note that there are NO angles of the forms AA, BB, CC , DD).

Without loss of generality, we assume that AB is an obtuse angle of ∇ABCD. We have
to select the sets of all possible four obtuse angles of ∇ABCD on each face at each vertex.
Keeping in mind that one obtuse angle is on a face at each vertex, a set of four obtuse angles
is of the form {AB, BX , CY , DZ}, where X, Y , Z are distinct elements in the set {A, C, D}.
This enables us to find these sets to be

{AB, BA, CD, DC}, {AB, BC , CD, DA}, and {AB, BD, CA, DC}.

Case 1: Suppose ∇ABCD has obtuse angles AB, BA, CD, DC . Since CD = ∠ADB, AB =
∠DBC, DC = ∠BCA, and BA = ∠CAD, the set of obtuse angles {AB, BA, CD, DC}
are the angles of the non-planar skew quadrilateral SQ(ADBC). But this is impossible
by Theorem 2.

Case 2: Suppose ∇ABCD has obtuse angles AB, BC , CD, DA. (These are not angles of a
skew quadrilateral contained in ∇ABCD.)
AB ≥ π

2 implies that |CD| > |BC| and |CD| > |BD| from △BCD.
BC ≥ π

2 implies that |AD| > |AC| and |AD| > |CD| from △ACD.
DA ≥ π

2 implies that |BC| > |AB| and |BC| > |AC| from △ABC.
CD ≥ π

2 implies that |AB| > |AD| and |AB| > |BD| from △ABD.
Hence, |BC| > |AB| > |AD| > |CD| > |BC|. This is a contradiction.
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Case 3: Suppose ∇ABCD has obtuse angles AB, BD, CA, DC . This is similar to Case 2.
AB ≥ π

2 implies that |CD| > |BC| and |CD| > |BD| from △BCD.
BD ≥ π

2 implies that |AC| > |AD| and |AC| > |CD| from △ACD.
DC ≥ π

2 implies that |AB| > |AC| and |AB| > |BC| from △ABC.
CA ≥ π

2 implies that |BD| > |AB| and |BD| > |AD| from △ABD.
Hence, |AB| > |AC| > |CD| > |BD| > |AB|. This is a contradiction.

From these three cases, we can see that ∇ABCD cannot have four obtuse angles on each
face. Therefore, a tetrahedron must have a vertex with all three angles there being acute.

Example 2. We construct a tetrahedron having four non-acute angles at three vertices. Let
∇ABCD be a tetrahedron such that |AB| = 4, |BC| = 3, |AC| = 5, and |DA| = 10,
|DB| = 13, |DC| = 12. Then the volume V of ∇ABCD is given by 144V 2 = 13832 and the
tetrahedron exists.

|AB|2 + |BC|2 = 25 = |AC|2, |DA|2 + |AB|2 = 116 < 169 = |DB|2

|DC|2 + |CB|2 = 153 < 169 = |DB|2, and |DA|2 + |AC|2 = 125 < 144 = |DC|2.

Therefore, ∢ABC = π
2 and ∢BAD, ∢BCD, ∢CAD > π

2 so that ∇ABCD is a tetrahedron
having one right angle at the vertex B, two obtuse angles at A, and one obtuse angle at C.
Three angles at D are acute angles.

Corollary 3. A face of an isosceles tetrahedron has to be an acute triangle.

Proof. Let ∇ABCD be an isosceles tetrahedron. Since four faces are congruent, it suffices to
prove that △ABC is an acute triangle. Let α = ∢CAB, β = ∢ABC, and γ = ∢BCA. Since
∇ABCD is isosceles, each vertex has angles α, β, γ. By Theorem 3, α, β, γ must be acute.
Hence, △ABC is an acute triangle.

Corollary 3 is not new, but we could not find any references. Two alternate proofs of
Corollary 3 will be given in Remark 2 at the end.

4 A Tetrahedron Having an Equal-Angled Skew Quadrilateral

The next theorem was motivated by Example 1 in the introduction.

Theorem 4. If a tetrahedron contains an equal-angled skew quadrilateral, then the tetrahedron
must be reversible.

Proof. Suppose SQ(ABCD) is an equal-angled (non-planar) skew quadrilateral contained in
a tetrahedron ∇ABCD. Let ∢DAB = ∢ABC = ∢BCD = ∢CDA = θ > 0.

Let |AB| = a, |CD| = x and |BC| = b, |DA| = y. Then by the law of cosines, we have
(1) |BD|2 = a2 + y2 − 2ay cos θ = b2 + x2 − 2bx cos θ and
(2) |AC|2 = a2 + b2 − 2ab cos θ = x2 + y2 − 2xy cos θ.

|BD|2 = a2 + y2 − 2ay cos θ = b2 + x2 − 2bx cos θ and (1)
|AC|2 = a2 + b2 − 2ab cos θ = x2 + y2 − 2xy cos θ. (2)

We will consider three cases when (ay − bx ̸= 0 and ab − xy ̸= 0), or when ay − bx = 0, or
when ab − xy = 0.
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Case 1: Suppose ay − bx ̸= 0 and ab − xy ̸= 0. From Equations (1) and (2), we have
a2+y2−b2−x2

2(ay−bx) = cos θ = a2+b2−x2−y2

2(ab−xy) .

(a2 + y2 − b2 − x2)(ab − xy) = (a2 + b2 − x2 − y2)(ay − bx).

Multiplications gives us

a3b + aby2 − ab3 − abx2 − a2xy − xy3 + b2xy + x3y

= a3y + ab2y − ax2y − ay3 − a2bx − b3x + bx3 + bxy2.

Factoring terms (a − x) and (b − y) gives us

−(a − x)(b3 − y3 + b2y − by2) + (b − y)(a3 − x3 + a2x − ax2) = 0.

And, finally, we have:

[(a + x)2 − (b + y)2](a − x)(b − y) = 0.

Hence, we have a = x, or b = y, or a + x = b + y since a, b, x, y > 0.
Subcase 1.1: Suppose a = x. From (1), we have:

y2 − 2ay cos θ = b2 − 2ab cos θ.

This factors as:
(b − y) [2a cos θ − (b + y)] = 0.

Hence, b = y or 2a cos θ − (b + y) = 0.
If b = y, then a = x and b = y. In this case, SQ(ABCD) is reversible.
So, suppose 2a cos θ − (b + y) = 0. Then cos θ = b+y

2a
.

Then from (1), we have:

|BD|2 = a2 + y2 − 2ay cos θ = a2 + y2 −��2a · y · b + y

��2a
= a2 − by. (3)

And from (2), we have:

|AC|2 = a2 + b2 − 2ab cos θ = a2 + b2 −��2a · b · b + y

��2a
= a2 − by. (4)

Note that 1 > cos θ = b+y
2a

≥ 2
√

bc
2a

=
√

bc
a

, so that 1 >
√

bc
a

or a2 − by > 0.
Hence, we have |AC|2 = |BD|2 from (3) and (4). Thus, |AC| = |DB|.
Since we also have |AB| = a = x = |CD|, SQ(ACDB) is reversible.
Therefore, if a = x, then either SQ(ABCD) or SQ(ACDB) is reversible.

Subcase 1.2: Suppose b = y. This is similar to Subcase 1.1, and we can show that
either SQ(ABCD) or SQ(ACBD) is reversible.

Subcase 1.3: Suppose a + x = b + y. Then a − y = b − x. By (1), we have

|BD|2 = a2 + y2 − 2ay cos θ = (a − y)2 + 2ay − 2ay cos θ

= (b − x)2 + 2ay − 2ay cos θ = b2 + x2 − 2bx + 2ay − 2ay cos θ.

By (1) again, we also have |BD|2 = b2 + x2 − 2bx cos θ.
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Hence, b2 + x2 − 2bx + 2ay − 2ay cos θ = b2 + x2 − 2bx cos θ.
This simplifies to: (1 − cos θ)(bx − ay) = 0.
Since cos θ ̸= 1, we must have

bx = ay. (5)
Similarly, a + x = b + y implies a − b = y − x. By (2), we have

|AC|2 = a2 + b2 − 2ab cos θ = (a − b)2 + 2ab − 2ab cos θ

= (y − x)2 + 2ab − 2ab cos θ = x2 + y2 − 2xy + 2ab − 2ab cos θ.

Since we also have
|AC|2 = x2 + y2 − 2xy cos θ

by (2),
x2 + y2 − 2xy + 2ab − 2ab cos θ = x2 + y2 − 2xy cos θ.

This simplifies to (1 − cos θ)(ab − xy) = 0. Since cos θ ̸= 1, we have

ab = xy. (6)

From (5) and (6), we have ab2x = axy2 or ax(b2 − y2) = 0, so b = y. By (6), a = x.
That is, we have shown that |AB| = |CD| and |BC| = |AD|, so that SQ(ABCD) is
reversible. Therefore, in Case 1, we have shown that ∇ABCD is reversible.

Case 2: Suppose ay − bx = 0. Then ay = bx.
By (1), we have a2 + y2 − 2ay cos θ = b2 + x2 − 2bx cos θ. Since ay = bx, we have
a2 + y2 = b2 + x2 so that (a + y)2 − 2ay = (b + x)2 − 2bx.
Again, by ay = bx, we must have (a + y)2 = (b + x)2 a + y = b + x.
Hence, a − b = x − y.
By (2), we have

|AC|2 = a2 + b2 − 2ab cos θ = (a − b)2 + 2ab − 2ab cos θ

= (x − y)2 + 2ab − 2xy cos θ = x2 + y2 − 2xy + 2ab − 2ab cos θ.

By (2), we also have |AC|2 = x2 + y2 − 2xy cos θ. Hence, we have

x2 + y2 − 2xy + 2ab − 2ab cos θ = x2 + y2 − 2xy cos θ

so that
ab(1 − cos θ) = xy(1 − cos θ).

Since cos θ ̸= 1, we have ab = xy.
Thus, ay = bx and ab = xy. These give a2by = bx2y, so a = x and thus b = y. That is,
|AB| = |CD| and |BC| = |AD|. Therefore, ∇ABCD is reversible.

Case 3: Suppose ab − xy = 0. This is similar to Case 2. As in Case 2, this implies b = y.
This is, ∇ABCD is reversible.

Therefore, from Cases 1-3, we have shown that the tetrahedron ∇ABCD is reversible.

Example 3. The converse of Theorem 4 is not true. We construct a reversible tetrahe-
dron that does not contain an equal-angled skew quadrilateral. Let A = (1, 0, 0), B =
(0, 0, 2), C = (−1, 0, 0), and D = (0, 2, 0). Then |AB| = |BC| = |CD| = |DA| =

√
5

so that SQ(ABCD) is reversible so that ∇ABCD is also reversible. We can calculate that
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cos∢DAB = cos∢BCD = 1
5 and cos∢ABC = cos∢CDA = 3

5 with the law of cosine. Hence,
SQ(ABCD) is not equal-angled. Since cos∢BAC = 1√

5 and cos∢CDB = 2√
10 , SQ(ABDC)

is not equal-angled. Since cos∢CAD = 1√
5 and cos∢ADB = 2√

10 , SQ(ACBD) is not equal-
angled, either. Thus, ∇ABCD is reversible, but it does not contain an equal-angled skew
quadrilateral.

5 Isosceles Tetrahedra

Angles of isosceles tetrahedra were investigated in [2]. We give one additional theorem related
to angles of an isosceles tetrahedron.

Lemma 7. Suppose a tetrahedron ∇ABCD is isosceles. Then the all three skew quadrilaterals
SQ(ABCD), SQ(ACBD), and SQ(ACDB) are equal-angled.

Proof. The tetrahedron ∇ABCD has four congruent triangular faces △ABC ≡ △BAD ≡
△DCB ≡ △CDA. Hence, ∢ABC = ∢BAD = ∢DCB = ∢CDA (these are angles of
SQ(ABCD)), ∢BCA = ∢ADB = ∢CBD = ∢DAC (these are angles of SQ(ACBD)), and
∢BAC = ∢ABD = ∢CDB = ∢DCA (these are angles of SQ(ACDB)). (See Figure 3.)
Therefore, this proves the lemma.

A tetrahedron is isosceles if and only if it contains two reversible skew quadrilaterals.
Theorem 5 resembles to this statement.

Theorem 5. A tetrahedron is isosceles if, and only if, it contains two equal angled skew
quadrilaterals.

Proof. Suppose SQ(ABCD) and SQ(ACDB) are equal-angled in ∇ABCD. Then ∢ABC =
∢BAD = ∢DCB = ∢CDA and ∢BAC = ∢ABD = ∢CDB = ∢DCA. Since △ABC and
△BAD share a common edge. So △ABC ≡ △BAD. Similarly, we can prove △BAD ≡
△DCB and △DCB ≡ △CDA. Therefore, △ABC ≡ △BAD ≡ △DCB ≡ △CDA. That
is, four faces of ∇ABCD are congruent, and ∇ABCD is an isosceles tetrahedron.

The converse is shown in Lemma 7. Hence, this proves the theorem.

Remark 2. We give two alternate proofs of Corollary 3.

Proof 1. Let ∇ABCD be an isosceles tetrahedron. Then by Lemma 7, skew quadrilateral
SQ(ABCD), SQ(ACBD) and SQ(ACDB) have equal angles, say α, β, γ respectively. By
Corollary 1, we have 0 < α, β, γ < π

2 . But, α = ∢ABC, β = ∢ACB, γ = ∢BAC, and these
are angles of △ABC. This proves Corollary 3.

Proof 2. A tetrahedron T is isosceles if, and only if, the parallelepiped that circumscribe is
a rectangular box (see [1, Theorem 291, page 94]). So let a × b × c the dimension of the
rectangular box that contains T for some a, b, c > 0. Then the three edges of a face of T
are given by

√
a2 + b2,

√
b2 + c2 and

√
c2 + a2. Let θ be the angle between

√
a2 + b2 and√

b2 + c2. Then by the law of cosines,

cos θ = (a2 + b2) + (b2 + c2) − (c2 + a2)
2
√

a2 + b2
√

b2 + c2
= b2

√
a2 + b2

√
b2 + c2

> 0.

Hence, θ is acute. Similarly, other angles of the triangular face can be shown to be acute.
This proves Corollary 3.
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