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Abstract. Theorem 1 is to prove angle sum conditions for a skew quadrilateral to
be planar. Theorem 2 is about the angle sum of a non-planar skew quadrilateral.
Theorem 3 proves that a tetrahedron must have a vertex with all three angles
acute.

A skew quadrilateral with pairwise equal opposite edges is called reversible. A
tetrahedron that contains a reversible skew quadrilateral is reversible. An equal-
angled skew quadrilateral may not be reversible. However, Theorem 4 states that
if a tetrahedron contains an equal-angled skew quadrilateral, then the tetrahedron
must be reversible. Our last Theorem 5 is on an angle condition of an isosceles
tetrahedron.

Key Words: skew quadrilateral, quadrilateral, law of cosines, spherical law of
cosines, reversible skew quadrilateral, reversible tetrahedron, isosceles tetrahedron

MSC 2020: 51M04

1 Introduction

Let A, B, C and D be distinct points in the space R?. The line segment AB with its endpoints
is denoted by [AB], the segment AB without its endpoints is denoted by (AB), and its length
is denoted by |AB|. By joining the points A, B, C', D with line segments [AB], [BC|, [CD]
and [DA], we obtain a skew quadrilateral, denoted by SQ(ABCD), if (1) [AB]N[CD] = @
and [DA|N[BC| = @, and (2) if X,Y, Z are distinct elements from the set {A, B, C, D}, then
(XY)N(YZ) =@ (see Figure 1). If SQ(ABCD) is planar, then we say that SQ(ABCD) is
a quadrilateral, and denote it by Q(ABCD).

The angle of a skew quadrilateral SQ(ABCD) at D is, denoted by ZCDA, is (1) the
angle of the triangle ACDA at D if C', D, A are non-collinear, or (2) ZCDA = r if C, D,
A are collinear in this order: (If C, D, A are collinear in this order, then SQ(ABCD) is the
triangle AABC having the point D on the edge (C'A).) So, an angle of a skew quadrilateral
is at most 7 (see Remark 1 below). If there is no confusion, we denote ZCDA by ZD. A
skew quadrilateral SQ(ABCD) is said to be equal-angled if ZA=/B=/C = /D.

Skew quadrilaterals are discussed in [1]. However, no discussions on angles are given
there. We will investigate angles of skew quadrilaterals and of tetrahedra.
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Figure 1: These are examples that are not Q(ABCD).
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Figure 2: The marked angle ¢ is the angle <CDA of (planar) Q(ABCD) with our definition. The
conventional angle <CDA of Q(ABCD) is the interior angle 27 — .

Remark 1. We'd like to point out our angle measurements of a quadrilateral can be different
from the conventional angle measurement. Suppose Q(ABCD) is the non-convex one in
Figure 2. Then the angle indicated by ¢ is our definition of the angle ZC'DA, while the
conventional angle measurement of ZC'DA is the interior angle of Q(ABCD) at D, which is
21 — o and larger than 7. While a quadrilateral has the conventional angle sum of 27, this is
not true by our definition of the angle measurement. Clarification of this is Lemma 1 below.
Please be noted.

Lemma 1. The four angles of a quadrilateral can be labeled o, B, v, § so that a+p+~v+d = 27
ora=p+v+9.

Proof. Suppose Q(ABCD) is a quadrilateral. We will consider two cases; (Case 1), for any
distinet X, Z in {A, B,C, D}, [XZ] is inside or an edge of Q(ABCD); or (Case 2) for some
distinet X, Z in {A, B,C, D}, (XZ) is outside of Q(ABCD).

(Case 1) Suppose for any distinct points X, Z in {A, B,C, D}, [ X Z] is inside or an edge
of Q(ABCD). Then the union of ADBC and ADAB with their interior is Q(ABCD) with
its interior. (In this case, the conventional angle measurement and ours are the same.) Then

LCDA+ /ZDAB + LABC + £ZBCD
= (LCDB+ 4ZBDA)+ £ZDAB + (LABD + ZDBC) + £BCD
— (LCDB + /DBC + /BCD) + (/BDA + Z/DAB + ZABD) = 2.
(Case 2) Suppose for some distinct X, Z in {A, B,C, D}, (XZ) is outside of Q(ABCD).
Suppose (AC) is outside of Q(ABCD). Then D and B are on the same side of AC. (This is the

case of Figure 2.) Then ZBDA > 7 and ZODB > 7. Since ({DAB+ZABD+ /ZBDA) ==
and (LDBC + ZBCD + ZCDB) = 7 are the angle sums of ADAB and ADBC, we have

/DAB + /ABC + /BCD = /DAB + (L/ABD + /DBC) + /BCD
= (/DAB + /ABD) + (/DBC + /BCD) = (r — /ZBDA) + (x — ZCDB)
— 21 — (/BDA + /CDB) = <CDA.
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Therefore, the four angles of a quadrilateral can be labeled «, 3, v, d so that a+3+~v+d =
2, or = [+ v+ 9. m

Theorem 1 is the converse of Lemma 1. Theorem 2 is to show that a non-planar skew
quadrilateral has the four-angle sum being less than 27 and the three-angle sum being not
equal to the fourth angle.

If edges [AC] and [BD] are added to a non-planar skew quadrilateral SQ(ABCD), the
resulting solid is a tetrahedron, denoted by VABC D, and VABCD is said to be generated by
SQ(ABCD). Equivalently, a tetrahedron VABCD is said to contain or to have three skew
quadrilaterals SQ(ABCD), SQ(ACBD), and SQ(ACDB) (see Figure 3).
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Figure 3: The figure on the left is a tetrahedron VABCD. Then the remaining three figures are

the skew quadrilaterals SQ(ABCD), SQ(ABDC), and SQ(ACBD) that are contained in
VABCD. Any one of SQ(ABCD), SQ(ABDC), and SQ(ACBD) can generate VABCD.

An angle of a triangular face of a tetrahedron is said to be an angle of the tetrahedron.
Hence, a tetrahedron VABC' D has twelve angles, and three angles <ADB, <ADC, <BDC
are said to be angles of VABCD at D. Theorem 3 will show that a tetrahedron must have
a vertex with three acute angles. (An angle 6 is acute if 0 < 6 < 7, and obtuse if 6 > 7.)

If |[AB| = |CD| and |AD| = |BC|, then SQ(ABCD) is said to be reversible. A reversible
quadrilateral is a parallelogram.

A tetrahedron that contains a reversible skew quadrilateral is said to be reversible. A
tetrahedron VABCD is said to be isosceles if |AB| = |CD|, |AC| = |BD| and |AD| = |BC.
An isosceles tetrahedron has four congruent triangular faces.

Ezample 1. Note that if SQ(ABCD) is a reversible skew quadrilateral, then <DAB = <BCD
and <ABC = <CDA. However, the converse is not true. We will construct an equal-angled
SQ(ABCD) such that |BC| # |DA|. Let VABC'D be a tetrahedron such that |AB| = |BC| =

|CD| = 2,|BD| = |AC| = /2, and |DA| = 1. (The volume,' of VABCD is %) Hence,
ANABD = ADCA and AABC = ABCD so that <DAB = <ADC and <ABC = <BCD.

From the law of cosines, we have
2 = |BD|* = |AB|* + |DAJ]* — 2|AB||DA| cos /ZDAB = 5 — 4cos /ZDAB and
2 = |AC|* = |AB* + |BC|* — 2|AB||BC| cos ZABC = 8 — 8 cos ZABC.

Hence, cos ZDAB = % = cos ZABC. Therefore, /DAB = ZABC = /BCD =
ZCDA = cos™'3 so that SQ(ABCD) is equal-angled. Since |BC| = 2 and |DA| = 1,

4

f (a and ), (b and ), (c and v) are pairs of opposite edges of a tetrahedron of volume V', then
144V? =a?0®(—a® — a? + D2 + B2+ 2 +92) + 0232 (0> + o® — b — B2+ P +47)
P2 4 a? 4 B2 4 B2 — 2 —2) — (2B 4 2522 + PR+ a2BRER).

A positive righthand side of this equation is a necessary condition for the existence of such tetrahedron.
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SQ(ABCD) is not reversible. SQ(ACBD) is not reversible, either. However, SQ(ACDB) is
reversible since |AC| = |DB| = v/2 and |CD| = |BA| = 2, and therefore, the tetrahedron
VABCD is reversible.

Even though an equal-angled skew quadrilateral may not be reversible as we saw in the
above example, Theorem 4 is to show that if a tetrahedron contains an equal-angled skew
quadrilateral, then the tetrahedron must be reversible. The converse of Theorem 4 is not true
(see Example 3 below).

Lastly, Theorem 5 is to show that a tetrahedron is isosceles if, and only if, it contains two
equal-angled skew quadrilaterals.

2 Angle Sum of a Skew Quadrilateral

The sum of four angles of a skew quadrilateral can be made very close to 0 as well as 27 (see
Lemma 2). We will prove that for a non-planar skew quadrilateral, the sum of four angles is
less than 27, and the sum of three angles is not equal to the fourth angle.

Lemma 2. Let 0 < 0 < 5. Then there is a skew quadrilateral SQ(ABCD) such that <A =
B =<C=<«D=4.

Proof. Let Q(ABCD;) be a quadrilateral such that |AB| = |BC| = |CD,| = |D;A| and
IADC = <ABC = 0. So AAD,C and AABC are congruent isosceles triangle. Since
<IBAD; = (m —0) > § > 0, we can rotate AAD;C about the edge [AC] so that <BAD,
become 6, and relabeling this D; by D. Then we obtain <BAD = <BCD = 6. Then
SQ(ABCD) is a skew quadrilateral such that <A = <B = <C = <D = 0. O

The interior angle between the triangular faces AABC and AADC' at the edge [AC] of
a tetrahedron VABCD is said to be the dihedral angle at the edge [AC], and it is denoted
by <AC. The next lemma is called spherical law of cosines and it is well-known.

Lemma 3. (Spherical Law of Cosines) Let <BDC = «, <ADC = (3, <ADB = v and
<AD = 0 for a tetrahedron VABCD. Then
cos a — cos 3 cos 7y cos <AD + cos <<BD cos <C'D

and cos<a =
sin [ sin 7y sin <BD sin <C'D

cos<<AD =

Additional tools to prove Theorem 1 are the next three lemmas.
Lemma 4. Let VABCD be a tetrahedron. Then <DAB < <DAC + <CAB.

Proof. Let <DAC = a, <CAB = 3, and <DAB = . We have to show that § < o+ . If
a+ > m, then a+ 8 > 0 since 0 < § < . We assume that o + 5 < 7. By Lemma 3, we
have cos ZAC = W Hence,

0 — )
coS cos o CosﬁzcoséAO>—1

sin «v - sin 8
_cosa-cosff —sina-sinff —cosa-cosfB  cos(a+ ) —cosa-cos 3

sin « - sin 8 sin « - sin 3

This implies that cos§ > cos(a+ ) since sina-sin f > 0. Since 0 < a+ f < 7, and since the
cosine function is decreasing on the interval [0, 7], cos§ > cos(a + ) implies that § < o+
or <DAB < «<DAC + <CAB. O
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Lemma 5. The four-angle sum of a non-planar skew quadrilateral is less than 2.

Proof. Suppose SQ(ABCD) is non-planar. Hence, SQ(ABCD) generates VABCD. By
Lemma 4, we have /ZDAB < /DAC + ZCAB and /BCD < /BCA+ ZACD. Then

LA+ LB+ /LC+ 4D = LDAB+ LABC + ZBCD + ZCDA
< (LDAC + LCAB) + LABC + (LBCA+ LACD)+ ZCDA
= (LODA+ LDAC + LACD) + (LABC + £LBCA + LCAB).

Since ZCDA+/DAC+ ZACD and ZABC+ ZBCA+ ZC AB are the angle sums of triangles
AACD and AABC, respectively, we have

LA+ /B+ LC+ 4D < (LCDA+ ZDAC + LACD) + (LABC + ZBCA + /CAB) = 2r.

This proves the lemma. O]

Lemma 6. If the sum of some three angles of a skew quadrilateral is equal to the remaining
fourth angle, then the skew quadrilateral is a (planar) quadrilateral.

Proof. Suppose SQ(ABCD) is a skew quadrilateral such that <A + <B + <C = <D. Let
<DAB = a, <ABD = pi, <DBC = By, <BCD = v, <ADB = §;, <CDB = ¢35, and
<CDA = 6. The dihedral angle <BD of VABCD at the edge BD is give by

cos 0 — cos §1 cos &
cos<(BD = ! 2

sin 51 sin 52

We will show that <BD = 7 so that AABD and ACBD are on the same plane. Since
A+ <B + <C = <D and <B = (1 + 2, we have a+ 31 + o +v = 6.
We have §; =7 — (1 + «) and 0y = 7 — (f3 + ) from AADB and ACDB. Hence,

cos 0y = cos[m — (81 + )] = —cos(fy + ), cos 8 = cos[m — (P2 + )] = —cos(B2 +7),
sind, = sin[r — (81 + )] =sin(f; + @), and sindy = sin[r — (B2 + )] = sin(52 + ),

Thus, cosf — cos dy cos dy = cos[(f1 + a) + (B2 + )] — cos(B1 + ) cos(B2 + ) = —sin(Fy +
a) sin(fy + ) = —sin dy sin dy. Therefore,
cosf — cosd; cosdy  —sin Oy sin dy

€0 sin 51 sin 52 sin 51 sin 62

This implies that <BD = w. Hence, AABD and ACBD are on the same plane so that
SQ(ABCD) is a quadrilateral. O

Now we have our first theorem.

Theorem 1. A skew quadrilateral is a (planar) quadrilateral if, and only if, the sum of four
angles is 2w or the sum of three angles is equal to the fourth angle.

Proof. By Lemmas 1 and 6, we only have to prove that if the sum of four angles is 27, then
the skew quadrilateral is quadrilateral. Suppose a skew quadrilateral has the four-angle sum
is 2m. Then it cannot be a non-planar skew quadrilateral by Lemma 5, i.e.; it has to be a
quadrilateral. This proves the theorem. O
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Corollary 1. Suppose SQ(ABCD) is non-planar and equal-angled. Then <A = <B = <C =
<D < 3.

Proof. This is because <A + <B + <C + <D < 2. H

Corollary 2. Support SQ(ABCD) is a skew quadrilateral such that <A = <B = <C =

<D = 7. Then SQ(ABCD) is a rectangle.

Proof. Since <A + <B + <C + <D = 27,SQ(ABCD) must be a quadrilateral having each
angle being 7 so that it is Q(ABCD), and Q(ABCD) is a rectangle. O

Theorem 2. For a non-planar skew quadrilateral, the sum of four angles is less than 2,
and the sum of three angles is not equal to the fourth angle.

Proof. By Lemma 5, the sum of four angles of a skew quadrilateral is less than 27 and the
sum of three angle cannot be equal to the fourth angle by Lemma 6. O]

Conjecture. The sum of three angles of a non-planar skew quadrilateral is larger than the
fourth angle.

3 Angles at a Vertex of a Tetrahedron

A tetrahedron may have four obtuse triangular faces, but Theorem 3 shows that four obtuse
angles cannot be distributed to four distinct vertices.

Theorem 3. A tetrahedron must have a vertex with all three angles acute.

Proof. On the contrary to the theorem, suppose VABC'D does not have a vertex with three
acute angles. A triangle has at most one obtuse angle. Hence, VABCD is a tetrahedron
having four obtuse angles, one obtuse angle at each vertex. First, we establish a simple
way to denote twelve angles of VABCD. Since the angle <ABC' is on the plane ABC' (not
containing the point D) at the vertex B, we denote <ABC by Dg. In a similar way, we can
denote the twelve angles of VABCD by Ag, Ac, Ap; Ba, Be, Bp; Cy, Cg, Cp; Da, Dpg,
D¢. (Note that there are NO angles of the forms A4, Bg, Co, Dp).

Without loss of generality, we assume that Ap is an obtuse angle of VABCD. We have
to select the sets of all possible four obtuse angles of VABCD on each face at each vertex.
Keeping in mind that one obtuse angle is on a face at each vertex, a set of four obtuse angles
is of the form {Ap, Bx,Cy, Dz}, where X, Y Z are distinct elements in the set {A,C, D}.
This enables us to find these sets to be

{ABaBA70D7DC}a {AByBCaCDaDA}a and {AB7BD7CA7DC}'

Case 1: Suppose VABCD has obtuse angles Ag, By, Cp, D¢c. Since Cp = LZADB, Ag =
/DBC, Do = ZBCA, and By = ZCAD, the set of obtuse angles {Ap, Ba,Cp, D¢}
are the angles of the non-planar skew quadrilateral SQ(ADBC). But this is impossible
by Theorem 2.

Case 2: Suppose VABCD has obtuse angles Ag, Bc, Cp, Da. (These are not angles of a
skew quadrilateral contained in VABCD.)

Ap > 7 implies that |CD| > |BC| and |CD| > |BD| from ABCD.
Be > T implies that |[AD| > |AC| and |AD| > |CD| from AACD.
D4 > Z implies that |BC| > |AB| and |BC| > |AC| from AABC.
Cp > % implies that |AB| > |AD| and |AB| > |BD| from AABD.
Hence, |BC| > |AB| > |AD| > |CD| > |BC|. This is a contradiction.

INETNIEINIEINIE
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Case 3: Suppose VABC'D has obtuse angles Ag, Bp, C4, Dc. This is similar to Case 2.

Ap > Z implies that |CD| > |BC| and |CD| > |BD| from ABCD.

> 7 implies that |[AC| > |AD| and |AC| > |CD| from AACD.

D¢ > % implies that |AB| > |AC| and |AB| > |BC| from AABC.

C4 > 7 implies that |[BD| > |AB| and |BD| > |AD| from AABD.

Hence, |AB| > |AC| > |CD| > |BD| > |AB|. This is a contradiction.

From these three cases, we can see that VABC'D cannot have four obtuse angles on each

face. Therefore, a tetrahedron must have a vertex with all three angles there being acute. [

o)

ol

Vv
w\:\wb\w\ﬁ

FExample 2. We construct a tetrahedron having four non-acute angles at three vertices. Let
VABCD be a tetrahedron such that |[AB| = 4, |BC| = 3, |AC| = 5, and |DA| = 10,
|DB| = 13, |DC| = 12. Then the volume V of VABCD is given by 144V? = 13832 and the

tetrahedron exists.

|AB|? + |BCJ* = 25 = |AC|*>, |DA|*+|AB]* =116 < 169 = |DB|?
|IDC|> 4 |CB|* =153 < 169 = |DBJ?, and |DA]* +|AC|* = 125 < 144 = |DC|*.

Therefore, <ABC = § and <BAD, <BCD, <CAD > 7 so that VABCD is a tetrahedron

2
having one right angle at the vertex B, two obtuse angles at A, and one obtuse angle at C.

Three angles at D are acute angles.
Corollary 3. A face of an isosceles tetrahedron has to be an acute triangle.

Proof. Let VABCD be an isosceles tetrahedron. Since four faces are congruent, it suffices to
prove that AABC' is an acute triangle. Let o = <CAB, 8 = <ABC, and v = <BCA. Since
VABCD is isosceles, each vertex has angles «, 3,v. By Theorem 3, «, 5,y must be acute.
Hence, AABC' is an acute triangle. m

Corollary 3 is not new, but we could not find any references. Two alternate proofs of
Corollary 3 will be given in Remark 2 at the end.

4 A Tetrahedron Having an Equal-Angled Skew Quadrilateral

The next theorem was motivated by Example 1 in the introduction.

Theorem 4. If a tetrahedron contains an equal-angled skew quadrilateral, then the tetrahedron
must be reversible.

Proof. Suppose SQ(ABCD) is an equal-angled (non-planar) skew quadrilateral contained in
a tetrahedron VABCD. Let <DAB = <ABC = <BCD = <CDA =160 > 0.
Let |AB| = a,|CD| = x and |BC| = b,|DA| = y. Then by the law of cosines, we have
(1) |BD]* = a® + y* — 2ay cos § = b* + x* — 2bz cos § and
(2) |AC|* = a® + b* — 2abcos § = 2 + y* — 2zy cos 6.

|IBD|? = a* +y* — 2aycosf = b* + 2® — 2brcosf and (1)
|AC|? = a® 4+ b* — 2abcos 0 = 2° + y* — 2wy cos . (2)

We will consider three cases when (ay — bz # 0 and ab — zy # 0), or when ay — bz = 0, or
when ab — zy = 0.
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Case 1: Suppose ay — bxr # 0 and ab — zy # 0. From Equations (1) and (2), we have

a2 +y2—b2—a2 a2 4b2—g2—y?
2(ay—bx) 2(ab—zy)

=cosf =

(a® 4+ y* — b* — 2%)(ab — zy) = (a® + b* — 2* — y*)(ay — bx).
Multiplications gives us

a®b + aby? — ab® — abaz? — alzy — 2y + VPoy + 23y

= d®y + ab®y — ax’y — ay® — a®bx — b3x + ba® + by
Factoring terms (a — ) and (b — y) gives us
—(a —z)(b® — y* + b’y — by?) + (b — y)(a® — 2° + a’x — az®) = 0.

And, finally, we have:

[(a+2)* = (b+y)*)(a—2)(b—y) =0.

Hence, we have a = x, or b=y, or a +x = b+ y since a, b, z, y > 0.
Subcase 1.1: Suppose a = z. From (1), we have:

y2 — 2aycosf = b? — 2ab cos b.

This factors as:
(b—y)[2acosf — (b+y)] = 0.

Hence, b =y or 2a cos — (b+y) =0.
If b=y, then a = z and b = y. In this case, SQ(ABCD) is reversible.
So, suppose 2a cosf — (b + y) = 0. Then cosf = b+y.

Then from (1), we have:

b
]BD|2:a2+y2—2ay0039:a2+y2—%'y-;_dyzaz—by. (3)
And from (2), we have:
b
|AC|? = a® + b* — 2abcosf = a® +b* —2d - b - ;_cfy a’ —by. (4)

Note that 1 > cos = %% > 2 2\F ‘F , so that 1 > ‘Fora — by > 0.
Hence, we have |AC|? = |BD|2 from (3) and (4). Thus |AC| = |DB|.
Since we also have |[AB| = a =z = |CD|, SQ(ACDB) is reversible.
Therefore, if a = x, then either SQ(ABCD) or SQ(ACDB) is reversible.
Subcase 1.2: Suppose b = y. This is similar to Subcase 1.1, and we can show that
either SQ(ABCD) or SQ(ACBD) is reversible.
Subcase 1.3: Suppose a +x =b+y. Then a —y = b — z. By (1), we have

|BD|* = a* + y* — 2ay cos 0 = (a — y)* + 2ay — 2ay cos 0
= (b—2)* 4 2ay — 2ay cos§ = b* + z* — 2bx + 2ay — 2ay cos b.

By (1) again, we also have |BD|? = b* + 2% — 2bx cos 6.
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Hence, b? 4+ 22 — 2bx + 2ay — 2ay cos § = b* 4+ 2> — 2bx cos .
This simplifies to: (1 — cos8)(bx — ay) = 0.
Since cos 6 # 1, we must have
br = ay. (5)

Similarly, a + x = b+ y implies a — b = y — x. By (2), we have

|AC)? = a® + b* — 2abcos O = (a — b)* + 2ab — 2abcos §
= (y — x)? 4 2ab — 2abcos § = x* + y* — 22y + 2ab — 2abcos .

Since we also have
|AC|? = 2 + y* — 2zycosf

by (2),
22 4+ y* — 2zy + 2ab — 2abcos 0 = 2% + y* — 2zy cos b.

This simplifies to (1 — cosf)(ab — xy) = 0. Since cos @ # 1, we have
ab = zy. (6)

From (5) and (6), we have ab*z = axy?® or az(b* — y*) = 0, so b = y. By (6), a = .
That is, we have shown that |AB| = |CD| and |BC| = |AD], so that SQ(ABCD) is
reversible. Therefore, in Case 1, we have shown that VABC'D is reversible.

Case 2: Suppose ay — bxr = 0. Then ay = bz.
By (1), we have a? + y* — 2aycosf = V* + x* — 2bz cosf. Since ay = bz, we have
a? 4+ y* = b* + 22 so that (a +y)? — 2ay = (b + z)? — 2bx.
Again, by ay = bx, we must have (a +y)* = (b+z)> a+y =0+ .
Hence, a —b=2x —y.
By (2), we have

|AC|? = a® 4+ b* — 2abcos O = (a — b)* + 2ab — 2abcos
= (x —y)? + 2ab — 22y cos O = 2 + y* — 2xy + 2ab — 2abcos .

By (2), we also have |AC|? = 2% + y* — 2zy cos§. Hence, we have
z? 4 y* — 2xy + 2ab — 2abcos 0 = 2% + y* — 22y cos b

so that
ab(1l — cos ) = xy(1 — cosb).

Since cos @ # 1, we have ab = zy.
Thus, ay = bx and ab = zy. These give a’by = bx?y, so @ = x and thus b = y. That is,
|AB| = |CD| and |BC| = |AD|. Therefore, VABCD is reversible.
Case 3: Suppose ab — xy = 0. This is similar to Case 2. As in Case 2, this implies b = .
This is, VABCD is reversible.
Therefore, from Cases 1-3, we have shown that the tetrahedron VABC'D is reversible. []

FExample 3. The converse of Theorem 4 is not true. We construct a reversible tetrahe-
dron that does not contain an equal-angled skew quadrilateral. Let A = (1,0,0), B =
(0,0,2), C = (=1,0,0), and D = (0,2,0). Then |AB| = |BC| = |CD| = |DA| = /5
so that SQ(ABCD) is reversible so that VABCD is also reversible. We can calculate that
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cos<<{DAB = cos<<BCD = % and cos <ABC = cos<tCDA = % with the law of cosine. Hence,
SQ(ABCD) is not equal-angled. Since cos <BAC = % and cos <CDB = \/%, SQ(ABDC)

is not equal-angled. Since cos <CAD = % and cos <ADB = \/%, SQ(ACBD) is not equal-
angled, either. Thus, VABCD is reversible, but it does not contain an equal-angled skew

quadrilateral.

5 Isosceles Tetrahedra

Angles of isosceles tetrahedra were investigated in [2]. We give one additional theorem related
to angles of an isosceles tetrahedron.

Lemma 7. Suppose a tetrahedron VABCD is isosceles. Then the all three skew quadrilaterals
SQ(ABCD), SQ(ACBD), and SQ(ACDB) are equal-angled.

Proof. The tetrahedron VABC'D has four congruent triangular faces AABC = ABAD =
ADCB = ACDA. Hence, <ABC = <BAD = <DCB = <CDA (these are angles of
SQ(ABCD)), «BCA = <ADB = <CBD = <DAC (these are angles of SQ(ACBD)), and
IBAC = <ABD = <CDB = <DCA (these are angles of SQ(ACDB)). (See Figure 3.)
Therefore, this proves the lemma. ]

A tetrahedron is isosceles if and only if it contains two reversible skew quadrilaterals.
Theorem 5 resembles to this statement.

Theorem 5. A tetrahedron is isosceles if, and only if, it contains two equal angled skew
quadrilaterals.

Proof. Suppose SQ(ABCD) and SQ(ACDB) are equal-angled in VABCD. Then <ABC =
IBAD = <DCB = <CDA and <BAC = <ABD = «<CDB = <DCA. Since AABC and
ABAD share a common edge. So AABC = ABAD. Similarly, we can prove ABAD =
ADCB and ADCB = ANCDA. Therefore, NABC = ABAD = ADCB = ACDA. That
is, four faces of VABCD are congruent, and VABCD is an isosceles tetrahedron.

The converse is shown in Lemma 7. Hence, this proves the theorem. O

Remark 2. We give two alternate proofs of Corollary 3.

Proof 1. Let VABCD be an isosceles tetrahedron. Then by Lemma 7, skew quadrilateral
SQ(ABCD), SQ(ACBD) and SQ(ACDB) have equal angles, say «, 3, v respectively. By
Corollary 1, we have 0 < «, 8, v < 5. But, a = <ABC, 3 = <ACB, v = <BAC, and these
are angles of AABC. This proves Corollary 3. O

Proof 2. A tetrahedron T is isosceles if, and only if, the parallelepiped that circumscribe is
a rectangular box (see [1, Theorem 291, page 94]). So let a x b x ¢ the dimension of the
rectangular box that contains T for some a, b, ¢ > 0. Then the three edges of a face of T
are given by va? + b2, Vb2 + 2 and V2 + a2. Let 6 be the angle between v/a2? + b? and
V0% + 2. Then by the law of cosines,

2v/a2 + b2\/b2 + 2 Va2V + 2

Hence, 0 is acute. Similarly, other angles of the triangular face can be shown to be acute.
This proves Corollary 3. O

cosf = > 0.
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