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Abstract. We present a simplified proof of a forty-year-old result concerning
the tiling of the plane with equilateral convex polygons. Our approach is based
on a theorem by M. Rao, who used an exhaustive computer search to confirm
the completeness of the well-known list of fifteen pentagon types. Assuming the
validity of Rao’s result, we provide a concise and mainly geometric proof of a tiling
theorem originally due to Hirschhorn and Hunt. Finally, a possible connection to
quasicrystals is sketched.
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1 Introduction

The question of which convex equilateral polygons can tile the plane was first thoroughly
investigated in 1985 by Hirschhorn and Hunt [4]. Their approach solved the problem com-
pletely, although some parts of their proof relied on computer-aided methods. In 2002, Olga
Bagina [1] offered a somewhat shorter proof of the same result, although she also used a small
number of symbolic computations (via Maple) to solve certain systems of equations.

Four decades after the original work, further progress has been made, aided in part by
computational methods. Notably, Michaél Rao [9] addressed the broader question of which
convex pentagons (with arbitrary edge lengths) tile the plane. He showed, using an exhaustive
computer search, that the fifteen known types of tiling convex pentagons form a complete
list. Although Rao has not submitted his work to a peer-reviewed journal, Thomas Hales, a
highly regarded expert in the field, publicly affirmed the reliability of Rao’s proof in a 2017
blog post [3]. If Hales had provided a formal review of Rao’s work for a journal, there would
be no reasonable doubt about its correctness.

Importantly, Rao’s result is independent of the earlier work on equilateral cases by
Hirschhorn/Hunt and Bagina.

Assuming that Rao’s classification is indeed complete, we can revisit the original problem
from a new angle: With the list of fifteen pentagon types accepted as exhaustive, we propose
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a significantly simpler and mainly geometric approach for characterizing all equilateral convex
polygons that tile the plane. The main result of this paper is a geometric proof of the following
proposition:

Proposition 1. An equilateral strictly convex polygon P tiles the plane if and only if one of
the following holds:
— P is a triangle or quadrangle.
— P is a pentagon with two different inner angles that add up to 7 or is similar to a certain
pentagon, here called P7, later defined in Lemma 4.
— P is a hexagon, and there is a triple of distinct inner angles that add up to 2w with two
of them sharing a common edge.

Proof idea: We will check all 15 known classes! of pentagons and three of hexagons,
whether or not they allow convex equilateral solutions and whether all of these valid class
representatives fulfill the conditions of Proposition 1. It will turn out that only very few cases
need a closer inspection.

Before we proceed with the details of the proof, we should clarify why we only consider
strictly convex polygons (and do not include angles equal to 7). It is a convention to exclude
polygons with angles equal to 7 if the investigation is restricted to equilateral polygons. This
was already the case in the above-mentioned articles [4] and [1] and even in the dissertation
of Reinhardt [10], although he treated polygons with arbitrary side lengths as well. To avoid
misunderstandings, we decided to state this explicitly in the proposition. It should also be
noted — already stated in [4] — that any equilateral strictly convex polygon that tiles also
admits an edge-to-edge tiling.

2 Proofs of Lemmas and Proposition
We use the angle notation due to [7] and start the proof section with

Lemma 2. For any convez equilateral pentagon of Type 8 (i.e., A+ B/2=m=C/2+ D),
two inner angles add up to w.

(Proof idea: We construct a symmetric solution of Type 8, then check whether two angles
add up to m, then show that no other equilateral convex pentagon is possible for Type 8.)

Proof. We set the horizontally fixed edge ¢ (of length 1), the vertex E shall lie on the perpen-
dicular bisector of ¢ to preserve mirror symmetry (see Fig. 1, left). Let 7 be the angle formed
by the line DB and the edge e. Type 8 condition C'/2 + D = 7 is equivalent to 7 = 7/2.
Consider the following two cases:

Case 1: Placing vertex E at distance 1+ sin(60°) from c results in 7 = 105°.

Case 2: Place vertex E such that a regular pentagon is formed with 7 = 72°.

Hence, there must be a symmetric solution with 7 = 7/2. To make sure that there is
only one solution, observe point S at which the perpendicular on edge a crosses the base line.
While vertex E is moved downward, edge a is rotated (clockwise around E) and translated
(downward). Each of these motions is moving S to the left until C' is reached. The resulting
polygon (see Fig. 1, right) should be called P8 and must be strictly convex because both

IFor completeness, in the appendix all conditions are listed for pentagons and hexagons tiling the plane.
During this text, we write “the polygon tiles” or “is tiling” for short.
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Figure 2: Variation of vertex C' as C’

cases 1 and 2 are strictly convex and all angular changes are strictly monotonic under this
variation of the vertex F.

Next, we’ll show B + F = m: Both angles marked with double arcs are equal, since the
quadrangle contains two right angles. The four angles named o are also equal for symmetry
reasons. This implies B+ EF =m since B=60+ocand F+o0+60=m.

Now we fix edge a of P8 (Fig. 2, left) and check whether there is a second solution P’
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=r—-C/2

Figure 3: Constructing pentagon Type 9 (left) and 7 (right)

with C” different from vertex C' in P8. (C’ = C would imply P’ = P.) C’" must lie on the
line s; through A and C since AC” must be perpendicular to a. If C’ is assumed to lie above
C on s1, in the section between C and the position of C’ shown in the figure, a contradiction
is generated since the perpendicular line p on e’ crosses the line through D and B, called
so (since €' lies above e during the shift from C to C’, because D > 7/2) while B’ must lie
above so. If C' had been shifted even closer to A than shown in the figure, angle D’ would
fall below 90°, and line p would be forced to run outside of P’ and could not meet B’ as long
as P’ is convex.

On the other hand (Fig. 2, right) if we assume C” to lie below C', then B’ must lie below
sy (we have seen in the left part of Fig. 2 that the distance AX is shorter than a side length).
D’ now lies above sy and left of D. Therefore, the perpendicular line p starting at vertex D’
to the left stays above s; and cannot meet B’ = contradiction to the assumption that P’
exists with C” lower C'. Hence, there is no other convex equilateral solution than P8 for the
Type 8 pentagon. O

Lemma 3. There is no convex equilateral pentagon of Type 9.

Proof. We assume the contrary. Edge e (see Fig. 3, left) should be vertically fixed. From
D =7 — C/2 it follows that B must lie on a line through D perpendicular to ¢; = A
cannot lie lower than vertex F; = angle £ < 7/2; — with F + B/2 = 7 it follows that
B/2 > 7/2; = due to convexity B/2 = 7/2; = FE = m/2, satisfied only by the solution
with dotted lines; = FE + B/2 < 7 which produces a contradiction. O

Lemma 4. There erists a unique® convex equilateral representative of Type 7 (called P7 in
Proposition 1)

Proof. Type 7 needs two conditions: B+ C/2=mand A/2+ D = 7.

2Throughout this paper unique means “unique without regard to similarity”.
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Fix the edge b (Fig. 3, right) vertically (length = 1). Then vertex D must lie on a
horizontal line through B since B+C'/2 = . Consider D to be placed at a distance x between
0 and 2 cos(30°) from B. For z = 1 we have A/2 = 45°, D = 150°, and A/2+D = 195° (dotted
edges in the figure). At x = 2 cos(30°) we find A/2 shrinked to 30°, D to 60°, the sum to 90°
(solid edges). It remains to show that the value of A/2 4+ D changes in a strictly monotonic
behaviour with z, which can easily be seen from the trigonometric functions representing

these angles:
A(z)/2 = 0.5atan(x) + 0.5acos(0.5V1 + 22) and

D(x) = atan(1/x) + acos(0.5v'1 4+ x2) + acos(x/2).

The only term with a positive derivative is atan(z), all others are strictly monotonic
decreasing within the investigated open interval. However, the sum atan(1/z) + 0.5 atan(z)
also results in a monotonic decreasing function since the derivatives of atan(x) and atan(1/z)
are identical up to a sign. Therefore, it is shown that the unique solution for x > 1 yields a
single equilateral convex pentagon of Type 7, called P7 in Proposition 1.

For completeness, we can note here the known numerically calculated angles: A ~ 89.26°,
B ~ 144.56°, C' = 70.88°, D ~ 135.37°, E =~ 99.93°. Note that A < 90° and D < 150°,
therefore P7 is the expected solution with x > 1 for the equilateral case. (The numerical
computation is not part of the proof of this lemma which only says that a unique solution
exists, so we can take these values from the literature.) O]

Proof of the Proposition: We have to check each type of a tiling polygon. It is well known that
Reinhardt [10] described all types of strictly convex tiling hexagons and that strictly convex
polygons with more than six vertices do not tile. Under the now established assumption that
Rao’s proof is correct, the list of all candidates is complete. For each type of pentagon or
hexagon, one can fill a row in a table (see below) indicating whether it fulfills the criteria of
the proposition or whether it can be excluded. We take the angle notation from [7] and [10]
resp., note that these are equivalent but not coincident with the tables in Wikipedia, but we
had to choose a naming convention that is citable and not to be changed in the future.

Pentagon type condition (with angle notation due to [7])

D + FE = 7 by definition

C + E = 7 by definition

not equilateral by construction (excluded)

A+ C =7 since A = C = 7/2 by definition

A+ C = m since C' = 2A = 27/3 by definition

Note, there is an erratum in [7], Fig. 2, Type 5: it should read 27/3 instead of 7/2.)

Cﬂﬂkal@)—‘
=

—~

6 C + E = 7 by definition

7 Lemma 4: P = P7

8 Lemma 2: B+ E =7

9) Lemma 3: no convex equilateral solution (excluded)

—~

10-15) not equilateral by construction (excluded)
exagon type condition (due to Reinhardt [10])

A+ B+ F =27 by definition

A+ C + F = 27 by definition

B =D = F =27 /3 = regular hexagon

= Any triple of inner angles adds up to 2.

W N =T

(Types in bold? are consistent with the proposition, and the others are excluded.)

3Note that a type with a number in bold does not guarantee that an equilateral case exists for this type. It
just makes sure that if such an equilateral polygon exists, it fulfills the conditions of the proposition.
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Figure 4: Constructing pentagon Type 5 (left) and 6 (right)

Finally, we must show that any equilateral strictly convex polygon satisfying the condi-
tions of the proposition always admits a tiling. For triangles, quadrangles, and pentagon P7
this is evident. We now assume that such a pentagon exists that does not tile. Then there are
only two possible cases: The angles that add up to m belong to the same edge, or two edges
lie between them. These cases are equivalent to pentagon Type 1 and 2 resp. in the above
table; hence the assumption is wrong. An analogous argument works for hexagons: If two
angles of the triple share the same edge, then either the third angle also is sharing an edge
with one of the others, or two edges lie between the third angle and one of the two others.
Both cases are covered by hexagon Type 1 and 2 resp. in Reinhardt’s list of hexagon types
and together with the property that all edges have equal length, it is clear that such polygons
tile. This completes the proof. ]

3 Analysis of the Resulting Equilateral Tilings

As mentioned in Footnote 3, the proposition does not tell us which types of pentagons really
exist in equilateral form, it only characterizes a relation between their inner angles. In this
section, we will discuss the possible symmetry groups for such tilings. First, we should exclude
some further cases for which no equilateral solution exists.

3.1 Type 5

We consider Type 5 which has two fixed angles, A = 27/6 and C' = 27/3 (see Fig. 4, left).
Observe that with a fixed edge b the position of vertex E is also fixed and D must lie on a
circle around E. With the predefined size of angle C' the distance between B and D is also
known. The only possible convex solution is shown in the figure. However, the inner angle F
is equal to 7 since all nodes lie on a triangular grid enforced by the two fixed angles A and
C. Therefore, no strictly convex equilateral solution can exist for Type 5.



B. Klaassen: Old Problem Revisited: Which Equilateral Convex Polygons Tile the Plane? 167
3.2 Type 6

For this type, it is not possible to draw a figure with equal side lengths, so we will demonstrate
this fact by a figure showing the conditions for this type (see Fig. 4, right). Observe that
edge e lies parallel to the bisecting line of angle A with |a| = |b| and |c| = |d|. So, we can
express the distance |BD| = \/|e|2 + (2 a| sin(C))? which must be equal to 2|d |sin(C/2).

We assume that a convex case exists with all side lengths equal to 1. sin(C') can be
expressed by 2sin(C/2) cos(C'/2) and with the substitution z = sin?(C/2) we end up with
the quadratic equation 2z?> — 3z/4 — 1/16 = 0 which produces only one positive solution
z = (3++/13)/8 and C ~ 130.65°. Hence, A = 2C > =, which is a contradiction to the
assumption.

3.3 Symmetry Groups

Here we list the symmetry groups that occur with equilateral pentagonal tilings. The table
is restricted to the periodic edge-to-edge case and we can take the corresponding symmetry
groups for each type from the literature [11]:

Pentagon type possible symmetry groups for periodic equilateral convex tilings

1 cmm, cm, pmg
2 Pgg

4 p4

7 pgg

8 pgg

For Type 1 several groups are possible. The group with the highest number of different
symmetries is cmm, in this sense (not in the sense of group inclusion) this is the maximal
symmetry group for Type 1.

4 Nonperiodic Equilateral Tilings and Possible Applications

A naive (but wrong) understanding of the above sections could be that we had found and
characterized all possible monohedral tilings with equilateral convex polygons and that all
these are periodic. We will demonstrate that such tiles admit several other interesting tilings
without a translational symmetry.

A classical example with rotational symmetry was already given in the above-mentioned
paper by Hirschhorn and Hunt. Moreover, any rotational symmetry of arbitrary order can
be represented by an equilateral convex hexagonal tiling, as was demonstrated in [6]. As an
example, Fig. 5 shows a tiling with symmetry group D7 in Schoenflies notation.

Such a nonperiodic tiling should not be misunderstood as aperiodic. Obviously, these
monotiles can also generate periodic tilings. Nevertheless, it could be possible that quasicrys-
tals exist with a similar rotational symmetry. Techniques are known to grow crystals starting
with a so-called seed. If chemists could create a seed crystal in the form of, e.g., the shaded
subset in the center of the Fig. 5, then a periodic crystal structure would be inhibited and
only the variant with rotational symmetry could occur. This is, of course, not a guarantee
for the existence of quasicrystals but in several cases new materials with unusual rotational
symmetries have been found [8], [5].

Looking further into the molecular structure of [12], we can even find equilateral hexagonal
cells that could (in theory) be composed in the rotational symmetric manner of Fig. 5, here
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Figure 6: Nonperiodic (theoretical) molecular structure composed of equilateral hexagons [12],
marked by dotted lines

in Dy symmetry. Fig. 6 gives an optical impression of this molecular grid. Note that the
molecular structure at each of the edges is the same such that any edge-to-edge tiling with
this hexagon also works on the molecular level. However, it should be pointed out that the
displayed structure does not show an existing quasicrystal. Only the hexagonal cell on the
left side of Fig. 6 could be found among the examples of [12].
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5 Alternative Approach

Although — at least to the author’s knowledge — there is no serious doubt that Rao’s approch
was successful and sound, there are alternative methods to enumerate and categorize tilings.
Meanwhile a well established technique is the Delaney-Dress method [2]. Here a result of
Dress is used which guarantees that two tilings together with their respective symmetry
groups are equivalent in structure if and only if the corresponding Delaney symbols for both
tilings are isomorphic. This has been utilized in a software-based manner, in particular by
Delgado-Friedrichs and Huson [13].

Such methods provide an efficient framework for computer-based analysis of large subsets
of tilings under a topological and combinatorical view. However, the method should be
enhanced in order to filter the convex cases. Especially the set of pentagonal tilings could be
investigated to verify the catalog of 15 convex tiling types in an independent way. So far it is
unknown whether this could be done in near future but also other more urgent questions are
and will be treated with this framework. It will be interesting to see how this field further
develops.

6 Conclusion

By accepting that Rao’s result from 2017 on the completeness of the list of 15 tiling pen-
tagons is valid and applying elementary geometric reasoning, we are able to derive a concise
characterization of all strictly convex equilateral polygons that admit monohedral tilings of
the plane. In summary, we can give a short and complete description of the resulting polygon
types:
— any equilateral triangle or diamond quadrangle
— any strictly convex equilateral pentagon with two different inner angles adding to m or
pentagon P7, defined in Lemma 4
— among these pentagons only the Types 1, 2, 4, 7 and 8 can occur
— any strictly convex equilateral hexagon with three distinct inner angles adding to 27
while two of them share a common edge.
In addition, some less common nonperiodic tilings were discussed to show the close con-
nection to quasicrystals and to demonstrate the variety of tilings in this special and visually
attractive field.

Appendix: Types of all Tiling Convex Pentagons and Hexagons

The conditions for convex pentagons and hexagons with arbitrary side lengths are listed in
Table 1.
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Table 1: Conditions for pentagons and hexagons with arbitrary side lengths

Pentagon type condition(s) with angle notation due to [7]

D+E=7

C+E=ma=d
A=C=D=27n/3;a=bd=c+e
A=C=7n/2;a=bc=d
C=2A=2n/3;a=0b,c=d

Erratum in [7], Fig. 2, Type 5: It should read 27/3 instead of 7/2.)

Ol W N~

—

6 C+E=m,A=2C;a=b=¢,c=d
7 2B+ C =21, 2D+ A=2m;a=b=c=d
8 2A+B=21,2D4+C=2m;a=b=c=d
9 2E4+ B =21, 2D+C =21, a=b=c=d
10 E=7n/2, A+ D=2B—-D=mn,2C+D=2m,a=e=b+d
11 A=7/2,C+FE=m2B+C=2m;d=e=2a+c
12 A=7/2,C+FE=m2B+C=2m;2a=c+e=d
13 A=C=n/2,2B=2FE=2r—D;c=d,2c=e
14 D=7n/2,2E+A=2m, A+C=m;b=c=2a=2d
15 A=60°, B=135° C =105°, D =90°, E=150°;b=d=¢,a=2b
Hexagon type conditions (due to Reinhardt [10])
1 A+B+F=2m,c=f
2 A+C+F=2m,b=d, c=f
3 B=D=F=21/3; a=f, b=c, d=c¢
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