
Journal for Geometry and Graphics
Volume 29 (2025), No. 2, 223–254

An Efficient Method for Obtaining
the Maximum k-Gon in a Closed Contour with

Obstacles
Rubén Molano, Mar Ávila, Mohammadhossein Homaei, Pablo G. Rodŕıguez,

Andrés Caro

University of Extremadura, Cáceres, Spain
rmolano@unex.es, mmavila@unex.es, mhomaein@alumnos.unex.es, pablogr@unex.es,

andresc@unex.es

Abstract. Geometric optimization has been frequently studied in a recurrent way,
where it has been fundamental to developing more complete algorithms. Regions
of interest can be obtained as user-defined polygons as a first step toward many
practical applications. This article focuses on lattice polygons defined on a regular
partition and presents an efficient method for computing all possible polygons
contained within regions of interest bounded by arbitrary obstacles such as points,
segments, and holes. The developed algorithm calculates all the simple polygons
with the maximum area or perimeter contained within the region of interest with
O(n5k) computational time. The user can define the polygon to be calculated
(triangle, quadrilateral, pentagon, hexagon, etc.) as well as the desired solution:
maximum area or maximum perimeter. The paper presents several practical
applications that demonstrate the efficiency and versatility of the algorithm. The
pseudocode for the algorithm is presented, as well as the source code (Java and
Python) in a GitHub repository for research purposes.
Key Words: k-gon, closed contour, polygon, area, perimeter
MSC 2020: 97G30 (primary), 97N80, 68-04

1 Introduction

The inscribed polygon within a closed contour can be used to detect and classify objects in
an image and determine their size and shape in the context of image analysis and pattern
recognition [17, 28]. Therefore, to segment an object from its background, or in applications
such as edge detection and noise reduction in images, it is often useful to have functions that
provide inscribed polygons in some region of the image. Another possible application involves
pattern recognition, in which the goal is to identify and classify objects in images based on

ISSN 1433-8157/ © 2025 by the author(s), licensed under CC BY SA 4.0.

https://isgg.net/jgg/
https://creativecommons.org/licenses/by-sa/4.0/

224 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

patterns or features found in the image. The inscribed contours can extract information
about the object’s shape and size from the image. Based on this information, the object
can be classified and differentiated from other objects in the image. Moreover, it is useful
for measuring objects. The size and shape of objects are often measured as part of image
analysis. Inscribed polygons are useful for measuring the lengths of their sides and their vertex
distances. As a result of this information, it is possible to estimate the size and shape of the
object in the image. Additionally, it is helpful in pattern recognition applications for detecting
features [19]. The obtained polygon allows the detection of features such as vertex angles and
object symmetry.

A function that computes the polygons inscribed in a certain region can be useful in
agriculture and livestock for a variety of applications [4, 26]. For instance, crop and pasture
analysis (estimating the amount of land available for cultivation and grazing; planning for crop
and pasture rotation, land management planning). Additionally, crop growth (study of crop
growth and yield), and animal tracking (monitoring their location and movement, prevention
of escapes, surveillance, etc.). Inscribed polygons can be used in medicine for image analysis,
identifying regions of interest, and validating image processing algorithms [2, 6, 16, 29, 31].
Moreover, satellite images can be analyzed for the optimal placement of solar panels in the
photovoltaic industry, including rooftop solar panels and farm solar panels [15].

In many Computer Vision applications, it is common for algorithms to focus on specific
areas of an image, known as Regions of Interest (ROI). Often, these regions of interest
are obtained by users manually delineating areas or through semi-automatic algorithms that
generate irregularly shaped areas. When operations are performed on neighbors or convolutions
at the edges of these ROIs, pixels outside the region are sometimes considered, which can
lead to undesirable results. To ensure that all pixels belong to the region of interest, it is
necessary to find inscribed polygons within these regions. Traditionally, easily recognizable
geometric figures are used, such as rectangles, squares or circles. Geometric optimization
problems include the problem of packing spheres into a rectangular box [8] or finding the
smallest parallelogram that encloses a convex polygon [30]. Thus to calculate the solution, an
efficient algorithm is required to explore the entire search space.

In real-world applications, the search for the best inscribed contour is most commonly
restricted to closed polygons containing forbidden holes, points or segments, that is, finite
groupings of aligned points. Fig. 1 shows the initial problem, the closed contour C (region
of interest), in which forbidden points (q1, q2, q3), segments (S1, S2) and holes (H1, H2) have
been defined. This significantly limits the number of inscribed polygons that can be found.
Thus, the proposed problem can be formulated as follows: given a fixed number k, compute
the simple k-gon with maximum area or perimeter contained in any closed contour C with
r-points, PointsP = {q1, . . . , qr}, t segments, SegmentsP = {S1, . . . , St} and h holes, HolesP =
{H1, . . . , Hh}.

Throughout this paper, all polygons under consideration are lattice polygons defined on
a regular partition, which makes it possible to ground the algorithmic construction and to
guarantee convergence through Pick’s theorem.

2 Related work

The problem of locating the largest geometric figure through a set of obstacles in the plane is
a well-known problem in the field of geometric optimization. Naaamad et al. [24] introduced
the problem commonly known as the maximal empty rectangle problem or MER problem.

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 225

Figure 1: Closed contour C with three points, two segments and two holes

Given a rectangle A and a set S of n points of A, finding a maximum area rectangle (MER)
that is totally contained in A, does not contain any point of S in its interior, and its edges are
parallel to the edges of A. The problem was solved in O(min(n2, R log n)), where R denotes
the number of rectangles satisfying the above conditions. Later, the time complexity was
improved to O(R + n log n) by Orlowski [27]. Another procedure to solve the problem that
does not require the calculation of all MERs was presented in [1, 11] in O(n log3 n) time and
O(n log2 n) time. Removing the axis-aligned condition, [10, 23] proved that the largest empty
rectangle of arbitrary orientation for a given set of n points in the plane can be computed
in O(n3) time. Recently, Bae and Yoon [7] considered the largest empty square of arbitrary
orientation and proved that it can be found in O(n2 log n) time. Finally, Boyce et al. [9]
generalized the problem and presented an algorithm for finding maximum area or perimeter
convex k-gons with vertices k of the given n points in O(kn log n + n log2 n) time. For the case
where the defective zones are segments, Nandy et al. [25] located the empty isothetic rectangle
of maximum area given n arbitrary-oriented nonintersecting segments of finite length on a
rectangular box in O(n log2 n) time. Table 1 shows the computational costs of the previous
papers when the obstacles are points or segments. The case of obstacles with holes has already
been reviewed in Molano et al. [22], so we will not proceed to conduct any further revisions
on this aspect. Beyond these approaches, other computational geometry problems have been
explored that complement our work, such as the one proposed by Ausserhofer et al. [5].

In this paper, an open problem is addressed. First, instead of computing the triangle,
rectangle or square with the maximum area or perimeter, our algorithm calculates the simple
k-gon (k-sided polygon) with the largest area or perimeter. Second, the convex k-gon or
rectangle of maximum area or perimeter can also be obtained. As a result, our algorithm
enables the user to choose the type of k-gon to be found (triangle, quadrilateral, pentagon,
hexagon, etc.) and the desired solution (maximum area or maximum perimeter) in O(n5k)
computational time. Currently, no generic solution has yet been developed to compute k-
sided polygons with the maximum area or perimeter contained within a closed contour with
arbitrary obstacles. Furthermore, this work presents the algorithms, so that any researcher
can easily understand it and adapt it to their favorite programming language (Java, Python).
Additionally, a link is provided to a GitHub repository [20] containing all the source code
developed in Java and Python.

226 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

Table 1: Computational cost.

Reference Initial Final Computational cost

[24] n-points axis-parallel rectangle O(min(n2, R log n))
[27] n-points axis-parallel rectangle O(R + n log n)
[11] n-points axis-parallel rectangle O(n log3 n)
[1] n-points axis-parallel rectangle O(n log2 n)
[23] n-points rectangle O(n3)
[10] n-points rectangle O(n3)
[7] n-points square O(n2 log n)
[9] n-points convex k-gon O(kn log n + n log2 n)
[25] n non intersecting segments axis-parallel rectangle O(n log2 n)

3 Definitions

3.1 Lattice Polygon

We define a lattice polygon as a polygon whose points have integer coordinates and which has
the following properties:

1. It is defined on a regular partition Π = Πx × Πy of order r × s formed by r + 1, s + 1
equally spaced points, with a, b, c, d ∈ Z, that satisfy:

Πx = {a = x0 < x1 < . . . < xr = b}
Πy = {c = y0 < y1 < . . . < ys = d}

2. The connections between consecutive vertices are not necessarily established in the eight
directions, πk/4, k = 0, . . . , 7.

3. The edges of the polygon do not intersect except at their vertices.
We denote by GL = {(xi, yj) : 0 ≤ i ≤ r, 0 ≤ j ≤ s}, the square grid composed of points

of the partition Π. We define partition size, L = |xi+1 − xi| = |yj+1 − yj|, the length of the
side of each square formed by the square grid. In addition, we state that partition Π̇ is finer
than partition Π, if it is verified that all points of Π belong to Π̇. We denote Π ⪯ Π̇.

Fig. 2 shows the lattice polygon constructed from the initial problem seen in Fig. 1.
If # represents the cardinality of the set and P = ∂P ∪ ıP where ∂P is the family

consisting of boundary nodes of P and its complementary in P , ıP , the interior points, then
#(P) = N = n + o ≃ λn, λ ∈ N with #(∂P) = n and #(ıP) = o. In the same way, if
Hi = ∂Hi ∪ ıHi with #(∂Hi) = mi, #(ıHi) = ri, then #(Hi) = M = mi + ri ≃ µmi, µ ∈ N.
Furthermore, let m = max{m1, m2, . . . , mh} and s = max{s1, . . . , st} where #(Si) = si,
1 ≤ i ≤ t.

We compute the maximum area or perimeter simple k-gon in a lattice polygon P with r
points, t segments {S1, . . . , St} and h holes {H1, . . . , Hh} and coordinates belonging to the

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 227

(a) Closed contour C on a regular
partition with partition size L

(b) Lattice polygon P with three
points, two segments and two holes
on a regular partition with parti-
tion size L

Figure 2: Construction of the lattice polygon

square grid GL, we use the following sets:



Points = P = {p1, p2, . . . , p49}, #(P) = N = 49
Polygon = {p1, p2, . . . , p18}
PointsP = {p33, p43, p48}
SegmentsP = {S1, S2}, S1 = {p20, p25, p30, p36},
S2 = {p21, p25, p29}
HolesP = {H1, H2}, H1 = {p23, p28, p34, p27},
H2 = {p38, p42, p45, p41}.

3.2 Adjacency Matrix

Given N points of the lattice polygon P with r points, t segments and h holes, the adjacency
matrix A = (aij) is a symmetric square matrix of order N such that:

aij =

1 if there is an edge between i and j

0 otherwise

In this context, an edge is defined as a line segment connecting two lattice points of P that
lies entirely inside the polygon, without intersecting any segments, except at their endpoints,
or crossing through holes in its interior. These edges constitute the possible candidates to
become sides of the k-gons constructed in the subsequent algorithms. For example, in Fig. 2b
we have A(1, 3) = 0, since the segment p1p3 lies outside the polygon P , and A(1, 47) = 0,
since the segment p1p47 intersects several holes.

228 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

For Fig. 2, the adjacency matrix is represented as follows:

A =



1 2 3 . . . 47 48 49
1 0 1 0 · · · 0 0 0
2 1 0 1 · · · 0 0 0
3 0 1 0 · · · 1 0 0...
47 0 0 1 · · · 0 1 1
48 0 0 0 · · · 1 0 1
49 0 0 0 · · · 1 1 0


Due to the high number of points that a lattice polygon can have, it is necessary to develop

an algorithm to calculate the matrix A.

4 Computing the Adjacency Matrix of a Lattice Polygon with r
Points, t Segments and h Holes

Let C be a closed contour constrained by arbitrary obstacles and P a lattice polygon within C
with r points, #(PointsP) = r, t segments, SegmentsP = {S1, . . . , St} and h holes, HolesP =
{H1, . . . , Hh}, and coordinates belonging to the square grid GL.

We calculate the adjacency matrix of the lattice polygon P by considering only the points
that define it as parameters, P = points. It uses two algorithms, IntersectionPol (l) and
Matrix(points).

4.1 Segment-Polygon Intersection (Algorithm 1)
We compute by Algorithm 1 when the intersection of a segment l with Polygon, SegmentsP or
HolesP is possible. It returns true if the intersection is not allowed and false otherwise.

To facilitate the understanding of the algorithm, it has been divided into three blocks
corresponding to each of the sets mentioned above. Each block explains the algorithm’s
function and analyzes the associated computational cost. This structure provides a more
comprehensive and clear view of the algorithm as a whole.

Block 1: Polygon (Lines 2–6): The algorithm starts by first calculating the Polygon
sides using the function SidesPol(poly) in O(n) time (Line 2) and then applies function
IntersectionPoly(l, s, poly, num) (Line 4), to find out if the intersection of segment l with any
Polygon side is not allowed. If so, the algorithm terminates and returns true (Line 5). The
computational cost of this block is O(n2) by the loop (Line 3) computed in O(n) time and
the function IntersectionPoly(l, s, poly, num) in O(n) time.

If all intersections are possible (Line 7), Block 2 is carried out.
m1 and m2 are auxiliary points defined around the intersection point p, obtained by

shifting p by a small value ϵ. They are used to determine whether the intersection lies inside
or outside the polygon P or one of its holes, and thus to decide if the intersection is admissible.
The procedure for constructing these points is part of the algorithm IntersectionPoly, described
in detail in Molano et al. [22].

Fig. 3 shows two intersections. If the algorithm PointIn(p, poly) computes if a given
point (p) is inside or on a side of poly, and AlignedPol(p, poly) is used to check if a point p

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 229

Figure 3: Algorithm 1: Segment-Polygon intersection

lies on one of the sides poly, then the first intersection, l1 ∩ s1, is not possible for Polygon
because PointIn(m2, Polygon) = false. The second intersection, l2 ∩ s2, is not possible for
HolesP[2] because PointIn(m2, HolesP[2]) = true and AlignedPol(m2, HolesP[2]) = false. In
this situation, IntersectionPol(l1) = true and IntersectionPol(l2) = true.

Block 2: SegmentsP (Lines 8–17): The algorithm checks if there is an intersection
between the segment l and any of the segments of SegmentsP, using the functions Intersection(l,
s) (Line 14), in O(1) time, which returns true if the segments intersect and false if they do not;
function Intersectionp(l, s) (Line 15), in O(1) time, which computes the intersection point of
the two nonconsecutive segments; and function Direction(p,q,r: Points) in O(1) time, which
returns the orientation of the three points [12]. The computational cost of this block is O(t)
by the loop (Line 9) computed in O(t) time.

Collinear segment intersections are possible and have been taken into account in the
algorithms, since a side of a k-gon may coincide with or be contained in the boundary of P ,
in a segment, or in the side of a hole.

If all intersections are possible (Line 18), Block 3 is carried out.

Block 3: HolesP (Lines 19–30): The algorithm checks segment l with all sides of the
holes: HolesP[1], HolesP[2], . . . ,HolesP[h] (Lines 20, 24) and perform the same process as done
for Polygon. If for some HolesP[i], 1 ≤ i ≤ h, the intersection is not allowed, the algorithm
terminates, returns true (Line 22) and is not executed for the following holes: i + 1, . . . , h.
The computational cost is O(hm4) by loop (Line 20) computed in O(h) time, function
SidesPol(HolesP [i]) (Line 21) in O(m) time, loop (Line 24) in O(m) time, and algorithm
IntersectionPoly(l, s, poly, num) (Line 25) in time O(m2). Here, m = max{m1, m2, . . . , mh},
where mi = #(Hi) denotes the number of vertices of the i-th hole, with # representing set
cardinality.

Furthermore, a special scenario is addressed where the segment l is entirely contained within
a hole. This specific case is outlined in Lines 28 to 30 and depicted in Fig. 4. Considering
the hole HolesP[1] and the segment l1 defined by the points (27, 28), it is evident that
IntersectionPol (l1) = true, as the midpoint lies within HolesP[1] and is not part of any of its
sides. The function Midpoint(l) returns the midpoint of the segment l. Similarly, this holds

230 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

Figure 4: Segment contained in a hole

true for the segments formed by the points: l2 = (23, 34), l3 = (38, 45), and l4 = (41, 42).
The computational cost for this scenario is O(hm2) by the loop (Line 20) computed in

O(h) time, the function PointIn(p, poly) (Line 29) in O(m) time, and the function Aligned-
Pol(p, poly) (Line 29) in O(m) time. Therefore, the total computational cost of Block 3 is
O(max(hm4, hm2)) = O(hm4).

Combining the computational costs of Blocks 1, 2, and 3, we arrive at the final computa-
tional cost of Algorithm 1: O(max(n2, t, hm4)) = O(n2) if we assume that #(P) = N ≃ n≫
m.

4.2 Computing the Adjacency Matrix (Algorithm 2)

In this algorithm, the input set Points = P = ∂P ∪ ıP consists of all lattice points belonging to
the boundary of the polygon P , ∂P = Polygon, and its interior, ıP , including those associated
with obstacles, whether points (PointsP), segments (SegmentsP), or holes (HolesP). The
resulting adjacency matrix identifies all valid candidate edges of the final k-gon.

Algorithm 2, Matrix(Points), is responsible for computing the adjacency matrix of the
lattice polygon P . Initially, the adjacency matrix is initialized with all its terms equal to 0
(matrix[i, j] = 0) (Line 1), and then it determines all sides of the polygon (Line 2). Subsequently,
two loops (Lines 3–4) are used to evaluate all pairs of lattice points of P contained in Points.
The entry matrix[i, j] = 1 indicates that the segment pipj is admissible, that is, it can
potentially become a side of a k-gon. In particular, the condition Length(Union(sides,{l}))
= Length(sides) (Line 6) is a set-membership test: it holds exactly when the candidate
segment l is already one of the boundary sides of P returned by SidesPol(Polygon). In this
case, the algorithm assigns matrix[i, j]← 1. Lastly, the assignment matrix[j, i] = matrix[i, j]
(Line 14) is carried out, as the adjacency matrix is symmetric and only the terms above the
main diagonal have been computed thus far.

The computational cost of Algorithm 2 is determined in O(n5) time by loop (Line 3)
computed in O(n) time, loop (Line 4) in O(n) time, Algorithm 1 (Line 9) in O(n2) time and
the function PointIn(p, poly) (Line 12) in O(n) time.

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 231

Algorithm 1: IntersectionPol(l)
Input: l: segment
Output: true if the intersection of segment l with Polygon, SegmentsP or HolesP is not

allowed
1 isIntersecting ← false
2 sides ← SidesPol(Polygon)
3 for i← 1 to Length(sides) do
4 isIntersecting ← IntersectionPoly(l, sides[i], Polygon, 0)
5 if isIntersecting = true then
6 break

7 if isIntersecting = false then
8 if SegmentsP ̸= ∅ then
9 for i← 1 to Length(SegmentsP) do

10 if isIntersecting = true then
11 break
12 n← Length(SegmentsP[i])
13 s← (Points[SegmentsP[i][1]], Points[SegmentsP[i][n]])
14 if Intersection(l, s) = true then
15 p← Intersectionp(l, s)
16 if (Direction(s[1], l[1], p) ̸= 0 and Direction(s[1], l[2], p) ̸= 0 and

Direction(s[2], l[1], p) ̸= 0 and Direction(s[2], l[2], p) ̸= 0) then
17 isIntersecting ← true

18 if isIntersecting = false then
19 if HolesP ̸= ∅ then
20 for i← 1 to Length(HolesP) do
21 hol ← SidesPol(HolesP[i])
22 if isIntersecting = true then
23 break
24 for j ← 1 to Length(HolesP[i]) do
25 isIntersecting ← IntersectionPoly(l, hol[j], HolesP[i], 1)
26 if isIntersecting = true then
27 break

28 m ← Midpoint(l[0], l[1])
29 if (PointIn(m, HolesP[i]) = true and AlignedPol(m, HolesP[i]) = false then
30 isIntersecting ← true)

31 return isIntersecting

5 Maximum Area or Perimeter Simple k-gon in a Lattice Polygon
Among Arbitrary Obstacles

To obtain the maximum area or perimeter simple k-gon in a lattice polygon P with r points,
t segments and h holes, we use the framework in Fig. 5 together with the summary of the
main algorithms in Table 2.

232 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

Algorithm 2: Matrix(Points)
Input: Points = P = ∂P ∪ ıP
Output: Adjacency matrix

1 Initialize matrix, matrix[i,j] ← 0
2 sides ← SidesPol(Polygon)
3 for i← 1 to Length(Points)−1 do
4 for j ← i + 1 to Length(Points) do
5 l← {Points[i], Points[j]}
6 if Length(Union(sides, {l})) = Length(sides) then
7 matrix[i,j] ← 1
8 else
9 if IntersectionPol (l) = false // Alg.1

10 then
11 m ← Midpoint(Points[i], Points[j])
12 if PointIn(m, Polygon) = true then
13 matrix[i,j] ← 1

14 Symmetric matrix, matrix[j,i] ← matrix[i,j]
15 return matrix

Figure 5: General framework

5.1 Obtaining Polygons (Algorithm 6)
We compute the sides of the polygons that are a certain distance from point1 to point2. It has
four parameters: point1, initial point; point2, final point; distance, which is used to determine
all sides with this value (distance + 1 indicates the number k of sides of the polygon to be
inscribed); and matrix, which is the adjacency matrix.

5.1.1 Algorithm 3. PointsInside(poly)

Given a k-sided polygon, Algorithm 3 determines whether all points of PointsP are outside the
polygon poly or on one of its sides. It utilizes the functions PointIn(p, poly) and AlignedPol(p,
poly) which returns true if a point belongs to one of the sides of the polygon, computed in
O(k) time. If the first function is verified, PointIn(p, poly) = true, and the previous condition
is not, AlignedPol(p, poly) = false, the algorithm terminates and returns the value true. The
computational cost is O(k2r) by loop (Line 2) computed in O(r) time, the function PointIn

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 233

Table 2: Summary of the main algorithms and their functionality
Algorithm Functionality

Alg. 1 Segment–obstacles intersection
Alg. 2 Computation of the adjacency matrix
Alg. 3 Position of all points (PointsP) with respect to polygon poly
Alg. 4 Position of all segments (SegmentsP) with respect to polygon poly
Alg. 5 Position of the hole H with respect to polygon poly
Alg. 6 Sides between point1 and point2 for a certain distance
Alg. 7 Simple k-gons with maximum area or maximum perimeter contained in P

Figure 6: Algorithm 3. PointsInside(poly)

(Line 3) in O(k) time and the function AlignedPol (Line 4) in O(k) time.
In Fig. 6, polygon A = (13, 45, 9, 12) has been constructed. The result obtained by

applying Algorithm 3 is PointsInside(A) = true, as points 43 and 48 are located inside A, but
not on its boundary.

Algorithm 3: PointsInside(poly)
Input: poly: k-sided polygon
Output: false if all the points of PointsP are outside the poly or on one of its sides

1 isPointInside ← false
2 for i← 1 to Length(PointsP) do
3 if PointIn(Points[PointsP [i]], poly) = true then
4 if AlignedPol(Points[PointsP [i]], poly) = false then
5 isPointInside ← true
6 break

7 return isPointInside

234 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

Figure 7: Algorithm 4. SegmentsInside(poly)

5.1.2 Algorithm 4. SegmentsInside(poly)

Algorithm 4 determines whether there is any intersection between the segments of SegmentsP
and the polygon poly. To achieve this, the algorithm examines each segment (Line 2) and
checks if the midpoint of any section of that segment lies exclusively inside poly (Lines 7–9).
If this condition is met for any segment, the algorithm terminates and returns true (Line 10).
The computational cost is O(k2st) by the loops in Lines 2 and 7 computed in O(t) and O(s),
respectively, the function PointIn (Line 9) in O(k) time and the function AlignedPol (Line 9)
in O(k) time.

Fig. 7 shows a polygon A with vertices (30, 31, 36, 35). By analyzing the figure, we can
observe that polygon A intersects segment S1. When evaluating the algorithm SegmentsIn-
side(A), we obtain the value true, since the midpoint m is in the interior of polygon A but not
in its boundary.

Algorithm 4: SegmentsInside(poly)
Input: poly: k-sided polygon
Output: false if all the segments of SegmentsP are outside the poly or on one of its sides

1 isSegmentInside ← false;
2 for i← 1 to Length(SegmentsP) do
3 if isSegmentInside = true then
4 break
5 SegmP ← SegmentsP [i]
6 Insert(SegmP, SegmentsP [i][1])
7 for j ← 1 to Length(SegmP[i])-1 do
8 m ← Midpoint(Points[SegmP[i][j]], Points[SegmP[i][j+1]])
9 if (PointIn(m, poly) = true and AlignedPol(m, poly) = false) then

10 isSegmentInside ← true
11 break

12 return isSegmentInside

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 235

Figure 8: Algorithm 5: Hole contained in a k-sided polygon

5.1.3 Algorithm 5. HoleInside(poly, H)

Algorithm 5 determines whether a hole H is contained within or intersects with the polygon
poly. To achieve this, it calculates the midpoint of each side and determines if that value is
inside poly but not on its boundary. If so, the algorithm terminates and returns true. The
computational cost is O(k2m) time by loop (Line 4) computed in O(m) time, the function
PointIn (Line 6) in O(k) time and the function AlignedPol (Line 6) in O(k) time.

Algorithm 5: HoleInside(poly, H)
Input: poly: k-sided polygon, H : HolesP
Output: false if the hole H is not contained or not intersect the k-sided polygon and true

otherwise
1 isHoleInside ← false
2 hol ← H
3 Insert(hol, H[1])
4 for i← 1 to Length(hol)− 1 do
5 m ← Midpoint(Points[hol[i]], Points[hol[i+1]])
6 if (PointIn(m, poly) = true and AlignedPol(m, poly) = false) then
7 isHoleInside ← true
8 break

9 return isHoleInside

Fig. 8 shows two polygons. The first one, A = (22, 28, 26), cannot be included in the final
solution as it intersects with hole H1. Similarly, polygon B = (37, 39, 6, 48) cannot be as a
valid solution since hole H2 lies within it.

5.1.4 Algorithm 6. Polygons(point1, point2, distance, matrix)

To enhance comprehension of Algorithm 6, it has been organized into four distinct blocks.
These blocks elucidate the algorithm’s functionality and assess the associated computational
cost.

236 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

(a) Intersection of segments (b) Consecutive aligned points

Figure 9: Segments(poly) and Aligned(poly) functions

Block 1: (Lines 3–13): This block generates a complete set of edges connecting two given
points, with point1 as the starting point and point2 as the endpoint. The process entails
identifying all edges that are at a distance of one unit from point1. Subsequently, the function
iteratively repeats this process until all edges up to the desired distance are computed. The
computational cost of this block is determined by three loops (Lines 3, 5, 8), each with a
different time complexity: O(k), O(n2), and O(n), respectively. Hence, the computational
cost of Block 1 is O(n3k).

Block 2: (Lines 14–17): The “temp1” set yields multiple solutions, and only those solutions
whose final point coincides with point2 are selected. To ensure that the chosen solutions form
a valid polygon, two algorithms are employed: Segments(poly) and Aligned(poly). The first
algorithm determines whether two segments (edges) intersect or not, in O(k2) time, while the
second algorithm, in O(k) time, returns 0 if three consecutive points of the poly are aligned
and otherwise returns a non-zero value. The computational cost is determined by the loop in
Line 15 in O(n2) time and the above algorithms, therefore obtaining a computational cost of
O(n2k3) time.

In Fig. 9a, it can be observed that the polygon A = (35, 36, 12, 41) cannot form a
quadrilateral. Similarly, in Fig. 9b, it is shown that B = (21, 23, 27, 31) also cannot be a
quadrilateral, as points 23, 27, and 31 are aligned, indicating that it is in fact a triangle.

Block 3: (Lines 18–20): All solutions that do not satisfy the conditions set by the
algorithms PointsInside(poly) and SegmentsInside(poly) are eliminated. The first algorithm
returns false if all points of PointsP are outside a polygon of temp2 or lie on any of its sides,
while the second algorithm also returns false if there is no intersection between any of the
segments of SegmentsP with a polygon of temp2. These algorithms have a computational cost
of O(k2r) and O(k2st), respectively. The computational cost is determined by the loop in
Line 18, which runs in O(n2) time, in addition to the mentioned algorithms. Therefore, the
total cost is O(n2k4rst).

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 237

Block 4: (Lines 21–27): From all the polygons obtained in Line 20, we remove those
containing one or more holes. The computational cost is determined by the following loops:
Line 21 computed in O(n2) time; Line 23 computed in O(h), where P is a lattice polygon
with h holes; Line 24 computed in O(k2m) by Algorithm 5. Thus, the computational cost is
O(n2k2hm).

Therefore, Algorithm 6 can be solved in O(n3k) time, as max(n3k, n2k3, n2k4rst, n2k2hm) =
n3k if n≫ k is assumed.

Algorithm 6: Polygons(point1, point2, distance, matrix)
Input: point1, point2 ∈ Points, distance ∈ N, matrix: adjacency matrix
Output: sides between point1 and point2 for a certain distance

1 temp1 ← {{point1}}; temp3, sides ← ∅
2 if Matrix(point1, point2) = 1 then
3 for i← 1 to distance do
4 temp2 ← ∅
5 for j ← 1 to Length(temp1) do
6 last ← temp1[j][i]
7 if last ̸= point2 then
8 for k ← 1 to N do
9 if (Matrix(last,k) = 1 and Length(Union(temp1[j],k)) ̸=

Length(temp1[j])) then
10 Insert(temp2, Insert(temp1[j],k))
11 Delete(temp1[j], temp1[j][Length(temp1[j])])

12 temp1 ← ∅
13 temp1 ← temp2
14 temp2 ← ∅
15 for i← 1 to Length(temp1) do
16 if (temp1[i][distance + 1] = point2 and Segments(temp1[i]) = false and

Aligned(temp1[i]) ̸= 0) then
17 Insert(temp2, temp1[i])

18 for i← 1 to Length(temp2) do
19 if (PointsInside(temp2[i]) = false and SegmentsInside(temp2[i]) = false) then
20 Insert(temp3, temp2[i])

21 for i← 1 to Length(temp3) do
22 h ← 0
23 for j ← 1 to Length(HolesP) do
24 if Holes(temp3[i], HolesP [j]) = false then
25 h ← h+1

26 if h = Length(HolesP) then
27 Insert(sides, temp3[i])

28 return sides

238 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

Figure 10: Maximum area 4-gon; A = (5, 38, 11, 21)

5.2 Maximum Area or Perimeter (Algorithm 7)

We compute the maximum area or perimeter simple k-gon inscribed in a lattice polygon P
with r points, t segments and h holes. It is the main program of the proposal. It has four
parameters: N = #(P), number of points of the lattice polygon P ; k = distance + 1, where k
represents the number of sides of the polygon to be computed; matrix, which is the adjacency
matrix; and fun, which indicates whether to calculate the area (fun = 0) or the perimeter
(fun = 1). Additionally, with some minor modifications to the algorithm, it is possible to
calculate all the solutions for convex polygons, SolutionConvex(N, distance, matrix, fun) and
for rectangles, Rectangle(N, matrix, fun).

It utilizes Algorithm 6, Polygons(point1, point2, distance, matrix), and two auxiliary
algorithms, Update(polygons, fun) and Duplicates(polygons). The first one computes the
largest area or perimeter polygons, depending on the value of the fun parameter, 0 for the
largest area and 1 for the perimeter, in O(n2k) time. The second algorithm ensures that no
duplicate solutions occur during polygon analysis and can be solved in O(n4k log k) time.

We examine the case of a simple 4-gon with the solution (5, 38, 11, 21), as depicted in
Fig. 10. It is apparent that for each k-gon, there are 2k solutions with the same area and
perimeter. To address this challenge, the Duplicates algorithm selects a representative solution
from each set of identical solutions.

The computational cost of the algorithm Solution(N, distance, matrix, fun) is initially
determined by two nested loops (Lines 2–3) that run in O(n2) time and the algorithm
Polygons(point1, point2, distance, matrix), which takes O(n3k) time. This results in a compu-
tational cost of O(n5k). Finally, the algorithms Update(polygons, fun) and Duplicates(polygons)
are employed to obtain the desired solution. Therefore, the computational cost of our proposed
algorithm for computing the maximum area or perimeter of a simple k-gon inscribed in a lattice
polygon P with r points, t segments, and h holes is O(n5k), as max(n5k, n2k, n4k log k) = n5k
if n≫ k.

The source code for the seven algorithms used has been developed in Python and Java
and is available in a GitHub repository [20]. This allows any researcher to examine the code
in detail, understand how the algorithms and functions work, and modify or improve the code
as needed.

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 239

Algorithm 7: Solution(N, distance, matrix, fun)
Input: N : number of points of P , distance ∈ N, matrix: adjacency matrix, fun =

{0, 1}
Output: Simple k-gons with maximum area or maximum perimeter contained in P

1 polig, solution ← ∅
2 for i← 1 to N-1 do
3 for j ← i + 1 to N do
4 if Polygons(i, j, distance, matriz) ̸= ∅ then
5 Insert(polig, Polygons(i, j, distance, matrix))

6 solution ← Duplicates(Update(polig, fun))
7 return solution

5.3 Experimental Results

Through the algorithm Solution(N, distance, matrix, fun), we have demonstrated the capability
to calculate the maximum area or perimeter of a simple k-gon contained within a lattice
polygon P with r points, t segments, and h holes. Now, let’s explore some potential solutions
(Fig. 12, Fig. 13 and Fig. 14) for the problem depicted in Fig. 2 (refer to Fig. 11 and Table 3).
Additionally, we’ll consider a new example (Fig. 15 and Table 4), showcasing the solutions of
the simple and convex k-gons with maximum area and perimeter.

In order to facilitate the interpretation of the results, the solutions highlighted in red
in Tables 3 and 4 indicate the specific k-gons that are illustrated in Figs. 12–14 and 16–17.
This convention allows readers to easily connect the numerical data with the corresponding
graphical representations.

Upon analyzing the results presented in Tables 3 and 4, an increase in both the area and
perimeter of simple polygons is observed as the number of sides increases. However, in certain
specific cases of convex polygons, solutions could not be found. This is illustrated by the
calculations for the heptagon and octagon, as shown in Tables 3 and 4. These tables also
include a column with computational time in seconds. All experiments were performed on a
computer with an Intel Core i9 processor, 64 GB RAM, and an Nvidia GeForce RTX 3070 8
GB graphics card.

Fig. 11. PointsP = {p33, p43, p48}, SegmentsP = {S1, S2}, where S1 = {p20, p25, p30, p36},
S2 = {p21, p25, p29} and HolesP = {H1, H2}, where H1 = {p23, p28, p34, p27}, H2 =
{p38, p42, p45, p41}.

Fig. 14 illustrates how Algorithm 7, Solution(N, distance, matrix, fun), can be utilized to
compute the k-convex polygon with maximum area or perimeter. This adapted algorithm,
denoted as SolutionConvex(N, distance, matrix, fun), enables us to compare solutions for both
simple and convex polygons.

Fig. 15. PointsP = {p35, p36, p40, p41, p53}, SegmentsP = {S1, S2, S3, S4, S5}, where S1 =
{p27, p34}, S2 = {p30, p38, p45}, S3 = {p32, p44, p54}, S4 = {p44, p52, p56}, S5 = {p43, p47}
and HolesP = ∅.

240 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

Figure 11: Example: Lattice polygon P , N = 49

(a) Triangle (b) Quadrilateral (c) Rectangle

(d) Pentagon (e) Hexagon (f) Heptagon (g) Octagon

Figure 12: Example 1: Maximum-area simple k-gon

6 Maximum Area or Perimeter Simple k-gon in a Closed Contour
Constrained by Arbitrary Obstacles

By algorithm Solution(N , distance, matrix, fun), we demonstrate the feasibility of computing
the maximum-area or perimeter simple k-gon contained in a lattice polygon P with r points,
t segments and h holes. Now, through Theorem 6.1, we observe that the area of a closed
contour C constrained by arbitrary obstacles can be calculated by the inscribed limit area
within the lattice polygon P , constructing finer partitions. Moreover, we achieve the paper’s
objective, as the simple k-gon contained in P is the maximal in area or perimeter within C

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 241

(a) Triangle (b) Rectangle

(c) Hexagon (d) Heptagon (e) Octagon

Figure 13: Example 1: Maximum-perimeter simple k-gon

(a) Quadrilateral area (b) Quadrilateral
perimeter

(c) Pentagon area (d) Pentagon perime-
ter

Figure 14: Example 1: Maximum-area and perimeter convex k-gon

242 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

Table 3: Solutions Example 1: Maximum-area and perimeter simple and convex k-gon, N = 49
k-gon Maximum-area simple (Fig. 12) Area Time (s)

Triangle (11,33,21) 8 0.01
Quadril. (5,38,11,21) 9 0.23
Rectangle (14,48,45,29), (13,27,33,43) 6 0.32
Pentagon (6,43,33,21,11), (7,43,33,21,11) 10.49 1.88
Hexagon (6,43,33,21,11,7) 13 11,71
Heptagon (5,38,43,6,7,11,21), (6,21,11,38,42,10,7) 14 91.10
Octagon (5,21,11,38,42,10,7,6) 15.50 830.83

k-gon Maximum-perimeter simple (Fig. 13) Area Time (s)

Triangle (1,11,2) 18.01 0.01
Quadril. (1,40,2,11) 28.75 0.21
Rectangle (10,25,26,48), (12,11,7,47) 12 0.33
Pentagon (1,11,19,43,2) 30.63 1.89
Hexagon (1,40,2,43,6,11) 38.48 10.99
Heptagon (1,11,19,40,22,43,2) 39.55 89.68
Octagon (1,40,19,31,2,43,6,11) 44.84 831.67

k-gon Maximum-area convex (Fig. 14) Area Time (s)

Quadril. (1,38,11,21) 8.50 0.17
Pentagon (1,21,11,43,2), (1,32,41,11,21) 8 1.45
Hexagon (1,27,41,10,36,21), (1,32,41,43,36,21) 7 10.46

(1,38,41,40,36,21), (8,49,43,14,15,29), (10,41,27,22,21,25)
(10,41,27,19,21,30), (14,48,49,45,29,15), (19,32,41,43,30,21)
(19,38,41,40,30,21), (21,25,40,41,38,22), (21,25,43,41,32,22)

Heptagon ∅ – 89.74
Octagon ∅ – 813.90

k-gon Maximum-perimeter convex (Fig. 14) Area Time (s)

Quadril. (1,11,43,2) 18.07 0.17
Pentagon (1,21,11,43,2) 18.09 1.15
Hexagon (1,22,37,43,11,21) 17.35 10.21
Heptagon ∅ – 90.34
Octagon ∅ – 815.26

when P approaches C with finer partitions.
If A(C) denotes the area of C, A(C0) the area of the outer lattice polygon C0 and A(Hj)

is the area of each hole with 1 ≤ j ≤ h, then:

A(C) = A(C0)−
h∑

j=1
A(Hj)

Moreover, let R the rectangle of the minimum area that encloses the closed contour C0 [13]
and let Π be a regular partition of R with partition size L. We define lower area A(C0, Π) and
upper area A(Hj, Π) as the largest area lattice polygon P0 contained in C0 and the smallest
area lattice polygon Qj containing each Hj, 1 ≤ j ≤ h, respectively, and both are built by

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 243

Figure 15: Example 2: Lattice polygon P , N = 57

(a) Triangle (b) Quadrilateral (c) Rectangle

(d) Heptagon (e) Octagon (f) Nonagon

Figure 16: Example 2: Maximum-area simple k-gon

points of GL. By Pick’s theorem [32],

A(C0, Π) =
(

#(ıP0) + #(∂P0)
2 − 1

)
· L2

A(Hj, Π) =
(

#(ıHj) + #(∂Hj)
2 − 1

)
· L2

Theorem 6.1. Let C be a closed contour constrained by arbitrary obstacles and C0 the outer
contour to C. Then, there exists a sequence of regular partitions {Πn}n∈N with Πi ⪯ Πi+1 for
all i such that limn→∞(A(C0, Πn)−∑h

j=1 A(Hj, Πn)) = A(C), where A(C) is the area of the
closed contour C.

Proof. We consider a regular partition Π̇ as finer than Π. Then, A(C0, Π) ≤ A(C0, Π̇) and
A(Hj, Π) ≥ A(Hj, Π̇) with 1 ≤ j ≤ h. Therefore, A(C0, Π) −∑h

j=1 A(Hj, Π) ≤ A(C0, Π̇) −

244 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

Table 4: Solutions Example 2: Maximum-area and perimeter simple and convex k-gon, N = 57
k-gon Maximum-area simple (Fig. 16) Area Time (s)

Triangle (23,38,25), (25,47,27) 4 0.01
Quadril. (13,44,18,16), (18,53,47,44), (25,47,30,34) 5 0.21
Rectangle (24,43,38,25), (38,23,22,44) 4 0.27
Pentagon (1,47,44,54,21) 6.50 1.03
Hexagon (1,27,47,44,54,21) 8.50 4.70
Heptagon (1,27,47,44,18,53,21) 10 25.17
Octagon (1,27,47,44,18,19,53,21), (1,27,47,44,18,20,53,21) 11 160.62

(1,38,30,47,44,18,53,21), (18,53,21,26,34,30,47,44)
Nonagon (1,27,34,30,47,44,18,53,21), (1,38,30,47,44,18,19,53,21) 12 1125.91

(1,38,30,47,44,18,20,53,21), (1,41,30,44,18,53,47,43,21)
(18,44,47,30,34,26,21,53,19), (18,44,47,30,34,26,21,53,20)

k-gon Maximum-perimeter simple (Fig. 17) Perimeter Time (s)

Triangle (1,27,21), (1,47,21) 14.47 0.01
Quadril. (1,47,17,21) 21.55 0.23
Rectangle (22,44,38,23) 10 0.32
Pentagon (1,47,44,54,21) 23,96 1.01
Hexagon (1,41,38,18,43,21) 28.86 4.26
Heptagon (1,41,38,47,44,54,21) 30.18 26.12
Octagon (1,41,38,18,50,19,43,21) 34.34 155.34
Nonagon (1,21,17,47,27,34,52,7,2) 36.99 1098.23

k-gon Maximum-area convex Area Time (s)

Quadril. (1,21,47,27), (20,54,44,47) 4.50 0.14
Pentagon (20,54,44,43,47) 5 0.88
Hexagon (15,14,56,52,51,16) 3 4.03

(23,35,30,27,26,24), (24,35,36,30,26,25)
(29,36,43,44,38,30), (38,43,53,57,54,44)

Heptagon ∅ – 23.68
Octagon ∅ – 151.19

k-gon Maximum-perimeter convex Area Time (s)

Quadril. (1,27,47,21) 14.73 0.11
Pentagon (18,44,38,43,53) 11.12 0.75
Hexagon (23,35,30,27,26,24),(53,57,54,44,38,43) 9.30 3.99
Heptagon ∅ – 22.67
Octagon ∅ – 149.45

∑h
j=1 A(Hj, Π̇). Then, exists a sequence of regular partitions {Πn}n∈N with Πi ⪯ Πi+1 for all i

such that limn→∞(A(C0, Πn)−∑h
j=1 A(Hj, Πn)) = A(C).

In Fig. 18 and Fig. 19, we present three partitions for the same closed contour C with
three points, two segments, and two holes, with partition sizes: L1 = 1, L2 = 1/2, L3 = 1/4,
numbers of points: 49, 197, 804, and adjacency matrices: A, Ȧ, Ä, respectively. It is evident
that the area of the maximum simple 3-gon, 4-gon and rectangle increases as the partition
becomes finer.

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 245

(a) Triangle (b) Quadrilateral (c) Hexagon

(d) Heptagon (e) Octagon (f) Nonagon

Figure 17: Example 2: Maximum-perimeter simple k-gon

In addition to the increase in polygonal area, Figs. 18 and 19 also reflect the computational
effort required as the resolution becomes finer. For the case N = 49, execution times are
negligible (below one second). For N = 197, runtimes grow to the order of seconds, while
for N = 804 they can reach several hours depending on the instance (e.g., up to 22044 s in
Fig. 18f). A similar growth is observed in Fig. 19, where runtimes range from a few seconds to
slightly over one thousand seconds. These values are consistent with the theoretical complexity
O(n5k) and highlight the combinatorial nature of the problem. Moreover, memory usage
follows the same trend.

7 Results and Discussion

Table 1 shows the computational cost of other scientific proposals that inscribe polygons in
Regions of Interest. Although Algorithm 7 provides the final procedure for computing the
maximum k-gon, it must be acknowledged that its computational cost is high. The algorithm
systematically explores all pairs of points, which results in a number of operations that grows
rapidly with the size of the dataset. This is not a methodological limitation, but rather an
inherent feature of the problem when polygons with arbitrary numbers of sides are allowed.

In the existing literature, approaches with lower complexity achieve this by imposing
strong restrictions on the type of polygons considered, most often limiting the search to
axis-aligned rectangles, squares, or highly symmetric figures. Such simplifications undoubtedly
reduce execution times, but they also compromise the generality that real-world applications
frequently require.

In medical contexts, for example, regions of interest often need to adapt to irregular
anatomical shapes, such as tumors, which cannot be represented adequately by rectangles.
In military and security applications, strategic zones in maps or satellite imagery typically

246 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

(a) Solution(49, 2, A, 0),
Area = 8

(b) Solution(197, 2, Ȧ,
0), Area = 9,63

(c) Solution(804, 2, Ä, 0),
Area = 9,63

(d) Solution(49, 3, A, 0),
Area = 9

(e) Solution(197, 3, Ȧ, 0),
Area = 11,25

(f) Solution(804, 3, Ä, 0),
Area = 11,38

Figure 18: Maximum area simple 3-gon and 4-gon with different partition sizes

(a) Rectangle(49, A, 0),
Area = 6

(b) Rectangle(197, Ȧ, 0),
Area = 8

(c) Rectangle(804, Ä, 0),
Area = 8,50

Figure 19: Maximum area rectangle with different partition sizes

follow irregular boundaries shaped by natural geography or urban infrastructure. Likewise, in
scientific fields ranging from geological exploration to robotics, the data to be analyzed rarely
conform to simple predefined figures.

For these reasons, although Algorithm 7 entails a higher computational cost, it remains
the only exact and general solution currently available. It addresses the problem in its full
generality and provides a rigorous framework for applications where flexibility and precision
are essential.

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 247

In this section, we present two illustrative examples to show how the proposed algorithm
can be applied to different scenarios involving lattice polygons with obstacles. These cases are
intended to illustrate the flexibility and broad applicability of the method.

It should be noted that the representation of obstacles, whether as points, segments,
or holes, depends on the adopted convention and can affect both the possible results and
the computational time. In this paper, we adhere to a consistent criterion: regions with
appreciable area are treated as holes, finite aligned sets of points as segments, and negligible
regions as isolated points. Without such rules, two users could model the same configuration
differently, leading to distinct outcomes.

Furthermore, the type and number of obstacles directly influence the adjacency matrix
used in Algorithm 7. For instance, in the case study analyzed here, the adjacency matrix is
of order 49. In general, as the problem becomes more complex and the number of obstacles
increases, the adjacency matrix tends to become sparser (with many zero entries), which
reduces the number of candidate edges and may shorten the total computation time.

7.1 Construction of a Shopping Center
Constructing a building of any polygonal shape on a plot of land can be an interesting challenge
for architects [18]. Although this shape can make the structure unique and attractive,
it can also present problems during the design and building process. In Fig. 20a, the
closed contour C of a plot of land has been extracted and then, the lattice polygon P on
closed contour C has been constructed (Fig. 20b). Finally we construct the lattice polygon
P (Fig. 20c) with N = #(P) = 111, Points = {p1, . . . , p111}, Polygon = {p1, . . . , p33},
PointsP = {p34, p35, p36, p37, p38, p39}, SegmentsP = {S1, S2, S3, S4} and HolesP = {H1}. The
objective was to design a shopping center of any polygonal shape with the maximum area.
Upon the algorithm Solution(N, distance, matrix, fun) is applied to this problem, several
potential solutions are discovered, which are illustrated in Fig. 21. These solutions demonstrate
the effectiveness of the algorithm and the possibilities that can be achieved when designing
buildings on polygonal plots.

7.2 Medical Imaging
The acquisition of medical images is an important component in the diagnosis and treatment of
various diseases, including brain tumors [3, 21]. In this particular case, an image of a primitive
neuroectodermal tumor (PNET) [14] (Fig. 22a), a primary tumor of the central nervous
system, was obtained. After obtaining the image of the PNET, the lattice polygon P on the
closed contour C was created, as shown in Fig. 22b. Finally, the lattice polygon P (Fig. 22c)
necessary to apply the algorithm Solution(N, distance, matrix, fun) was built, where N =
#(P) = 86, Points = {p1, . . . , p86}, Polygon = {p1, . . . , p36}, PointsP = {p37, p41, p75, p86}
and SegmentsP = {S1, S2, S3, S4, S5}. In this context, the main objective was to compute
the largest polygonal region with the maximum area to perform an accurate and detailed
evaluation of the brain images. By applying the algorithm Solution(N, distance, matrix, fun),
it was possible to obtain different geometric solutions for simple and convex polygons. Fig. 23
provides an illustration of some of these solutions. Table 5 has been constructed to compare
the areas obtained with simple and convex polygons, enhancing the understanding of the
capabilities of the algorithm. This table further demonstrates that, for convex polygons, an
increase in the number of sides does not imply an increase in area or perimeter.

248 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

(a) Closed contour C

(b) Lattice polygon P on closed con-
tour C

(c) Lattice polygon P

Figure 20: Practical application 1: Construction of a shopping center

Table 5: Solutions Practical application 2: Maximum-area simple and convex k-gon
k-gon Maximum-area simple (Fig. 23) Area

Triangle (3,85,18), (11,42,17), (35,82,57) 10
Rectangle (8,15,19,59) 10
Quadrilateral (14,52,35,42), (26,75,35,57) 11.50
Pentagon (2,72,66,17,11), (11,42,39,59,17) 14.50
Hexagon (4,60,44,57,82,35) 16.50
Heptagon (14,52,44,57,82,35,42) 22.50

k-gon Maximum-area convex (Fig. 23) Area

Quadrilateral (14,42,40,15), (35,75,82,57) 11
Pentagon (2,46,84,14,42), (24,56,36,30,25), (35,75,82,57,44) 11.50
Hexagon (24,56,36,35,75,25) 12
Heptagon (24,56,36,35,32,82,25), (24,69,50,36,35,75,25) 11.50

Additionally, a new partition finer than the original partition has been created to graphically
demonstrate how a smaller partition size L results in a larger lattice polygon contained within
the closed curve C (Fig. 24), which directly influences the final solution. This approach is
particularly important in applications that demand high accuracy, such as evaluating the
extent of areas of interest. As shown in the results presented in Table 6 and Fig. 25, using
finer partitions leads to larger polygonal areas, thereby significantly improving the accuracy

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 249

(a) Triangle (b) Rectangle

(c) Pentagon simple (d) Pentagon convex

(e) Hexagon simple (f) Hexagon convex

Figure 21: Practical application 1: Maximum-area simple and convex k-gon

in identifying and quantifying relevant regions. The selected partition sizes are L1 = 1 and
L2 = 1/2, resulting in 86 and 325 points, respectively. The values reported in Table 6
correspond to polygonal areas. No execution times are included in this table; for runtime
measurements, see Tables 3–4.

8 Source Code

All the examples included in Section 5.3 and Section 7 were initially generated using pseudocode
and later developed in Java and Python, which is available on GitHub [20]. In this way, any
researcher can verify our solutions or include new examples to satisfy their needs.

9 Conclusions

This paper presents a novel method for calculating any simple k-gon within a closed contour
without restrictions, including forbidden points, segments and holes in the interior. Any

250 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

(a) Closed contour C

(b) Lattice polygon P on
closed contour C

(c) Lattice polygon P

Figure 22: Practical application 2: Medical imaging

Table 6: Practical application 2: Maximum-area with partition sizes L1 = 1 and L2 = 1/2

k−gon L1 = 1 L2 = 1/2
N = 86 N = 325

Triangle 10 11.25
Rectangle 10 10
Quadrilateral Simple 11.50 13.50
Quadrilateral Convex 11 12.50
Pentagon Simple 14.50 16.75
Pentagon Convex 11.50 12.38

researcher can compute the largest simple k-gon of maximum area or perimeter contained in a
simple polygon with the proposed algorithm by first determining the type of k-gon (triangle,
quadrilateral, pentagon, hexagon, etc.). Additionally, the algorithm can also be modified to
compute convex k-gons of maximum area or perimeter. No other algorithm is as complete,
generic, and versatile as the one proposed in this paper, since it is the user who determines
which type of solution is needed. In addition to explaining all pseudocode, the source code
(Java and Python) is available on GitHub for research purposes.

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 251

(a) Triangle (b) Rectangle (c) Quadrilateral simple

(d) Quadrilateral con-
vex

(e) Hexagon simple (f) Hexagon convex

Figure 23: Practical application 2: Maximum-area simple and convex k-gon

Figure 24: Lattice polygon P with different partition sizes: L1 = 1 and L2 = 1/2

References

[1] A. Aggarwal and S. Suri: Fast algorithms for computing the largest empty rectangle.
In Proceedings of the Third Annual Symposium on Computational Geometry, 278–290.
1987. doi: 10.1145/41958.41988.

[2] H. Ali, S. Faisal, K. Chen, and L. Rada: Image-selective segmentation model for
multi-regions within the object of interest with application to medical disease. The Visual
Computer 37(5), 939–955, 2021. doi: 10.1007/s00371-020-01845-1.

[3] S. Alqazzaz, X. Sun, X. Yang, and L. Nokes: Automated brain tumor segmentation

https://dx.doi.org/10.1145/41958.41988
https://dx.doi.org/10.1007/s00371-020-01845-1

252 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

(a) Triangle (b) Rectangle

(c) Quadrilateral Simple (d) Quadrilateral Convex

(e) Pentagon Simple (f) Pentagon Convex

Figure 25: Practical application 2: Maximum-area with partition sizes L1 = 1 and L2 = 1/2

on multi-modal MR image using SegNet. Computational Visual Media 5, 209–219, 2019.
doi: 10.1007/s41095-019-0139-y.

[4] S. L. Anderson and S. C. Murray: R/UAStools::plotshpcreate: Create Multi-Polygon
Shapefiles for Extraction of Research Plot Scale Agriculture Remote Sensing Data. Frontiers
in Plant Science 11, 511768, 2020. doi: 10.3389/fpls.2020.511768.

[5] M. Ausserhofer, S. Dann, Z. Lángi, and G. Tóth: Corrigendum to “An algorithm
to find maximum area polygons circumscribed about a convex polygon” [Discrete Appl.
Math. 255 (2019) 98–108]. Discrete Applied Mathematics 353, 222–226, 2024. doi:
10.1016/j.dam.2024.04.013.

[6] E. Baco, O. Ukimura, E. Rud, L. Vlatkovic, A. Svindland, M. Aron,
S. Palmer, T. Matsugasumi, A. Marien, J.-C. Bernhard, et al.: Magnetic
resonance imaging–transectal ultrasound image-fusion biopsies accurately characterize
the index tumor: correlation with step-sectioned radical prostatectomy specimens in 135
patients. European Urology 67(4), 787–794, 2015. doi: 10.1016/j.eururo.2014.08.077.

https://dx.doi.org/10.1007/s41095-019-0139-y
https://dx.doi.org/10.3389/fpls.2020.511768
https://dx.doi.org/10.1016/j.dam.2024.04.013
https://dx.doi.org/10.1016/j.dam.2024.04.013
https://dx.doi.org/10.1016/j.eururo.2014.08.077

R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . . 253

[7] S. W. Bae and S. D. Yoon: Empty squares in arbitrary orientation among points.
Algorithmica 1–46, 2022. doi: 10.1007/s00453-022-01002-1.

[8] E. G. Birgin and F. N. C. Sobral: Minimizing the object dimensions in circle and
sphere packing problems. Computers & Operations Research 35(7), 2357–2375, 2008. doi:
10.1016/j.cor.2006.11.002.

[9] J. E. Boyce, D. P. Dobkin, R. L. Drysdale III, and L. J. Guibas: Finding
extremal polygons. In Proceedings of the fourteenth annual ACM symposium on Theory
of computing, 282–289. 1982. doi: 10.1145/800070.802202.

[10] J. Chaudhuri, S. C. Nandy, and S. Das: Largest empty rectangle among a point set.
Journal of algorithms 46(1), 54–78, 2003. doi: 10.1016/S0196-6774(02)00285-7.

[11] B. Chazelle, R. Drysdale, and D. Lee: Computing the largest empty rectangle.
SIAM Journal on Computing 15(1), 300–315, 1986. doi: 10.1137/0215022.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein: Introduction to
Algorithms. The MIT Press, New York, 3 ed., 2009.

[13] H. Freeman and R. Shapira: Determining the minimum-area encasing rectangle for
an arbitrary closed curve. Communications of the ACM 18(7), 409–413, 1975. doi:
10.1145/360881.360919.

[14] N. Friedrichs, R. Vorreuther, C. Poremba, K.-L. Schafer, A. Böcking,
R. Buettner, and H. Zhou: Primitive neuroectodermal tumor (PNET) in the differ-
ential diagnosis of malignant kidney tumors. Pathology-Research and Practice 198(8),
563–569, 2002. doi: 10.1078/0344-0338-00303.

[15] A. Gagliano, F. Patania, F. Nocera, A. Capizzi, and A. Galesi: GIS-based
decision support for solar photovoltaic planning in urban environment. In Sustainability in
Energy and Buildings: Proceedings of the 4th International Conference in Sustainability
in Energy and Buildings, 865–874. 2013. doi: 10.1007/978-3-642-36645-1 77.

[16] G. Gibert, D. D’Alessandro, and F. Lance: Face detection method based on
photoplethysmography. In 2013 10th IEEE International Conference on Advanced Video
and Signal Based Surveillance, 449–453. 2013. doi: 10.1109/AVSS.2013.6636681.

[17] Y. He and A. Kundu: 2-D shape classification using hidden Markov model. IEEE
Transactions on Pattern Analysis & Machine Intelligence 13(11), 1172–1184, 1991. doi:
10.1109/34.103276.

[18] M. Izadi and P. Saeedi: Three-dimensional polygonal building model estimation from
single satellite images. IEEE Transactions on Geoscience and Remote Sensing 50(6),
2254–2272, 2011. doi: 10.1109/TGRS.2011.2172995.

[19] B. Manjunath, C. Shekhar, and R. Chellappa: A new approach to image
feature detection with applications. Pattern Recognition 29(4), 627–640, 1996. doi:
10.1016/0031-3203(95)00115-8.

https://dx.doi.org/10.1007/s00453-022-01002-1
https://dx.doi.org/10.1016/j.cor.2006.11.002
https://dx.doi.org/10.1016/j.cor.2006.11.002
https://dx.doi.org/10.1145/800070.802202
https://dx.doi.org/10.1016/S0196-6774(02)00285-7
https://dx.doi.org/10.1137/0215022
https://dx.doi.org/10.1145/360881.360919
https://dx.doi.org/10.1145/360881.360919
https://dx.doi.org/10.1078/0344-0338-00303
https://dx.doi.org/10.1007/978-3-642-36645-1_77
https://dx.doi.org/10.1109/AVSS.2013.6636681
https://dx.doi.org/10.1109/34.103276
https://dx.doi.org/10.1109/34.103276
https://dx.doi.org/10.1109/TGRS.2011.2172995
https://dx.doi.org/10.1016/0031-3203(95)00115-8
https://dx.doi.org/10.1016/0031-3203(95)00115-8

254 R. Molano et al.: An Efficient Method for Obtaining the Maximum k-Gon. . .

[20] Media Engineering Group (GIM): Source Code, Scripts, and Documentation, 2025,
May 14. https://github.com/UniversidadExtremadura/maximum-k-gon-in-a-clo
sed-contour-with-obstacles.

[21] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani, J. Kirby,
Y. Burren, N. Porz, J. Slotboom, R. Wiest, et al.: The multimodal brain tumor
image segmentation benchmark (BRATS). IEEE transactions on medical imaging 34(10),
1993–2024, 2014. doi: 10.1109/TMI.2014.2377694.

[22] R. Molano, J. Sancho, M. Ávila, P. Rodŕıguez, and A. Caro: Obtaining the
user-defined polygons inside a closed contour with holes. The Visual Computer 1–19, 2023.
doi: 10.1007/s00371-023-03170-9.

[23] A. Mukhopadhyay and S. Rao: Computing a largest empty arbitrary oriented rectangle:
theory and implementation. In International Conference on Computational Science and
Its Applications, 797–806. 2003. doi: 10.1007/3-540-44842-X 81.

[24] A. Naamad, D. Lee, and W.-L. Hsu: On the maximum empty rectangle problem. Dis-
crete Applied Mathematics 8(3), 267–277, 1984. doi: 10.1016/0166-218X(84)90124-0.

[25] S. C. Nandy, A. Sinha, and B. B. Bhattacharya: Location of the largest
empty rectangle among arbitrary obstacles. In International Conference on Founda-
tions of Software Technology and Theoretical Computer Science, 159–170. 1994. doi:
10.1007/3-540-58715-2 122.

[26] T. Oksanen: Shape-describing indices for agricultural field plots and their relationship
to operational efficiency. Computers and Electronics in Agriculture 98(1), 252–259, 2013.
ISSN 0168-1699. doi: 10.1016/j.compag.2013.08.014.

[27] M. Orlowski: A new algorithm for the largest empty rectangle problem. Algorithmica
5(1), 65–73, 1990. doi: 10.1007/BF01840377.

[28] E. Persoon and K.-S. Fu: Shape discrimination using Fourier descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence (3), 388–397, 1986. doi:
10.1109/TPAMI.1986.4767799.

[29] I. A. Qasmieh, H. Alquran, and A. M. Alqudah: Occluded iris classification and
segmentation using self-customized artificial intelligence models and iterative randomized
Hough transform. International Journal of Electrical and Computer Engineering 11(5),
4037, 2021. doi: 10.11591/ijece.v11i5.pp4037-4049.

[30] G. Rote: The largest contained quadrilateral and the smallest enclosing parallelogram
of a convex polygon, 2019. arXiv: 10.48550/arXiv.1905.11203.

[31] W. Sun, H. Zhao, and Z. Jin: A visual attention based ROI detection
method for facial expression recognition. Neurocomputing 296, 12–22, 2018. doi:
10.1016/j.neucom.2018.03.034.

[32] D. E. Varberg: Pick’s theorem revisited. The American Mathematical Monthly 92(8),
584–587, 1985. doi: 10.1080/00029890.1985.11971689.

Received August 10, 2025; final form September 4, 2025.

https://github.com/UniversidadExtremadura/maximum-k-gon-in-a-closed-contour-with-obstacles
https://github.com/UniversidadExtremadura/maximum-k-gon-in-a-closed-contour-with-obstacles
https://dx.doi.org/10.1109/TMI.2014.2377694
https://dx.doi.org/10.1007/s00371-023-03170-9
https://dx.doi.org/10.1007/3-540-44842-X_81
https://dx.doi.org/10.1016/0166-218X(84)90124-0
https://dx.doi.org/10.1007/3-540-58715-2_122
https://dx.doi.org/10.1007/3-540-58715-2_122
https://dx.doi.org/10.1016/j.compag.2013.08.014
https://dx.doi.org/10.1007/BF01840377
https://dx.doi.org/10.1109/TPAMI.1986.4767799
https://dx.doi.org/10.1109/TPAMI.1986.4767799
https://dx.doi.org/10.11591/ijece.v11i5.pp4037-4049
https://arxiv.org/abs/10.48550/arXiv.1905.11203
https://dx.doi.org/10.1016/j.neucom.2018.03.034
https://dx.doi.org/10.1016/j.neucom.2018.03.034
https://dx.doi.org/10.1080/00029890.1985.11971689

	Introduction
	Related work
	Definitions
	Lattice Polygon
	Adjacency Matrix

	Computing the Adjacency Matrix of a Lattice Polygon with r Points, t Segments and h Holes
	Segment-Polygon Intersection (Algorithm 1)
	Computing the Adjacency Matrix (Algorithm 2)

	Maximum Area or Perimeter Simple k-gon in a Lattice Polygon Among Arbitrary Obstacles
	Obtaining Polygons (Algorithm 6)
	Algorithm 3. PointsInside(poly)
	Algorithm 4. SegmentsInside(poly)
	Algorithm 5. HoleInside(poly, H)
	Algorithm 6. Polygons(point1, point2, distance, matrix)

	Maximum Area or Perimeter (Algorithm 7)
	Experimental Results

	Maximum Area or Perimeter Simple k-gon in a Closed Contour Constrained by Arbitrary Obstacles
	Results and Discussion
	Construction of a Shopping Center
	Medical Imaging

	Source Code
	Conclusions

