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1 Introduction

Poisson geometry and Walker geometry are interesting subjects in differential geometry. The
two notions of Poisson and Walker manifold have various applications in mathematics, theo-
retical physics and physics. Consequently, they have motivated several studies.

A Poisson manifold is just a smooth manifold M endowed with a Poisson bracket which is
a Lie bracket, on the space of smooth function C∞(M), satisfying the Jacobi identity. It’s also
equivalent to the data of a bi-vector field π such that [π, π] = 0, where [, ] is the Schouten-
Nijenhuis bracket. Poisson manifolds were introduced by André Lichnorowicz in 1977 [8], but
the notion of Poisson bracket were first introduced by Siméon Dennis Poisson in his work on
mathematical mechanic [9]. They play a crucial role in physic mathematics, namely in classic
mechanic and quantization. This motived several study of such manifold (see [12]).

A Walker manifold is also a smooth manifold, endowed with a Walker metric which is
a class of semi-Riemannian metric. It’s a specific type of manifold characterized by neutral
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metric and a parallel distribution of totally null planes. More specifically, a Walker n-manifold
is a semi-Riemannian manifold which admits a field of parallel nul r-planes with r ≤ n

2 . Their
canonical form were investigate by Walker in the early 1950 [11]. This geometry was named
after Arthur Goffrey Walker who studied it extensively and it’s applications. Walker geometry
have many applications namely in cosmology, relativity, string theory, . . .

The study of Poisson and pseudo-Riemannian structure, in the same manifold, was first
done by I. Vaisman [10] with the introduction of the notion of contravariant connection. This
contravariant connection was more generalized by R. L. Fernades [6] and used by M. Boucetta
[3, 4] to introduce the notion of Riemann-Poisson manifold. This notion is based on the notion
of compatibility between the Poisson structure and pseudo-Riemannian one. This allow more
characterization of Poisson manifold and the introduction of Poisson manifold with lightlike
Kaehler foliation [1, 7]. In finite dimension several study of Riemann-Poisson manifolds are
done [2].

In this paper, we will discuss the relation between the Walker metric and the Poisson
structures in three-dimensional manifolds. The starting point of this work is the search of a
notion of compatibility between a Poisson structure and a Walker metric. Given a Poisson
manifold endowed with a Walker metric (M, π, g∗

f ), it is natural to look for a notion of
compatibility between the Poisson tensor π and the metric g∗

f . The first idea is to assume
that Dπ = 0, where D is the Levi-Civita contravariant connection associated with g∗

f .
Our paper is organized as follows. Section 1 introduces the topic. In Section 2, we

recall some basics notions on Walker manifolds and Poisson manifold. In Section 3, we study
three-dimensional Walker-Poisson manifolds in a Walker 3-manifold. In Section 4, we prove
Theorem 2, which characterises Poisson and Liouville-Poisson vector fields. We end the paper
with some example of a vector field which is both Poisson and Liouville.

2 Preliminaries

2.1 Some Basic Facts on Riemann-Poisson Manifolds
Let (M, π) be a Poisson manifold endowed with her Poisson tensor π. It’s well known that this
tensor induce a morphism ♯ : T ∗M → TM such that β(♯(α)) = π(α, β) for all α, β ∈ Ω1(M).
Thus, a contravariant connection D on M is defined as

D : Ω1(M) × Ω1(M) → Ω1(M),

satisfying the following equalities

Dfαβ = fDαβ

Dα(fβ) = fDαβ + ♯(α)(f)β,

for all f ∈ C∞(M) and α, β ∈ Ω1(M).
Let g be a pseudo-Riemannian manifold on M . If ∇ is the Levi-Civita connection asso-

ciated te g, the the first compatibility between the Poisson structure π and the Riemannian
structure g was introduced by I. Vaisman [10] which is equivalent to ∇π = 0. This com-
patibility induced that the Poisson manifold (M, π) is regular. However, the most important
Poisson structure are not regular, and this condition proves to be insufficient for the study
of pseudo-Riemannian Poisson manifolds. Hence, M. Boucetta introduce a notion of com-
patibility using the contravariant Levi-Civita connection [2]. Indeed, the Riemannian metric
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g induces, on T ∗M , a Riemannian metric that can be noted g∗. This metric have it’s Levi-
Civita associated contravariant connection D. This contravariant connection is characterized
by the Koszul type formula:

2g∗(Dαβ, γ) = π♯(α) · g∗(β, γ) + π♯(β) · g∗(α, γ) − π♯(γ) · g∗(α, β) + g∗([α, β]π, γ)
+ g∗([γ, α]π, β) + g∗([γ, β]π, α).

Since D has vanished torsion, one can obtain (see [2])

0 = −[π, π]S(α, β, γ) = Dπ(α, β, γ) + Dπ(β, γ, α) + Dπ(γ, α, β),
Dπ(γ, α, β) = −dγ(π(α), π(β)) − π(Dαγ, β) − π(α, Dβγ),

π(Dαβ) − π(Dβα) = [π(α), π(β)].

Definition 1. Let (M, g∗, π) be a manifold endowed with a pseudo-Riemannian metric g∗

and a Poisson tensor π. (M, g∗, π) is said to be a pseudo-Riemann-Poisson manifold, if

Dαπ(β, γ) := π♯(α) · π(β, γ) − π(Dαβ, γ) − π(β, Dαγ) = 0, (1)

where α, β, γ ∈ Ω1(M).

This class of manifolds are characterized by the following theorem.

Proposition 1 ([3]). Let (M, π, g∗) be a Poisson manifold endowed with a pseudo-Riemannian
metric on T ∗M . Let D be the Levi-Civita contravariant connection associated with the couple
(π, g∗). Then the following assertions are equivalent.

1. The triplet (M, π, g∗) is a pseudo-Riemann-Poisson manifold.
2. For all α, β ∈ Ω1(M) and all f ∈ C∞(M),

π(Dαdf, β) + π(α, Dβdf) = 0.

3. For all α, β, γ ∈ Ω1(M),

dγ(π(α), π(β)) + π(Dαγ, β, ) + π(α, Dβγ) = 0.

2.2 Three Dimensional Walker Manifold
In this section, we recall some basics notions on Walker manifolds taken from [11]. The metric
of three-dimensional Walker manifold (M, gf ) with coordinates (x, y, z) is expressed as

gf = ϵdy2 + fdz2 + dx ⊗ dz + dz ⊗ dx

and its matrix form as

gf =

0 0 1
0 ϵ 0
1 0 f

 , with its inverse g−1
f =

−f 0 1
0 ϵ 0
1 0 0

 (2)

for some smooth function f(x, y, z), where ϵ = ±1. A Walker 3-manifold noted M , is a
pseudo-Riemannian manifold, which admits a parallel null vector field U . Notice that when
ϵ = 1 and ϵ = −1 the Walker manifold has signature (2, 1) and (1, 2) respectively, and
therefore is Lorentzian in both cases.
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3 Poisson Structures on 3-dimensional Walker Manifolds

Let (M, gf ) be a 3-dimensional pseudo-Riemannian manifold endowed with Walker metric gf :

gf = ϵdy2 + fdz2 + dx ⊗ dz + dz ⊗ dx (3)

Let π be a Poisson tensor given in local coordinates (x, y, z) by:

π = π12
∂

∂x
∧ ∂

∂y
+ π13

∂

∂x
∧ ∂

∂z
+ π23

∂

∂y
∧ ∂

∂z
, (4)

where
π12 = π(dx, dy), π13 = π(dx, dz), π23 = π(dy, dz)

are differentiable functions on R3. We therefore have

♯Π(dx) = π12
∂

∂y
+ π13

∂

∂z
,

♯Π(dy) = −π12
∂

∂x
+ π23

∂

∂z
,

♯Π(dz) = −π13
∂

∂x
− π23

∂

∂y
,

and the bracket [., .]π is defined by

[dx, dy]π = dπ12 = ∂π12

∂x
dx + ∂π12

∂y
dy + ∂π12

∂z
dz

[dx, dz]π = dπ13 = ∂π13

∂x
dx + ∂π13

∂y
dy + ∂π13

∂z
dz

[dy, dz]π = dπ23 = ∂π23

∂x
dx + ∂π23

∂y
dy + ∂π23

∂z
dz.

(5)

Let g∗
f be the metric on the cotangent bundle defined by g∗

f (α, β) = gf (♯gα, ♯gβ). Let D be the
contravariant Levi-Civita connection associated to g∗. We call it the Levi-Civita contravariant
connection associated with the couple (π, g∗

f ). It’s characterised by the Koszul type formula:

2g∗
f (Dαβ, γ) = ♯π(α)g∗

f (β, γ) + ♯π(β)g∗
f (α, γ) − ♯π(γ)g∗

f (α, β)
+ g∗

f ([α, β]π, γ) + g∗
f ([γ, α]π, β) + g∗

f ([γ, β]π, α), (6)

where α, β, γ ∈ Ω1(M), the Lie bracket [ , ]π is given by

[α, β]π = L♯π(α)β − L♯π(β)α − dπ(α, β),

where L♯π(α) denotes the Lie derivative along a differentiable vector field ♯π(α) and ♯π : T ∗M →
TM denotes the bundle map given by β

(
♯π(α)

)
= π(α, β).

D has vanishing torsion, i.e.,

Dαβ − Dβα = [α, β]π (7)

D is compatible with g∗
f i.e.

♯π(α)g∗
f (β, γ) = g∗

f (Dαβ, γ) + g(β, Dαγ). (8)
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Using (6), we calculate the non-zero Christoffel symbols of a Walker cometric g∗
f of D as:

Γ1
11 = ∂π13

∂z
, Γ2

11 = ϵ
∂π12

∂z
, (9)

Γ1
12 = 1

2

(
− ∂π12

∂x
+ f

∂π12

∂z
+ ϵ

∂π13

∂y
+ ∂π13

∂z

)
, Γ3

12 = −∂π12

∂z
, (10)

Γ1
13 = 1

2f
∂π13

∂z
, Γ3

13 = −∂π13

∂z
, (11)

Γ2
13 = 1

2

(
ϵ
∂π12

∂x
+ ϵf

∂π12

∂z
− ∂π13

∂y
− ϵ

∂π23

∂z

)
, (12)

Γ1
21 = 1

2

(
∂π12

∂x
+ f

∂π12

∂z
+ ϵ

∂π13

∂y
+ ∂π23

∂z

)
, Γ2

21 = ∂π12

∂y
, (13)

Γ1
22 = ϵ

(
f

∂π12

∂y
+ ∂π23

∂y

)
, Γ3

22 = −ϵ
∂π12

∂y
(14)

Γ1
23 = 1

2

(
f

∂π12

∂x
+ f 2 ∂π12

∂z
+ ϵf

∂π13

∂y
+ ∂π23

∂x

)
, (15)

Γ2
23 = −∂π23

∂y
, Γ3

23 = −Γ1
21, (16)

Γ2
31 = 1

2

(
ϵ
∂π12

∂x
+ ϵf

∂π12

∂z
+ ∂π13

∂y
− ϵ

∂π23

∂z

)
, (17)

Γ1
32 = 1

2f
(

∂π12

∂x
+ f

∂π12

∂z
+ ϵ

∂π13

∂y
− ∂π13

∂z

)
, Γ3

32 = − 1
f

Γ1
32, (18)

Γ1
33 = 1

2

(
f 2 ∂π13

∂z
− π13

∂f

∂x
− π23

∂f

∂z

)
. (19)

Having calculated the Christoffel symbols, we get the following possibly non-vanishing com-
ponents of the Levi-Civita contravariant connection on (M, g∗

f ):

Ddxdx = Γ1
11dx + Γ2

11dy, Ddxdy = Γ1
12dx + Γ3

12dz (20)
Ddxdz = Γ1

13dx + Γ2
13dy + Γ3

13dz, (21)
Ddydx = Γ1

21dx + Γ2
21dy, Ddydy = Γ1

22dx + Γ3
22dz, (22)

Ddydz = Γ1
23dx + Γ2

23dy + Γ3
23dz, (23)

Ddzdx = Γ2
31dy, Ddzdy = Γ1

32dx + Γ3
32dz, Ddzdz = Γ1

33dx. (24)

Definition 2. With the notations above, the triple (M, π, g∗
f ) is called a Walker-Poisson

manifold if, for any α, β, γ ∈ Ω1(M),

Dπ(α, β, γ) := ♯π(α) · π(β, γ) − π(Dαβ, γ) − π(β, Dαγ) = 0. (25)

Finally, we quote the following result as a characterization of a three-dimensional Poisson
manifold with Walker metric:

Theorem 1. A Poisson tensor π = π12
∂

∂x
∧ ∂

∂y
+ π13

∂
∂x

∧ ∂
∂z

+ π23
∂

∂y
∧ ∂

∂z
is compatible with
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the Walker cometric g∗
f iff:

0 = π12
(

∂π12
∂y

− ∂π13
∂z

)
+ 2π13

∂π12
∂z

0 = π12
(
ϵ∂π12

∂x
+ ϵf ∂π12

∂z
− 3∂π13

∂y
− ϵ∂π23

∂z

)
+ 2ϵπ23

∂π12
∂z

− 2π13
∂π13
∂z

,

−π12
(
π12

∂f
∂y

+ π13
∂f
∂z

)
= π13

(
∂π12
∂x

− f ∂π12
∂z

− ϵ∂π13
∂y

+ ∂π23
∂z

)
+ 2(fπ12 + π23)∂π13

∂z
+ 2π12

∂π23
∂y

,

0 = π12
(

∂π12
∂x

+ ϵ
2

∂π13
∂y

+ 1
2

∂π23
∂z

)
− 2ϵπ13

∂π12
∂y

+ f ∂π12
∂z

,

0 = π12
(

∂π13
∂x

− ∂π23
∂y

)
− π13

∂π12
∂x

− π23
∂π13
∂z

,

−π12
(
π12

∂f
∂x

− π23
∂f
∂z

)
= (fπ12 + 2π23)∂π12

∂x
− 2ϵfπ13

∂π12
∂y

+ (f 2π12 + fπ23)∂π12
∂z

+ ϵ(fπ12 + π23)∂π13
∂y

− 2π12
∂π23
∂x

+ (3π23 − fπ12)∂π23
∂z

,

−π23
(
π12

∂f
∂y

+ π13
∂f
∂z

)
= fπ13

(
∂π12
∂x

+ f ∂π12
∂z

+ ϵ∂π13
∂y

− ∂π23
∂z

)
− 2fπ23

∂π12
∂y

− 2π12
∂π13
∂x

,

(ϵπ12π23 + π2
13 − fπ2

13)∂f
∂z

= (ϵπ2
12 − π2

13)∂f
∂x

+ π12π13(f − 1)∂f
∂y

+ π23
(
ϵ∂π12

∂x
+ ϵf ∂π12

∂z
+ 3∂π13

∂y

)
+ 2fπ13

(
∂π13
∂x

+ (f − 1)∂π13
∂z

)
− 2ϵπ12

∂π23
∂x

− (2 + 2f)∂π23
∂z

,

fπ12
(
π12

∂f
∂y

+ π13
∂f
∂z

)
= fπ13

(
ϵ∂π13

∂y
+ ∂π12

∂x
+ f ∂π12

∂z
− ∂π23

∂z

)
− 2(fπ12 + π23)∂π13

∂x

− 2f(fπ12 + π23)∂π13
∂z

+ 2π13
∂π23
∂x

+ 2π23
∂π23
∂y

.

(26)

Proof. Firstly, from (25) and (20)-(22) a straightforward calculation shows that the vanishing
of Dπ is equivalent to

π12
∂π12
∂y

+ π13
∂π12
∂z

= π12Γ1
11 + π13Γ3

12

π12
∂π13
∂y

+ π13
∂π13
∂z

= π13Γ1
11 + π23Γ2

11 + π12Γ2
13 + π13Γ3

13

π12
∂π23
∂y

+ π13
∂π23
∂z

= π13Γ1
12 + π23Γ3

12 − π12Γ1
13 + π23Γ3

13

−π12
∂π12
∂x

+ π23
∂π12
∂z

= π12Γ1
12 − π23Γ3

12 + π13Γ3
22

−π12
∂13
∂x

+ π23
∂π13
∂z

= π13Γ1
12 + π12Γ2

23 + π13Γ3
23

−π12
∂π23
∂x

+ π23
∂π23
∂z

= π13Γ1
22 − π12Γ1

23 + π23Γ3
23

−π13
∂π12
∂x

− π23
∂π12
∂y

= −π23Γ3
31 + π13Γ3

32

−π13
∂π13
∂x

− π23
∂π13
∂y

= π23Γ2
31 + π12Γ2

33 + π13Γ3
33

−π13
∂π23
∂x

− π23
∂π23
∂y

= π13Γ1
32 − π12Γ1

33 + π23Γ3
33.

(27)

Now, by (9)–(19) it is easy to see that (27) is equivalent to (26).

Here is an example of how to use it as an application.
Example 1. Let π be a Poisson tensor given by:

π = 3xy∂x ∧ ∂y + xz ln(x2)∂x ∧ ∂z + 2yz∂y ∧ ∂z,
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with (x, y, z) ∈ (R∗)3. The non-zero Christoffel symbols are given by the following expressions

Γ1
11 = x ln(x2), Γ1

12 = 1
2(−3y + x ln(x2), Γ1

13 = 1
2xf ln(x2), Γ2

13 = 1
2ϵy,

Γ3
13 = −x ln(x2), Γ1

21 = 5
2y, Γ2

21 = 3x, Γ1
22 = ϵ(3xf + 2z), Γ3

22 = −3ϵx,

Γ1
23 = 3

2yf, Γ2
23 = −2z, Γ3

23 = −5
2y, Γ2

31 = 1
2ϵy, Γ1

32 = 1
2(3y − x ln(x2))f,

Γ3
32 = 1

2(x ln(x2) − y), Γ1
33 = 1

2

(
x ln(x2)f 2 − xz ln(x2)∂f

∂x
− 2yz

∂f

∂z

)
.

Our goal in this example is to find a function f for which π and gf are compatible.
The system (26) has been demonstrated to yield the desired function f as a solution to

the equation
Af 3 + Bf 2 + cf + D = 0,

where
A = −x2z2 − 2x2z ln(x2) − x2z(z − 3)

(
ln(x2)

)2

B = 3ϵxy2z + 2x2z2 + 4yz − 12y − 9ϵxy2

+
(

− 13x2z2 − 34
3 xz2 + 40x2z − 16xz3 − X4z(z − 3)

)
ln(x2)

C = −x2z2 − 4xz3 + 20ϵy2z2 + 36ϵxy4z − 2
3z2(x + 4z2) ln(x2)

− 12x2z4 + 10z4

9x2

(
ln(x2)

)2

D = 1
27x

[
− 54xy2z3 − 72ϵy2z2 + z4(36x + 8)

(
ln(x2)

)2
]
.

Recall that a strict 3-dimensional Walker manifolds are 3-dimensional Walker manifolds
whose parallel null vector field is spanned by ∂x. Hence in a strict Walker 3-dimensional
manifolds, f is independent of the parameter x, i.e., f = f(y, z) [11].

Corollary 1. Let (M, g∗
f ) be a strict 3-dimensional Walker manifold and π a Poisson tensor

π = c1
∂

∂x
∧ ∂

∂y
+ c2

∂

∂x
∧ ∂

∂z
+ c3

∂

∂y
∧ ∂

∂z
,

where ci are the real constant. Then π is compatible with g∗
f if and only if f is constant.

Example 2. Consider the following three-dimensional tensor:

π = ∂

∂x
∧ ∂

∂y
+ ∂

∂x
∧ ∂

∂z
+ ∂

∂y
∧ ∂

∂z
.

According to Theorem 1, a bivector field π on R3 is a Poisson tensor with respect to the
Walker metric. If we choose f(x, y, z) = const, we can easily verify that (26) are fulfilled.

4 Characterization of Poisson and Liouville-Poisson Vector Fields

In this section we will propose a characterisation of Poisson vector fields and Liouville vector
fields associated with the Poisson tensor defined on a Walker-Poisson manifold of dimension
3. To do this, we will recall their definitions.
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Definition 3. Let (M, gf , π) be a Walker-Poisson manifold of dimension 3, where gf denotes
the Walker metric and π = π12∂x ∧ ∂y + π13∂x ∧ ∂z + π23∂y ∧ ∂z a Poisson tensor. Assume
that the functions f and πij (1 ≤ i < j ≤ 3) are of class C∞. Let X be a vector field on TM .
It is said that

1) X is a Poisson field if the Schouten bracket [X, π] = 0,
2) X is a Liouville field if the Schouten bracket [X, π] = π.

Remark 1. The analogous notion for Liouville vector fields on unimodular exact Poisson
manifolds appears in [5].

Our result in this section, which gives a characterization of the Poisson and Liouville
vector fields, is the following theorem

Theorem 2. Let M be a three-dimensional Walker-Poisson manifold.
1) If X is a Poisson vector field then, the following equations are satisfied:

X1
∂π12
∂x

+ X2
∂π12
∂y

+ X3
∂π12
∂z

= π12

(
∂X1
∂x

+ ∂X2
∂y

)
− π23

∂X1
∂z

+ π13
∂X2
∂z

X1
∂π13
∂x

+ X2
∂π13
∂y

+ X3
∂π13
∂z

= π12
∂X3
∂y

+ π13

(
∂X1
∂x

+ ∂X3
∂z

)
+ π23

∂X1
∂y

X1
∂π23
∂x

+ X2
∂π23
∂y

+ X3
∂π23
∂z

= −π12
∂X3
∂x

+ π13
∂X2
∂x

+ π23

(
∂X2
∂y

+ ∂X3
∂z

)
.

(28)

2) If X is a Liouville vector field then, the following equations are satisfied:
X1

∂π12
∂x

+ X2
∂π12
∂y

+ X3
∂π12
∂z

= π12
(
1 + ∂X1

∂x
+ ∂X2

∂y

)
− π23

∂X1
∂z

+ π13
∂X2
∂z

X1
∂π13
∂x

+ X2
∂π13
∂y

+ X3
∂π13
∂z

= π12
∂X3
∂y

+ π13
(
1 + ∂X1

∂x
+ ∂X3

∂z

)
+ π23

∂X1
∂y

X1
∂π23
∂x

+ X2
∂π23
∂y

+ X3
∂π23
∂z

= −π12
∂X3
∂x

+ π13
∂X2
∂x

+ π23
(
1 + ∂X2

∂y
+ ∂X3

∂z

)
.

(29)

Proof. 1) Let X = X1∂x + X2∂y + X3∂z be a Poisson vector field in the three-dimensional
Walker-Poisson manifold. In that case, X is the solution of the following equation

[X, π] = 0, (30)

where π = π12∂x ∧ ∂y + π13∂x ∧ ∂z + π23∂y ∧ ∂z is the Poisson bivector field. Then, one
has

[X, π] = [X1∂x, π12∂x ∧ ∂y] + [X1∂x, π13∂x ∧ ∂z] + [X1∂x, π23∂y ∧ ∂z]
+ [X2∂y, π12∂x ∧ ∂y] + [X2∂y, π13∂x ∧ ∂z] + [X2∂y, π23∂y ∧ ∂z]
+ [X3∂z, π12∂x ∧ ∂y] + [X3∂z, π13∂x ∧ ∂z] + [X3∂z, π23∂y ∧ ∂z].

By calculating the Schouten bracket, we find

[X1∂x, π12∂x ∧ ∂y] = X1
∂π12

∂x
∂x ∧ ∂y + π12[X1∂x, ∂x] ∧ ∂y + π12∂x ∧ [X1∂x, ∂y]

= X1
∂π12

∂x
∂x ∧ ∂y − π12

∂X1

∂x
∂x ∧ ∂y + π12∂x ∧

(
− ∂X1

∂y

)
∂x

=
(

X1
∂π12

∂x
− π12

∂X1

∂x

)
∂x ∧ ∂y.

(31)
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Likewise we get

[X1∂x, π13∂x ∧ ∂z] =
(

X1
∂π13

∂x
− π13

∂X1

∂x

)
∂x ∧ ∂z (32)

[X1∂x, π23∂y ∧ ∂z] = X1
∂π23

∂x
∂y ∧ ∂z − π23

∂X1

∂y
∂x ∧ ∂z + π23

∂X1

∂z
∂x ∧ ∂y, (33)

Indeed by (31)–(33), on has

[X1∂x, π] =
(

X1
∂π12

∂x
− π12

∂X1

∂x
+ π23

∂X1

∂z

)
∂x ∧ ∂y

+
(

X1
∂π13

∂x
− π13

∂X1

∂x
− π23

∂X1

∂y

)
∂x ∧ ∂z + X1

∂π23

∂x
∂y ∧ ∂z. (34)

As the same of (34), we have

[X2∂y, π] = [X2∂y, π12∂x ∧ ∂y] + [X2∂y, π13∂x ∧ ∂z] + [X2∂y, π23∂y ∧ ∂z]

=
(

X2
∂π12

∂y
− π12

∂X2

∂y
− π13

∂X2

∂z

)
∂x ∧ ∂y + X2

∂π13

∂y
∂x ∧ ∂z

+
(

X2
∂π23

∂y
− π13

∂X2

∂x
− π23

∂X2

∂y

)
∂y ∧ ∂z,

(35)

and
[X3∂z, π] = [X3∂z, π12∂x ∧ ∂y] + [X3∂z, π13∂x ∧ ∂z] + [X3∂z, π23∂y ∧ ∂z]

= X3
∂π12

∂z
∂x ∧ ∂y +

(
X3

∂π13

∂z
− π12

∂X3

∂y
− π13

∂X3

∂z

)
∂x ∧ ∂z

+
(

X3
∂π23

∂z
+ π12

∂X3

∂x
− π23

∂X3

∂z

)
∂y ∧ ∂z.

(36)

From the equations (34)–(36), we have

[X, π] =
(

X1
∂π12

∂x
+ X2

∂π12

∂y
+ X3

∂π12

∂z
− π12

(
∂X1

∂x
+ ∂X2

∂y

)
+ π23

∂X1

∂z

− π13
∂X2

∂z

)
∂x ∧ ∂y +

(
X1

∂π13

∂x
+ X2

∂π13

∂y
+ X3

∂π13

∂z
− π12

∂X3

∂y

− π13

(
∂X1

∂x
+ ∂X3

∂z

)
− π23

∂X1

∂y

)
∂x ∧ ∂z +

(
X1

∂π23

∂x
+ X2

∂π23

∂y

+ X3
∂π23

∂z
+ π12

∂X3

∂x
− π13

∂X2

∂x
− π23

(
∂X2

∂y
+ ∂X3

∂z

))
∂y ∧ ∂z.

(37)

Since X is a Poisson vector field, one has [X, π] = 0, Equation (37) gives the system (28).
2) In order to prove (29), we set [X, π] = π and the result comes from 1).

Corollary 2. Consider the following Poisson tensor with respect to the Walker metric on R3:

π = ∂

∂x
∧ ∂

∂y
+ ∂

∂x
∧ ∂

∂z
+ ∂

∂y
∧ ∂

∂z
.

Let X = X1∂x + X2∂y + X3∂z be a vector field on the three-dimensional real vector space R3.
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1) If X is a Poisson vector field then, the following equations are satisfied:

div(X) #»ε = #      »grad(h), with h = X1 − X2 + X3, (38)

2) If X is a Liouville vector field then, the following equations are satisfied:

(div(X) + 1) #»ε = #      »grad(h), with h = X1 − X2 + X3, (39)

where #»ε = (1, −1, 1), div(X) denote the divergence of X and #      »grad(h) the gradient vector
field of h.

Furthermore, in the case that X is a Poisson or Liouville field, if and only if h = X1−X2+X3
is a solution of the following differential system:

∂h

∂z
= ∂h

∂x
= −∂h

∂y
. (40)

Proof. It is evident that, in consideration of the system (28) of Theorem 2, the following
equation can be established

∂X1
∂x

− ∂X1
∂z

+ ∂X2
∂y

+ ∂X2
∂z

= 0
∂X1
∂x

+ ∂X1
∂y

+ ∂X3
∂y

+ ∂X3
∂z

= 0
∂X2
∂x

+ ∂X2
∂y

− ∂X3
∂x

+ ∂X3
∂z

= 0
⇐⇒


∂X1
∂x

+ ∂X2
∂y

+ ∂X3
∂z

− ∂X3
∂z

− ∂X1
∂z

+ ∂X2
∂z

= 0
∂X1
∂x

+ ∂X1
∂y

+ ∂X3
∂y

+ ∂X3
∂z

+ ∂X2
∂y

− ∂X2
∂y

= 0
∂X1
∂x

− ∂X1
∂x

+ ∂X2
∂x

+ ∂X2
∂y

− ∂X3
∂x

+ ∂X3
∂z

= 0
(41)

Then the system (41) becomes
div(X) − ∂h

∂z
= 0

div(X) + ∂h
∂y

= 0
div(X) − ∂h

∂x
= 0

⇐⇒


div(X) = ∂h

∂z

− div(X) = ∂h
∂y

div(X) = ∂h
∂x

, (42)

or, equivalently
div(X) #»ε = #      »grad(h),

which represents the equality (38).
From system (29) and (41), we obtain

div(X) + 1 − ∂h
∂z

= 0
div(X) + 1 + ∂h

∂y
= 0

div(X) + 1 − ∂h
∂x

= 0
⇐⇒ (div(X) + 1) #»ε = #      »grad(h), (43)

from which we have (39).
Moreover, using (42) and (43), we get

∂h

∂z
= ∂h

∂x
= −∂h

∂y
,

which implies (40).

Example 3. Let X = x∂x + y∂y + z∂z be a vector field in a Poisson-Walker manifold equipped
with a Poisson tensor as in Corollary 2. Then X is a Poisson vector field, and the associated
function h = x − y + z satisfies (40).
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mécanique. Journal de l’École Polytechnique 15° Cahier 8, 266–344, 1809.

[10] I. Vaisman: Lecture on the geometry of Poisson manifolds, vol. 118 of Progress in
Mathematics. Birkhausser, Berlin, 1994.

[11] A. G. Walker: Canonical form for a Riemannian space with a parallel field of null
planes. Q. J. Math. 1(1), 69–79, 1950. doi: 10.1093/qmath/1.1.69.

[12] A. Weinstein: The local structure of Poisson manifolds. J. Diff. Geom. 8, 523–557,
1983.

Received August 25, 2025; final form October 17, 2025.

https://dx.doi.org/10.1016/s0764-4442(01)02132-2
https://dx.doi.org/10.1016/s0764-4442(01)02132-2
https://dx.doi.org/10.1016/j.difgeo.2003.10.013
https://dx.doi.org/10.1016/j.difgeo.2003.10.013
https://arxiv.org/abs/math/0402219v1
https://arxiv.org/abs/math/0606583v2
https://arxiv.org/abs/math/0606583v2
https://dx.doi.org/10.1093/qmath/1.1.69

	Introduction
	Preliminaries
	Some Basic Facts on Riemann-Poisson Manifolds
	Three Dimensional Walker Manifold

	Poisson Structures on 3-dimensional Walker Manifolds
	Characterization of Poisson and Liouville-Poisson Vector Fields

