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Abstract. The object of the present paper is to construct a characterization of a
three-dimensional Walker-Poisson manifolds with Walker metric; in other words,
study the compatibility between Walker and Poisson structures. Some examples
are given.
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1 Introduction

Poisson geometry and Walker geometry are interesting subjects in differential geometry. The
two notions of Poisson and Walker manifold have various applications in mathematics, theo-
retical physics and physics. Consequently, they have motivated several studies.

A Poisson manifold is just a smooth manifold M endowed with a Poisson bracket which is
a Lie bracket, on the space of smooth function C*(M ), satisfying the Jacobi identity. It’s also
equivalent to the data of a bi-vector field 7 such that |7, 7] = 0, where [,] is the Schouten-
Nijenhuis bracket. Poisson manifolds were introduced by André Lichnorowicz in 1977 [8], but
the notion of Poisson bracket were first introduced by Siméon Dennis Poisson in his work on
mathematical mechanic [9]. They play a crucial role in physic mathematics, namely in classic
mechanic and quantization. This motived several study of such manifold (see [12]).

A Walker manifold is also a smooth manifold, endowed with a Walker metric which is
a class of semi-Riemannian metric. It’s a specific type of manifold characterized by neutral
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metric and a parallel distribution of totally null planes. More specifically, a Walker n-manifold
is a semi-Riemannian manifold which admits a field of parallel nul 7-planes with » < 2. Their
canonical form were investigate by Walker in the early 1950 [11]. This geometry was named
after Arthur Goffrey Walker who studied it extensively and it’s applications. Walker geometry
have many applications namely in cosmology, relativity, string theory, ...

The study of Poisson and pseudo-Riemannian structure, in the same manifold, was first
done by I. Vaisman [10] with the introduction of the notion of contravariant connection. This
contravariant connection was more generalized by R. L. Fernades [6] and used by M. Boucetta
[3, 4] to introduce the notion of Riemann-Poisson manifold. This notion is based on the notion
of compatibility between the Poisson structure and pseudo-Riemannian one. This allow more
characterization of Poisson manifold and the introduction of Poisson manifold with lightlike
Kaehler foliation [1, 7]. In finite dimension several study of Riemann-Poisson manifolds are
done [2].

In this paper, we will discuss the relation between the Walker metric and the Poisson
structures in three-dimensional manifolds. The starting point of this work is the search of a
notion of compatibility between a Poisson structure and a Walker metric. Given a Poisson
manifold endowed with a Walker metric (M ,W,g;i), it is natural to look for a notion of
compatibility between the Poisson tensor 7 and the metric g;. The first idea is to assume
that Dm = 0, where D is the Levi-Civita contravariant connection associated with g7.

Our paper is organized as follows. Section 1 introduces the topic. In Section 2, we
recall some basics notions on Walker manifolds and Poisson manifold. In Section 3, we study
three-dimensional Walker-Poisson manifolds in a Walker 3-manifold. In Section 4, we prove
Theorem 2, which characterises Poisson and Liouville-Poisson vector fields. We end the paper
with some example of a vector field which is both Poisson and Liouville.

2 Preliminaries

2.1 Some Basic Facts on Riemann-Poisson Manifolds

Let (M, ) be a Poisson manifold endowed with her Poisson tensor 7. It’s well known that this
tensor induce a morphism f: T*M — T'M such that B(f(a)) = 7(a, 8) for all a, 8 € QY(M).
Thus, a contravariant connection D on M is defined as

D: QY M) x QY (M) — QY(M),
satisfying the following equalities

Dfaﬂ = fDozB
Do(fB) = [Daf + () (f)B,

for all f € C>°(M) and «, 8 € QY(M).

Let g be a pseudo-Riemannian manifold on M. If V is the Levi-Civita connection asso-
ciated te g, the the first compatibility between the Poisson structure 7 and the Riemannian
structure g was introduced by I. Vaisman [10] which is equivalent to V7 = 0. This com-
patibility induced that the Poisson manifold (M, x) is regular. However, the most important
Poisson structure are not regular, and this condition proves to be insufficient for the study
of pseudo-Riemannian Poisson manifolds. Hence, M. Boucetta introduce a notion of com-
patibility using the contravariant Levi-Civita connection [2]. Indeed, the Riemannian metric
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g induces, on T* M, a Riemannian metric that can be noted g*. This metric have it’s Levi-
Civita associated contravariant connection D. This contravariant connection is characterized
by the Koszul type formula:

29" (DafB,7) = m() - g"(B,7) + 74(B) - 9" (a, ) — m(7) - g™ (v, B) + g™ ([ev, B, )
+ 9" ([, alx, B) + g" ([, Blx, @).

Since D has vanished torsion, one can obtain (see [2])

0= —[m 7]s(e, 8,7) = Dr(ev, B,7) + D (3,7, @) + Dr(7, o, B),
Dﬂ'(’ya «, B) = —d’y(ﬂ'(Oé),?T(ﬂ)) - T‘—(DO/% ﬁ) - 7'['(04,'1)5"}/)7
m(Daf) — m(Dgar) = [m(ax), 7(B)].

Definition 1. Let (M, ¢*, m) be a manifold endowed with a pseudo-Riemannian metric g*
and a Poisson tensor 7. (M, g*, ) is said to be a pseudo-Riemann-Poisson manifold, if

Daﬂ'(ﬁ? 7) = ﬂ-ﬂ<04) : ﬂ'(ﬁa 7) - ﬂ-(Daﬂa 7) - W(ﬁa Do/‘)/) = 07 (1)
where «, 3,y € QY(M).
This class of manifolds are characterized by the following theorem.

Proposition 1 ([3]). Let (M, 7, g*) be a Poisson manifold endowed with a pseudo-Riemannian
metric on T*M. Let D be the Levi-Civita contravariant connection associated with the couple
(m,g%). Then the following assertions are equivalent.

1. The triplet (M, ,g*) is a pseudo-Riemann-Poisson manifold.

2. For all a, 3 € QY (M) and all f € C>®(M),

7(Dadf, ) + m(ct, Dydf) = 0.
3. For all o, B,y € QY (M),

dy(7(a), 7(8)) + 7(Dary, B, ) + (e, D) = 0.

2.2 Three Dimensional Walker Manifold

In this section, we recall some basics notions on Walker manifolds taken from [11]. The metric
of three-dimensional Walker manifold (M, gf) with coordinates (z,y, ) is expressed as

g = edy® + fd2* + dr @ dz + dz ® dx

and its matrix form as

—f

1 1
0], with its inverse gj?l =10 0 (2)
f 1 0

O N O
SO N O

0
gr=10
1

for some smooth function f(x,y,z), where ¢ = £1. A Walker 3-manifold noted M, is a
pseudo-Riemannian manifold, which admits a parallel null vector field U. Notice that when
e = 1 and ¢ = —1 the Walker manifold has signature (2,1) and (1,2) respectively, and
therefore is Lorentzian in both cases.
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3 Poisson Structures on 3-dimensional Walker Manifolds

Let (M, gf) be a 3-dimensional pseudo-Riemannian manifold endowed with Walker metric g;:
g; = edy® + fd2* + dr @ dz + dz ® dx (3)

Let 7 be a Poisson tensor given in local coordinates (z,y, z) by:

0 0 o 0 o 0
7T:7T127/\f+71'13f/\f+7rg3f/\

— 4
oxr Oy oxr Oz oy 0z’ (4)

where
mo = m(dx,dy), ms=mn(dr,dz), w3 =m(dy,dz)

are differentiable functions on R3. We therefore have

tn(dz) = 7712@ + 7T13662,
ftn(dy) = —mgai + 7T23§Z,
ftn(dz) = —mgai — 7T23£J,
and the bracket [.,.] is defined by
[, dy)y = dr1s = ag; d + agy” dy + 8;;2 dz
[dx, dz]x = dmys = 8;;3 dx + ag; dy + ag;, dz (5)
(dy, dz]; = dys = ag;?, da + 8;;3 dy + agj’ dz.

Let g} be the metric on the cotangent bundle defined by gj(«, 8) = g (#ya, f403). Let D be the
contravariant Levi-Civita connection associated to g*. We call it the Levi-Civita contravariant
connection associated with the couple (7, g3). It’s characterised by the Koszul type formula:

297 (Daf3,7) = tx(a)g;(B,7) + #x(B)gy(a, v) — tx(7)g5(a, B)
+g7(la, Blr,7) + g7 ([, alx, B) + g5 ([, Bl @), (6)

where «, 3, v € QY(M), the Lie bracket [, ], is given by
[Oé, /B]TI' = Eﬁw(a)ﬁ - Lﬁw(ﬂ)& - dTl'(Oé, 6)7

where L; (o) denotes the Lie derivative along a differentiable vector field f(a) and f.: T*M —
TM denotes the bundle map given by B(ﬁﬂ(a)) =m(a, ).

D has vanishing torsion, i.e.,
D,S — Do = |, B (7)

D is compatible with g7} i.e.

ﬂW<a)g;(67 v) = g}(,Daﬁa v) + 9(B, Da)- (8)
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Using (6), we calculate the non-zero Christoffel symbols of a Walker cometric g} of D as:

Y )
R O R iy i = B R S
A (1)
= (o I - 5 ) a2
S s i M B R
rl, = e< fag; + ag;?,)’ rs, = —eag; (14)
(1 P I ) 0
= -%2 T4 = Th (16
R G s S el o) a
ey (GG G ) et
rh = (152 g~ ) 09

Having calculated the Christoffel symbols, we get the following possibly non-vanishing com-
ponents of the Levi-Civita contravariant connection on (M, g}):

Dypdr = I'l dx + 1?2, dy, Dypdy = Tlydr +13,dz (20)
Dypdz = Tiadw + Tidy + Iiydz, (21)
Dyydx = T} dx + T3, dy, Dyydy = Tyydx + I'sydz, (22)
Dy,dz = Tyadx + Taydy + Taydz, (23)
Dy.dr = T3,dy, Dy.dy = U,dx + Tsydz, Dy.dz = [yada. (24)

Definition 2. With the notations above, the triple (M, g}) is called a Walker-Poisson
manifold if, for any «, 3,7 € Q*(M),

Dr(a,B,7) = () - m(8,7) — m(DafB,v) — (B, Day) = 0. (25)

Finally, we quote the following result as a characterization of a three-dimensional Poisson
manifold with Walker metric:

o)

Theorem 1. A Poisson tensor m = 7712% A a% + T35, N % + nga% A % is compatible with
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the Walker cometric g} iff:

O — 7T12(87T12 87’!’13) _'_ 27T1337T12

Oy
0= 7T12< omz 4 €f87r12 3831;3 — eagj*’)
+ 2€7T23 871'12 — 277'13 ag;?’,
—T12 (712 oy + Wlsgi) = (8”12 fa’T12 _ 37f13 + aﬂzs)
+2(fma + 7T23) S + 21, ag;?’,
0 5+ 125) ~emat 1
0= a5 ) — i -

— 12 (712% — 23 gi) = (fmiz + 2ma) %12 — 2e friz %512 + (f7miz + frrog) %522
+e(fma + 7T23>agif — 2m 6553 + (3mas — fﬂu)ag;g’
ra(rut mal) = a5 )

o P
— 2f7T237g;2 — 2m12 9522,

(26)

(emiamas + iy — f7h3) 5 = (emty — wh3) 5 + miamia(f — 1)5L
+ T3 ( Omi2 _|_6f3ﬂ‘12 +387r13)_|_2fﬂ-13(3§13

— 2err 28“23 — (2+2f)%=,

f7T12(7T123y + msdL ) Jms ( (%;5 +%m2 4 fOmz m) — 2(fmig + ma3) 213
— 2f<f7T12 + 723) g;:a + 273 23 + 2793 37T23

(f — 1)

Proof. Firstly, from (25) and (20)-(22) a straightforward calculation shows that the vanishing
of D is equivalent to

87r12 -+ 13 87“2 = 7T12F%1 -+ 713F?2

12 8y3 + T3 87(13 = 7T13Fi1 + 7231—‘%1 + 7T12F%3 + 7T13F?3

12 8(7;;3 + 713 6@3 = 7T13Fi2 + 7T23F?2 — 7T12F%3 + 71'231_‘?3
—T 28522 + 23 67“2 = 7T12F%2 — 71'231_‘?2 + 7T13F§2

—Tia G+ o 87”3 = 1301y + m2l'5; + mi3lo (27)
~T %R 38@3 = i3T5y — Mol + masl5y
—Wls% - 7T236g7;2 = —mo3l5, + T35,
_7713% - Wzsagfgf = ma3l'3; + m12l'55 + M3l
— 132028 — 1o ag;B' = 303y — mi2lys + T35,

Now, by (9)—(19) it is easy to see that (27) is equivalent to (26). O

Here is an example of how to use it as an application.

Ezxample 1. Let 7 be a Poisson tensor given by:

T = 3zy0, A\ Oy + x2 In(2?)d, A 0, + 2yz0, A 0,
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with (z,y,2) € (R*)3. The non-zero Christoffel symbols are given by the following expressions

I, = rln(2?), T}, = 5(—3y +xln(2?), Ty = 5:cfln(ggQ)7 I, = 563/7
. 5 f
FiS = —X ln($2)7 F%l = iy’ Fgl — 3$7 F%2 — €<3xf _|_ 22:), Fg? — —36.1',

1 3 9 3 ) 9 1 1 1 )
Fas = §yf’ [y = =22, I3 = Y I3 = 2 I3y = 5(3?/ —zn(z)) f,
1 1 0 0

ng = 5(37111(352) —y), 33 = 2<x 1H(£E2)f2 —xz ln(a:Q)aj: — ZyZaJ;)_

Our goal in this example is to find a function f for which 7 and g; are compatible.
The system (26) has been demonstrated to yield the desired function f as a solution to
the equation
Af*+Bf*+cf+ D =0,

where )

A= 222" - 22°2In(2?) — 2%2(2 — 3)(1n(:1:2))

B = 3exy®z + 20%2% + dyz — 12y — Yexy?

+ ( —132%2% — B2® + 40272 — 1622° — X*2(2 — 3)) In(x?)
2
C = —222% — 4a2° + 20ey*2* + 36exy’z — §z2(x + 42%) In(2?)
122%2% + 1024 o\ 2

1 2.3 2.2 | 4 21) 2
D= m{—f)élxy 20— T2ey“z* + 2 (36x+8)(1n(m )) ]

Recall that a strict 3-dimensional Walker manifolds are 3-dimensional Walker manifolds
whose parallel null vector field is spanned by d,. Hence in a strict Walker 3-dimensional

manifolds, f is independent of the parameter z, i.e., f = f(y, z) [11].
Corollary 1. Let (M, g}) be a strict 3-dimensional Walker manifold and 7 a Poisson tensor

7r—cg/\g—i-c£/\g—i-cg/\2
T or oy Car 9z oy 9z

where ¢; are the real constant. Then w is compatible with g} if and only if f is constant.

FExample 2. Consider the following three-dimensional tensor:

0 A 0 N 0 A 0 N 0 A 0
T=— Aot —A =+ — A =—.
Jdr 0Oy Ox 0z Oy 0z
According to Theorem 1, a bivector field 7 on R? is a Poisson tensor with respect to the
Walker metric. If we choose f(x,y,z) = const, we can easily verify that (26) are fulfilled.

4 Characterization of Poisson and Liouville-Poisson Vector Fields

In this section we will propose a characterisation of Poisson vector fields and Liouville vector
fields associated with the Poisson tensor defined on a Walker-Poisson manifold of dimension
3. To do this, we will recall their definitions.
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Definition 3. Let (M, g¢, m) be a Walker-Poisson manifold of dimension 3, where g; denotes
the Walker metric and m = 120, A Oy + m130, A 0. + T30, N 0. a Poisson tensor. Assume
that the functions f and m; (1 <14 < j < 3) are of class C*°. Let X be a vector field on 7M.
It is said that

1) X is a Poisson field if the Schouten bracket [X, 7] =0,

2) X is a Liouville field if the Schouten bracket [X, 7] = 7.

Remark 1. The analogous notion for Liouville vector fields on unimodular exact Poisson
manifolds appears in [5].
Our result in this section, which gives a characterization of the Poisson and Liouville

vector fields, is the following theorem

Theorem 2. Let M be a three-dimensional Walker-Poisson manifold.
1) If X is a Poisson vector field then, the following equations are satisfied:

Oomi2 Or12 Oomio 0X1 0Xo _ 0X1 0Xo

Xl Oz + X2 Oy + X3 0z 7T12< or + Oy ) 2375, + T3 0z
om13 Omi3 omi3 __ 0X3 0X1 0X3 0X1

X1 O + X2 dy + X3 0 — 7T1276y + 73 (890 + 92 ) + 7T2378y (28)
Omas Omas Oma3 0X3 0Xo 0Xo 0X3

Xy Ox + X Oy + X3 9. 275, + M3 Ox + 7T23( Oy + 0z >

2) If X is a Liouville vector field then, the following equations are satisfied:

0 1o} 0 0X 0X 0X 0X
X158 + Xo% + X552 =7T12<1+ o T 8y2) — M3, + M35

0 0z Oz 0z
Omig Omiz Oms 9X3 X1 4 0X3 90Xy
Xy ox + Xy Ay + X 92 M2 Ay + 7T13(1 + ox + 0z ) + 23 Ay (29)
Omag Oma3 Omoz 0X3 X 0Xo 8Xs
Xl ox + X2 Oy + X3 9. . M27g, + T3 Ox + a3 (1 + Oy + 0z )

Proof. 1) Let X = X0, + X0, + X530, be a Poisson vector field in the three-dimensional
Walker-Poisson manifold. In that case, X is the solution of the following equation

(X, 7] =0, (30)

where m = 7120, A Oy + T30, A\ O, + T30, A O, is the Poisson bivector field. Then, one
has
[X, 7T] = [Xlﬁm, 7r1281 N ay] + [Xlaz, 7T13arp A az] + [Xl(‘?m, Wany N 82]

+ [X28y, 7T128x A ay] + [Xgay, 71'13896 VAN az] + [Xgay, 7r230y A az]
+ [Xgaz, 7T128$ A 8y] + [Xgaz, 7r138$ VAN az] + [ng)z, ngay VAN (‘L]

By calculating the Schouten bracket, we find

[X10,, 71205 A 9,) = Xlagfax A Dy + 12 X104, O] A Oy + 1205 A [ X105, )
871'12 6X1 a)(1
= Xlﬁa‘r N 8y — 712%(91 N 8y + 712833 VAN ( — ay>3m (31)
on 0X
= (A)(lax12 — 7T128x1>8$ N ay.
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Likewise we get

[Xlﬁx,mgﬁx/\ﬁz] = <X16g;3 —71'1388)(1>6I/\8 (32)
87'('23 0X 0X

=19, N8, (33)

[Xlaxa 7T23ay A 82’] = Xl 9z

%83/ A az - 71'23671/855 A 82 + o3

Indeed by (31)—(33), on has

0 0X 0X
[Xlaza ] (Xl (;2:2 712 8:; +7ng 6 1)8 /\8
877'13 8X1 8X1 (97‘(’23
+(X1 LS )a N0+ X520, A 0. (34)

As the same of (34), we have

[Xgay, 7T] = [Xzay, 7T128x A\ 8y] + [X20y, 7T13(9 N Gz] + [Xgay, 7T230y A 82]

- 877'12 aXQ aXQ 87'('13
—(XQ Gy — T2 6y — 13— 8 >8 /\8 +X2 a 8 /\8 (35)
on 0X 0X.
(Xz 8;3 — 713 8x2 — T3 2)8 A 0.,

and

[Xgaz, 7'['] = [Xgaz, 7T1283; A\ 8y] + [Xgaz, 7T138x AN az} + [X3az, 7r238y A 62]

671'12 87T13 8X3 8X3
0, A, + ( " )a N0 (s

— X X, o8 -
379, 379, T12 By 13
67'('23 X3 an)
— Oy N 0.
( M )
From the equations (34)—(36), we have

. 671'12 677'12 871'12 (‘9X1 8X2 8X1
o) = (0T + et ot (G4 ) e
- 7T138X2>(9 VAN (9 + ( 871-13 + X287T13 + X387713 — 7T128X3
0 "o Ay 0z dy (37)
aXl an 8X1 871'23 871'23
“mu(y )~ A0t (iR 4 X
87T23 an an an 8X3
+X3&:+W”&x_ﬂmar_wﬁ<&/+éh>>aAa

Since X is a Poisson vector field, one has [ X, 7] = 0, Equation (37) gives the system (28).
2) In order to prove (29), we set [X, 7] = 7 and the result comes from 1).

]

Corollary 2. Consider the following Poisson tensor with respect to the Walker metric on R3:

00 0 0 0 9
or Oy Or 90z Oy 0z

Let X = X0, + X120, + X30, be a vector field on the three-dimensional real vector space R3.
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1) If X is a Poisson vector field then, the following equations are satisfied:
div(X)2 = grad(h), with h =X, — Xo + X, (38)
2) If X is a Liouville vector field then, the following equations are satisfied:
(div(X) + 1)@ = grad(h), with h=X; — X5 + X3, (39)

where € = (1,—1,1), div(X) denote the divergence of X and grad(h) the gradient vector

field of h.
Furthermore, in the case that X is a Poisson or Liouville field, if and only if h = X1 — X5+ X3
is a solution of the following differential system:

oh  0h oh
dz Oz dy (40)

Proof. 1t is evident that, in consideration of the system (28) of Theorem 2, the following
equation can be established

0X1 6X1 + BXQ + 8X2 _ O 8X1 + ('9X2 + 8X3 _ 0X3 8X1 + 8X2 — 0

ox 0z

X X X X- X X X- X- X X

8 0X1 + aayl + 8 3 + 6 3 — O —_— 8 1 + 6 ga1 —+ 8 3 —+ 882’3 —+ L 2 — aayQ == 0 (41)
X X X X X X X X X X
d2+d2_83+3320 dar1_31+dax2_’_02_03+03_0

Then the system (41) becomes

div(X) — 2 =0 div(X) = 2
div(X) + G =0 < ¢ —div(X) =, (42)
div(X) — 2 = div(X) = 2

or, equivalently

—

div(X)Z = grad(h),

which represents the equality (38).
From system (29) and (41), we obtain

div(X)+1-2:=0
div(X)+ 1+ gZ =0 < (div(X) + 1)€ = grad(h), (43)
)
div(X)+1-5:=0
from which we have (39).
Moreover, using (42) and (43), we get
oh _oh__on
oz Oxr Oy’
which implies (40). O

Example 3. Let X = 20, 4+ y0, + 20, be a vector field in a Poisson-Walker manifold equipped
with a Poisson tensor as in Corollary 2. Then X is a Poisson vector field, and the associated
function h = z — y + =z satisfies (40).
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