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Abstract. Visualizing a scene of objects in 4-D space faces several challenges.
Mere projections into 3- or less-dimensional spaces usually contain overlapping
parts, making them difficult to comprehend or study. Illuminating the scene can
enhance intuition about its “dimensionality.” Our contribution describes a geo-
metric approach to creating visualizations of 4-D hypersurfaces represented by im-
plicit algebraic equations without their parametrization. By geometric, we mean
methods using constructions of geometric objects without their approximation,
for example, by polyhedral meshes. Therefore, instead of sets of many points and
operating with meshes, we work with implicitly represented hypersurfaces, their
projections, contours, intersections, etc. We provide a general algorithm to find
shadow boundaries in an arbitrary dimension and apply it in a 4-D space. Further-
more, we design a system of polynomial equations to construct occluding contours
of algebraic surfaces in a 4-D perspective. The results of our algorithm are com-
ponents of the 3-D model of a scene image represented by polynomial equations
and inequalities prepared for plotting by standard computer algebra systems with
visualization tools. The method is presented on three 4-D scenes with gradual
complexity created in Wolfram Mathematica. Since algebraic methods preserve
many properties of the visualized shapes, they are suitable for precise mathe-
matical or scientific visualization. On the other hand, processing higher-degree
polynomials using elimination methods places greater demands on computational
time.
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1 Introduction

Visualizing shapes embedded in more-dimensional spaces faces several challenges. In many
cases, mere projections into three- or less-dimensional spaces contain overlapping parts, mak-
ing them difficult to understand. One technique that enhances intuition about the properties
of shapes and their mutual relations is to visualize shadows cast on themselves and on other
objects. Apart from the general case, choosing algebraic hypersurfaces defined by polynomials
is often convenient. These are good candidates for visualization using computational methods
of algebraic geometry and elimination theory. In this sense, instead of sets of many points
and operating with meshes, we can work with implicitly represented hypersurfaces, their pro-
jections, contours, intersections, etc. Since algebraic methods preserve many properties of the
visualized shapes, they are suitable for precise mathematical visualization. The disadvantage
of implicit representation is the computational speed when processing polynomials of higher
degrees or adding more variables.

This paper aims to improve understanding spatial properties in a four-dimensional scene
containing algebraic hypersurfaces. To do so, we join theoretical geometric construction and
algebraic computational methods and provide concrete examples of visualizations of four-
dimensional hypersurfaces and their shadows based on implicit representations.

In particular, we show visualizations of four-dimensional algebraic hypersurfaces (3-surfa-
ces), their contours (2-surfaces), terminators, and 3-D shadows cast on other 3-surfaces with
respect to a point light source.

The process consists of two main parts – construction of shadows from an arbitrary point
light source and central projection of the scene into a 3-D modeling space (usually a virtual
3-D environment in some software, AR, CR, or even a real 3-D model). First, we find the
terminator with respect to an arbitrary point light source and its projection to the 3-surface on
which the shadow is cast. Next, to construct a 4-D perspective image, a 3-surface given by a
polynomial is intersected by its first polar (3-surface) with respect to the center of projection,
and its (2-surface) contour generator is centrally projected into a modeling 3-space. While
geometrically, we describe intersections of surfaces, algebraically, we need to find a polynomial
that solves systems of polynomial equations with several variables (7 to 9 in the 4-D case).
This leads to the use of standard computational methods such as finding a Gröbner basis or
Dixon resultant. Finally, to complete the shadow, especially for 3-surfaces of degrees higher
than two, we need to find the regions in their own shade. Such regions are not algebraically
omitted in the elimination procedure; hence, we need to carry out further selection.

1.1 Related Work
The algebraic concepts, in particular, the use of Gröbner basis and Dixon resultant for finding
solutions of polynomial systems, are described in detail in [13]. A similar technique to find
the implicit representation of an occluding contour in 3-D through the Dixon resultant was
applied in [16, 17]. In our experiments, we used Wolfram Mathematica 13 implementations
of algorithms for finding Gröbner basis — WM-GB [35] and the Dixon resultant — WM-Dix
[23], and also Dixon resultant — Fer-Dix-KSY or improved Fer-Dix-EDF [18] implemented
in software Fermat 6.5 [19] by Lewis, see [20, 21].

In addition to our approach, where we start with surfaces given implicitly, a considerable
part of previous research on computational aspects of surfaces deals with implicitization from
parametric representation (e.g., [4, 21, 22, 33]). The algebraic derivation of perspective images
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of surfaces and reconstruction with respect to further applications is shown in [24].
Four-dimensional projections through parameterization or point coordinates are described

in [25, 26, 37]. A 4-D perspective projection was also used to visualize implicitly given surfaces
that arise in a complex number plane [31]. A descriptive geometry approach for constructing
4-D perspective images of a 3-sphere in 3-D from orthogonal projections is discussed in [30].
Visualizations of the 4-space, including hypersurfaces, are treated comprehensively in [1]. In
[11, 39], the authors created projections of several examples of surfaces in 4-space, examined
their properties geometrically and algebraically, and showed various applications. An illu-
mination method applied to 2-D implicit surfaces embedded in 4-space is presented in [3].
Four-dimensional lighting was used to study the shades of some mathematically interesting
3-surfaces in [10]. Interactive manipulation with four-dimensional objects based on their pro-
jections or shadows in a hyperplane is elaborated in [2, 38] and through a tetrahedral mesh
construction in [7, 8].

1.2 Contribution
Our approach emphasizes algebraic methods in four-dimensional visualization. Throughout
the paper, we work purely with implicit representations of surfaces without the necessity
of their parametrization. Visualizing shadows between 3-surfaces, we discuss their mutual
relations in the 4-space. In this way, compared to previous attempts, we offer a more com-
prehensive perception of complex 4-D scenes projected into 3-D space. We also provide a
direct method for visualization of 3-surfaces in a 4-D perspective. After all, the designs of
polynomial systems for constructing tangent cones and shadow boundaries as intersections
are general for any dimension.

1.3 Paper Organization
The rest of the article is organized as follows: we start with a 3-D example to describe the
algorithm to find the terminator of a 2-surface and its shadow cast on another 2-surface
in Section 2. Next, we generalize it into 4D and describe the 4-D perspective from a 4-
space into the modeling 3-space. Section 3 is focused on concrete examples. The 3-D scene
from the previous explanation is supplemented with technical details. Next, we consecutively
examine and comment three 4-D scenes with respect to their geometric and computational
complexity. In Section 4, we discuss the critical points of our method and propose further
research directions. Section 5 summarizes the results of this paper. The polynomials in their
full forms, code in Mathematica, computation times, and videos are provided in an online
GitHub repository referenced in the Appendices.

2 Method

2.1 Constructing Shadow of an Algebraic Hypersurface
In the first part, we examine the process of computing a shadow in arbitrary dimension,
particularly suited to 4-D scenarios but illustrated in the 3-D case.1

1The upcoming 3-D visualizations are created in Wolfram Mathematica 13 from outputs based on implicit
equations (or inequalities) formulated in variables x, y, z. Therefore, they are also usable as 3-D graphics
in an interactive environment.
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Figure 1: Initial setting of hypersurfaces S, P, and a point light source L.

2.1.1 Preliminaries

Let us have a hypersurface S (Fig. 1), i.e., an (n − 1)-surface embedded in a real n-space
(n ≥ 1) given by a polynomial equation in n variables

S : σ = 0. (1)

By introducing a point light source into the scene, our next goal is to determine the
tangents from this point to the hypersurface. To this end, we employ polar properties to-
gether with a convenient representation in homogeneous coordinates within the projectively
extended real space. The tangent points of the illuminated hypersurface then lie on its polar
hypersurface.
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0
, or vice versa. In case p′

0 = 0, the point P represents a point at infinity. Throughout the
text, σ, P ,. . . denote representations of σ, P , . . . in homogeneous coordinates.

A point P on the surface S is called singular if all the partial derivatives ∇σ vanish at
that point. Let P be a non-singular point of S (i.e., a regular point on the surface, or point
not on the surface) and assume a polynomial σP = P

T ∇σ. The surface SP : σP = 0 is called
the first polar of the point P with respect to the hypersurface S.

2.1.2 Terminator

Roughly speaking, the terminator is the boundary between the illuminated and shaded regions
of a hypersurface — a curve on a 2-surface in the 3-D case, or a 2-surface on a 3-surface in
the 4-D case. More precisely, it is the set of points of tangency of all tangent lines drawn
from the light source.
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Figure 2: (Left) The polar hypersurface SL of a hypersurface S with respect to a point light source
L and its terminator c. (Right) The tangent hypercone T to a hypersurface S through a light
source L and the shadow cast on P.

Let us have a point light source L(l1, . . . , ln) with homogeneous coordinates L(l1, . . . , ln, l0).
The terminator c (Fig. 2a, left) of the hypersurface S with respect to L is the intersection of
the first polar

SL : σL = L
T ∇σ = 0 (2)

of the hypersurface S with the hypersurface S:

c : σ = 0 ∧ σL = 0. (3)

2.1.3 Tangent Hypercones

The next step is to find an implicit representation of the tangent hypercones2 from the light
source L.

They will be used to create shadows cast on other surfaces. These are the hypercones
through the terminator c. The tangent cone T is the set of lines LQ for all points Q(q1, . . . , qn).
The line LQ can be (parametrically) represented in a general dimension with the parameter
a ∈ R as the set of points X(x1, . . . , xn) satisfying the following n equations (one equation
for each coordinate):

aL + (1 − a)Q = X. (4)
Thus, the implicit equation of T is the solution of the system:

T : σ(Q) = 0 ∧ σL(Q) = 0 ∧ aL + (1 − a)Q − X = 0, (5)

where σ(Q) and σL(Q) denote polynomials σ and σL in variables Q. By computing the
Gröbner basis or Dixon resultant of the system

{σ(Q), σL(Q), aL + (1 − a)Q − X}
2For the sake of readability, we use terms cones and hypercones instead of more proper terms conical surfaces,

conical hypersurfaces, . . . , over the paper.
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Figure 3: (Left) Roman surface: −2(x − 2)(y − 1)z + (x − 2)2(y − 1)2 + (x − 2)2z2 + (y − 1)2z2 = 0
and (right) Cross-cap:

(
(x + 1)2 + y2

)(
(x + 1)2 + z2

)
+ (x + 1)2 + y4

4 + y2z = 0, their parts
separated by the first polars, and polar boundaries projected to a plane z + 2 = 0. Without
omission of the self-shaded parts.

and eliminating variables a, q1, . . . , qn, we obtain the polynomial θ in variables x1, . . . , xn

representing the tangent hypercone

T : θ = 0 (Fig. 2b, right) (6)

2.1.4 Shadow Cast on an Algebraic Hypersurface

Now, we find the shadow cast by S on itself and on another algebraic hypersurface P given
by a polynomial equation

P : π = 0. (7)

The boundary of the shadow cast by S on itself — terminator, is the intersection of T
with S. The selection of illuminated parts is carried out in the following steps:

1. The n-space is divided by the first polar to subsets (σL > 0 or < 0), and the illuminated
part is in the same subset as the source of light L. The second part is in the shade.3

Since we cannot always divide the inner and outer parts, the selection fails with non-orientable
or self-crossing surfaces (e.g., see Fig. 3). Hence, for simplicity, we assume non self-crossing
orientable bounded hypersurfaces (or at least their terminators are bounded) (see discussion
in Section 4). For polynomials of degrees higher than two, some regions of the hypersurface
S can still be in their own shade (the tangent hypercone intersects itself), and we have to
omit them from the final selection of the illuminated parts (Figs. 4a, 4b).

2. Decompose the tangent hypercone into conical subregions (subcones) divided by the
terminator.4 Eliminate empty subcones.

3. Select the parts of the hypersurface closest to the light source in non-empty subcones.
This is carried out by constructing rays from the light source in each subcone and finding

3The method is implemented in 4-D scenes up to this point. The upcoming decomposition to subcones
seems, in most cases, computationally unfeasible.

4We use cylindrical algebraic decomposition. The results of the decomposition are distinct subregions rep-
resented by polynomial equations and inequalities (see [34] for details and implementation).
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(a)

(b)

Figure 4: (a) A 2-D situation of a Cassini oval (degree 4) and its self-shading from the point light
source. The green curve is the first polar, dividing the plane into two areas. The area that does
not contain the light source is excluded. The subcones in 2-D case are plane angles bounded
by the rays from the light source. The blue arcs represent illuminated parts, and the red arcs
are in the self-shade. ((b) left) A shadow of the torus cast on a surface without the self-shaded
parts omitted. ((b) right) Decomposition of a torus. The green curve is the terminator. The
blue region is illuminated. The red regions are in the accepted subregion divided by the first
polar but in the shade of the blue region.

the region with the intersection nearest to the source.5 The selected nearest parts are
illuminated, and the rest is in shade.

The boundary of the shadow cast by S on P is the intersection of its tangent hypercone
T with P . The final shadow contains inner points in the shade, i.e., inside the subcones
containing previously selected regions.

If a scene contains more hypersurfaces, some of them might intersect, so we would not be
able to distinguish their order with respect to the light source. In such cases, the selection
algorithm can be further generalized for a hypersurface Z as a composition of hypersurfaces

5In our Mathematica implementation, this is carried out by finding points inside the subregions using the
function ‘FindInstance‘. Subsequently, ‘Solve‘ or ‘NSolve‘ (for numerical approximations) is used to deter-
mine the intersections of rays with other subregions. The remaining steps consist of sorting, for each ray,
the intersection closest to the light source.
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S1, . . . , Sk, k ≥ 1:
Z : σ1 · · · σk = 0. (8)

However, this generally works when the light source is outside (noting that the notion of
“outside” is not yet defined) all composed hypersurfaces. Otherwise, the selection of the
illuminated subsets divided by the first polars must be carried out for some factors separately.
For example, in Fig. 5, we can define a surface Z as the composition of a sphere, ellipsoid,
and torus. The unbounded hyperbolic paraboloid would be treated separately.

Figure 5: The final visualization of a scene with a sphere, torus, and ellipsoid casting shadows on
themselves and on a hyperbolic paraboloid.

2.2 The Principle of a 4-D Perspective
Figure 6 shows a 2-D view of the correspondence between the coordinates of a real point
P (px, py, pz, pw) and its centrally projected image P ν(pν

x, pν
y , pν

w) into the modeling 3-space
ν(x, y, w) (an analogy to a picture plane in a 3-D perspective). Assume an orthogonal coor-
dinate system (x, y, z, w) placed in the point O in ν, with the z-axis perpendicular to ν and
the center of projection C in the oriented perspective distance d from ν such that CO ⊥ ν.
Observing the homothety, the coordinates of the 4-D perspective image P ν of P ̸= C are

(pν
x, pν

y , pν
w) =

(
d

px

d − pz

, d
py

d − pz

, d
pw

d − pz

)
(9)

(in the case of pz = 0 the coordinates do not change; if pz = d the image is improper).
To find the implicit representation of the 4-D perspective image (3-D occluding contour)

of an algebraic surface
S : σ = 0 (10)

(in variables x, y, z, w), we use a similar idea as in constructing shadows. Let

SC : σC = C
T ∇σ = 0, (11)

in homogeneous coordinates be the first polar of S with respect to C and

σC = 0 (12)
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Figure 6: The principle of a 4-D perspective projection from a center C onto a modeling 3-space
ν(x, y, w). 2-D orthogonal projection view on the 4-D perspective shows the homothety between
the pre-image in a 4-space and its perspective image in the modeling 3-space from the center
of projection.

its dehomogenized equation. Since we are projecting to a 3-space instead of an arbitrary hy-
persurface, we can conveniently use the derived rules of the 4-D perspective mapping (Eq. (9)).

Let Q(qx, qy, qz, qw) be a point on a contour generator

cC : σ = 0 ∧ σC = 0. (13)

Elimination of qx, qy, qz, and qw from the system of polynomials{
σ(Q), σC(Q), x − d

qx

d − qz

, y − d
qy

d − qz

, w − d
qw

d − qz

}

leads to a polynomial σν in (x, y, w) such that its zero set represents the 4-D perspective
image Sν of the surface S.

Assuming a point light source L, the terminator cν is, in this case, a 2-surface projected
via the system of polynomials{

σ(Q), σL(Q), x − d
qx

d − qz

, y − d
qy

d − qz

, w − d
qw

d − qz

}
,

similarly as above.
For the sake of better understanding, we also visualize the tangent hypercones T of S from

L, when possible (cf. Subsections 3.2.4 and 3.2.5). The tangent hypercones T are 3-surfaces
given by Eq. (6), and the contours of their images T ν are created by the same procedure as
images Sν of S.

The final shadows are three-dimensional regions bounded by 2-surfaces in the 4-space.
Conveniently, in a 4-D perspective, we can find implicit equations of the 2-surface boundaries
in the modeling 3-space. To do so, we need to find the zero set of the system of polynomials{

σ(Q), θ(Q), x − d
qx

d − qz

, y − d
qy

d − qz

, w − d
qw

d − qz

}
,

representing the perspective image of the intersection of the surface S and the tangent cone
T . The last step is to select the regions according to Section 2.1.4. In a 4-D perspective, we
only highlight shadow boundaries so that we can see through 3-D images.
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3 Experimental Results and Technical Details

In this section, we review several examples and comment on technical details.

3.1 3-D Scene
3.1.1 “Implicit Bakery”, Fig. 5

See the text file with equations and video in Attachment 1.
The 3-D scenario from Section 2 shows a surface Z composed of three implicitly given

factor surfaces: sphere S1, torus S2, and ellipsoid S3

S1 : (x − 1)2 + (y + 4)2 + (z − 5)2 − 4 = 0, (14)

S2 :
(
(x − 1)2 + (y − 1)2 + (z − 2)2 + 3

)2
− 16(x − 1)2 + 16(y − 1)2 = 0, (15)

S3 : 4(x − 3)2 + (y + 1)2 + 4(z + 2)2 − 12 = 0. (16)

We describe constructions of shadows cast between them and their shadows cast on a
hyperbolic paraboloid P

P : 2(y + 3)2 − 2(x − 5)2 − 25(z + 7) = 0 (17)

from the light source L(−1, −2, 10).
The polynomial of Z has degree eight, but we treat its decomposition into factors (factor

surfaces S1, S2, S3). In this case, the factor surface of the highest degree, four, is the torus.
A terminator line of each “factor surface” is its intersection with the first polar with

respect to L. Explicitly, terminators are the four sets of points that satisfy the following pairs
of equations:

factor surface first polar
S1: Eq. (14) ∧ 19 + 2x − 2y − 5z = 0 (18)

S2: Eq. (15) ∧

128 − 30x + 12x2 + 2x3 − 29y − 10xy
+3x2y + 10y2 + 2xy2 + 3y3 − 104z + 8xz

−8x2z + 4yz − 8y2z + 40z2 + 2xz2 + 3yz2

−8z3 = 0

(19)

S3: Eq. (16) ∧ 16x + y − 48z − 131 = 0 (20)
P : Eq. (17) ∧ 24x + 4y − 25z − 708 = 0 (21)

If a surface has a degree n, its first polar has a degree (n − 1), and the degree of the
terminator line is due to Bézout’s theorem n(n − 1). Therefore, the terminator line of the
entire scene Z would have the degree 8 · 7 = 56. However, after factorization, the factor
surfaces will have degrees 2 for the quadrics and 12 for the torus. The same holds for degrees
of tangent cones [5].

Next, we omit the shaded subsets divided by the first polar. In this case, the points on
illuminated regions have non-negative values in the equations of the first polars.
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Figure 7: A selection of the regions contained in subcones. Each picture shows a different subcone
of the scene Z consisting of a sphere S1, torus S2, and ellipsoid S3. The blue regions are
illuminated, the green regions are excluded by the first polars, and the red regions are in the
shade of the blue regions with a shorter distance to the light source. The top left figure shows
the complement of the union of all subcones in the 3-space; hence it distinguishes the shadow
of the scene on the hyperbolic paraboloid P. The rest of the empty regions are not shown.

Tangent cones are also treated separately for each factor surface. For example, for the
torus S2, we have the following system of polynomial equations:

Eq. (15),
Eq. (19),

aq1 − (a − 1) − x = 0,

aq2 − 2(a − 1) − y = 0,

aq3 + 10(1 − a) − z = 0.

(22)

Eliminating q1, q2, q3, and a leads to an 8th-degree polynomial of the tangent cone. Similarly,
we find the rest of the tangent cones of the surfaces in the scene.

Next, we decompose the regions bounded by the system of tangent cones into all subcones
and obtain five nonempty and three empty intersecting regions in this case (Fig. 7). As a result
of cylindrical algebraic decomposition, the subcones are represented by implicit equations and
inequalities.

In the last step, we trace subsets separated by the first polars over each subcone and
choose the region nearest to the light source.

3.2 4-D Scenes
3.2.1 Understanding the 4-D Visualizations

Let us give a few remarks on how to understand the 4-D visualizations below:
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• The visualizations are 3-D models (occluding contours), and the figures in the paper
are only 2-D images of the 3-D scenes.

• Standing in a gallery in front of an actual 2-D painting in the 3-D linear perspective,
we can find the position of our eye such that the picture makes an illusion of 3-D space.
This is unreachable in the 4-D perspective because we cannot leave the 3-D space of
the 3-D image (of a 4-D object).

• One could think of observing the picture from the inside, i.e., we can reach any location
in the 3-D static image. On the contrary, the change of the 4-D eye/camera position
would change the contours of the objects.

• For better orientation, we always attach an image of a reference hypercube with the
center in (0, 0, 0, 0) (Fig. 8).

• The default value of the oriented eye distance in figures is d = −6, and its coordinates
are (0, 0, d, 0).

• To understand the (3-D) spatial properties of the modeling 3-space, we keep the software
lighting properties of the 3-D graphics.

3.2.2 Technical Notes on the Implementation of the 4-D Perspective

Let us reflect on some pros and cons of the 4-D perspective:
+ Intersections of 3-surfaces in a 4-space are 2-surfaces; hence, we can visualize them

using only one implicit equation in the modeling 3-space. The equation can be obtained
directly from the corresponding polynomial system.

− 4-D perspective images should include “inner points” of hypersurfaces, but we only
show their occluding contours. Otherwise, we would not see images that overlap in
the modeling 3-space. An analogous problem occurs in 3-D perspective, where we can
imagine a smaller object in front of a bigger object, so the perspective image of the
smaller object would lie inside the image of the bigger object. Although we can easily
decompose figures in the picture plane, we would not see much in the modeling 3-
space. The understanding becomes very unclear with non-closed surfaces, where parts
of hypersurfaces might seem to go through their contours (see Subsection 3.2.4).

− It is important to note that in 4-D, we only visualize contours of surfaces and their
shadows, not their interior. The algorithm used to identify and fill unshaded and shaded
regions of surfaces within tangent cones has been successfully applied in 3-D scenes.
However, it encounters technical challenges in 4-D. In our experiments, the computation
time required to locate points on the hypersurface (defined by a polynomial equation in
four variables) and within the subcone (described by a system of polynomial inequalities
in four variables) exceeded reasonable limits. Whether a parametric representation
might be more suitable for this purpose remains an open question.

3.2.3 4-D Scene: “HyperQuadrics” Fig. 10b

See the text file with equations, code, and video in Attachment 2.
In the first 4-D case (Fig. 9), we have a 3-ellipsoid

S : (x + 2)2

4 + (y + 1)2

2 + z2 + (w − 4)2 − 1 = 0 (23)

casting a shadow on a 3-sphere

P : (x + 5)2 + (y + 6)2 + (z − 2)2 + (w + 3)2 − 36 = 0 (24)
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Figure 8: A reference hypercube in the 4-D perspective. The colors of the arrows mark the directions
of the coordinate axes: Green → x, Blue → y, Purple → z, Red → w.

Figure 9: A 4-D scene with a 3-sphere P and a 3-ellipsoid S in a 4-D perspective.

from the light source L(1, 1, −1.5, 5).
In this scene, the given 3-surfaces and their tangent hypercones have degrees 2. The

highest degree, 4, has the two-dimensional boundary of the shadow cast by the 3-ellipsoid
on the 3-sphere. The occluding contours Sν and Pν of S and P are ellipsoids, and the same
holds for their terminator 2-surfaces cS , cP and their images cν

S , cν
P .

In the case of hyperquadrics, we can easily deduce the transition of the visible illuminated
parts with respect to the given 4-D perspective (Fig. 10a). The first polar of the 3-sphere P
with respect to the perspective center C is a 3-space, dividing the 4-space into two half-4-
spaces. Thus, we have the following three cases:

1. The shape of the illuminated part is in a special position when the light source L is in
the polar 3-space (with respect to C), i.e., the terminator 2-surface of the 3-sphere with
respect to L degenerates to an ellipse including inner points.

2. When L is in the same half-4-space as the center C, the visible illuminated part includes
the inner points of the terminator 2-surface.

3. If the light source L and the center C lie in the opposite half-4-spaces, we must exclude
the inner points of the terminator 2-surface.

Visual interpretation: Let us visually examine Fig. 10b. First, we should remind ourselves
that each surface in the figure represents only the boundary of a three-dimensional volume,
which itself is a projection of a (hyper-)surface in four-dimensional space. Furthermore, we
are no longer observers viewing the scene in 3-D perspective; instead, we are situated within
the 3-D model depicted in the figure. Hence, we cannot simply stand at a single point in a
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(a)

(b)

Figure 10: (a) Transitions of the illuminated part of the 3-sphere P from the point light source
L(1, 1, zL, 5) moving in the z-direction: (left) zL = 2.5, (center) zL = 7.5, (right) zL = 12.5.
The point L lies in the first polar 3-space for zL = 9.5. The illuminated part is bounded by
the occluding contours of the 3-sphere and terminator 2-surface with respect to L. (b) A 4-D
scene with the shadow of a 3-ellipsoid S on a 3-sphere.

gallery to see the objects from the figure appearing as real. However, within the 3-D image,
we can move to any location and, therefore, see the interiors of objects.

In this case, the light source L is closer to the 3-ellipsoid S, and we can easily see its
green illuminated part. The boundary of the illuminated region on the 3-sphere P is depicted
in blue. The reader can imagine a 3-D analogy involving a light source in front of a sphere:
the illuminated spherical disk appears as an elliptical disk within the elliptical contour of the
sphere.

Returning to the figure, we observe a self-intersecting surface within the blue quadric. This
surface represents the boundary of the shadow cast by the 3-ellipsoid onto the 3-sphere. In
this case, the self-intersection of the shadow indicates that, from the 4-D viewer’s perspective,
the shadow overlaps itself. In a 3-D analogy, we can imagine one sphere casting a shadow onto
another, where the shadow falls partly on the far side of the second sphere and is therefore
partially hidden from our point of view. If we visualize only the shadow, including its hidden
parts, it may appear to overlap itself.

We encourage the reader to explore this situation further in the video referenced in At-
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(a) (b)

Figure 11: (a) A 4-D scene with a 3-sphere S and a 3-surface P of degree 3 in a 4-D perspective.
(b) An illumination of a 3-sphere S and its shadow on a 3-surface P of degree 3 from a point
light source L in a 4-D perspective. The figure contains the excess intersection of the tangent
cone (not visualized) of P, and the self-shaded region of P is not excluded from the illuminated
part.

tachment 2, which shows a light source moving in the z-direction.

3.2.4 4-D Scene: “Full HyperMoon Between HyperMountain”, Fig. 11b

See the text file with equations and code in Attachment 3.
The second 4-D scene (Fig. 11a) shows a more complicated situation. Let us have a

3-sphere
S : w2 + (x + 1)2 + y2 + (z + 1)2 − 1

4 = 0 (25)

casting a shadow on a 3-surface of degree 3

P : (x − 1)(x + 2)x + y2 + z2 + w = 0 (26)

from the light source L(5, 1, 1, 2).
The contours of the occlusion are 2-surfaces of degree 2 for Sν and degree 6 for Pν . In

this case, it is hard to perceive the 4-D spatial properties of the scene from the contours. In
particular, we cannot intuitively grasp the unbounded 3-surface P .

Let us bring more light to this scene. After finding the terminator 2-surfaces and tangent
hypercones6 to the 3-surfaces through the vertex L, we can create shadows between the 3-
surfaces. The 3-sphere casts a shadow on P . The contour of the intersection of the tangent
hypercone to S with P is a 2-surface of degree 6. It consists of two disjoint parts, and the
part closer to L is omitted in Fig. 11b. The image of the 2-surface boundary of the shadow
of P cast on S is given by a polynomial of degree 14 and the contour of the shadow of P on
itself is a surface of degree 18.

6The computation of the projection of the tangent hypercone to P was terminated after an excessively long
runtime (5–10h).
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Visual interpretation: The power of illumination is evident when comparing Figs. 11a
and 11b. In the figure without illumination, we cannot make any statement about the relative
positions of S, P , and L. However, adding illumination clarifies the scene, revealing both the
self-shaded regions and the shadow of S cast onto P . Again, we must keep in mind that we,
as three-dimensional beings, are able to move freely within the 3-D scene. However, from the
perspective of a 4-D viewer, it is possible to see the 3-D shadows inside the surface P .

3.2.5 4-D Scene: “HyperRing”, Fig. 13a

See the text file with equations, code, and video in Attachment 4.
The last 3-surface (Fig. 11a) is given by a polynomial of degree 4:

S : (x − 1)2 + ((w − 2)2 + y2 − 4)2 + z2 − 1 = 0. (27)

The first polar SL with respect to the light source L(0, 2, −2, 4) is:

SL : 4w3 − 3x + x2 + 4w2(−8 + y) − 16y2 + 4y3 + 4w(16 − 4y + y2) − 2z + z2 = 0. (28)

Let us have a 3-space
P : w + 2 = 0. (29)

The occluding contour Sν is after elimination given by a polynomial of degree eight in 72 terms
(in variables x, y, z). After elimination, the terminator surface cν is given by a polynomial
of degree eight in 146 terms (in variables x, y, z). The tangent cone T generated by the
terminator c (intersection of S and SL) is after elimination given by a polynomial of degree
eight in 483 terms (in variables x, y, z, w). The occluding contour of the shadow of S on P
is a 2-surface of degree eight (Fig. 13a).

Visual interpretation: In this case (Fig. 13a), the surface S casts a shadow onto the
“ground 3-space” P . The figure represents a scene analogous to Fig. 3. We can see the
boundary of the surface S, the boundary of its illuminated part cL, and the projections of
this boundary onto P . A rotation of the 3-D model can be seen in the video referenced in
Attachment 4. A closer look at the detail of the terminator in Fig. 13b reveals that the
contour of the terminator cL intersects itself for certain positions of the light source L. From
the 4-D perspective, the terminators might overlap, self-intersect, or even twist.

However, based on the sequence of terminator contours — where intersections appear and
disappear in pairs — we assume that the terminator overlaps itself in the 4-D perspective, in
a manner similar to the situation described in Subection 3.2.3 (Fig. 10b). Nevertheless, this
intuitive visual interpretation still remains to be algebraically validated.

4 Discussion and Future Work

Throughout the paper, we tried to bring the “most universal” solution to visualizing shadows
of algebraic hypersurfaces. In this sense, the method presented in Subsection 2.1 works in a
general dimension; the key point is to construct tangent cones with Eq. (5). Illumination of
a scene, both in 3-D and 4-D, is a complex process, and we should always consider the prop-
erties and positions of objects in the scene. The critical features of objects in our approach
are the boundedness, orientability, and degree of a hypersurface and its terminator. We
have made a pragmatic decision in Section 2.1.4 to restrict our analysis to non-intersecting,
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Figure 12: A surface S of degree 4 in a 4-D perspective.

(a)

(b)

Figure 13: (a) The shadow cast by a 3-surface S on a 3-space P. Since the terminator overlaps itself,
we cannot properly distinguish the illuminated visible part of S. (b) A detail of the contours
of the surface S and its terminator cL when illuminated by a point light source L moving away
from the perspective center in the z-direction. In the leftmost figure, the coordinates of L are
(0, 2, −2, 4). The z-coordinates of L in the sequence are 0, 2, 6, 21, and 30.

orientable, and bounded hypersurfaces. The assumptions of non-intersection and orientabil-
ity are necessary, since without them it is impossible to consistently distinguish the interior
from the exterior of an object. This ambiguity complicates the selection of illuminated re-
gions and, in the 3-D case, corresponds to the classical problem of sidedness. In the 4-D
setting, however, we construct only contours, so sidedness does not arise. These restrictions
could, in principle, be relaxed by employing more computationally demanding algorithms. In
particular, applying cylindrical algebraic decomposition to the hypersurface before polarity
condition would eliminate singularities and yield locally orientable regions, after which a con-
sistent interior–exterior distinction could be established. The assumption of boundedness may
appear overly restrictive, but it prevents complications arising from terminators at infinity,
which would again obscure the notion of interior. We foresee a possible theoretical solution
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in projectivization via homogeneous coordinates, although this would require introducing an
additional variable into the tangent-hypercone computation. This, in turn, would increase
the computational cost of the elimination methods. Additionally, the position of the point
light source and the projection center is crucial to define the inside and outside of a hypersur-
face or its part and, consequently, its visibility. Elimination methods such as Gröbner basis
assume that coefficients lie in a field (in our case, the rationals). Hence, if we wish to use an
arbitrary floating-point representation as a light source, we must first rationalize it using the
standard procedures implemented in computer algebra systems. Otherwise, the coefficients
of the polynomials describing the polars may contain non-rational and inexact values, which
can lead to incorrect results. The degree of a hypersurface is another key factor influencing
computational complexity. Evidently, the appropriate setting and the choice of elimination
method (Gröbner basis or the Dixon resultant) plays a crucial role in the computation time
for higher-degree polynomial systems. The computational complexity also depends on the
form of the polynomial, i.e., transformations of the hypersurface. In the worst case, the
complexity of Gröbner basis computation is doubly exponential in the degree of the input
polynomials (see, e.g., [9]), while the complexity of the Dixon resultant is factorial in the
number of variables and polynomial in the degrees (see [29]). Nevertheless, methods for re-
ducing the complexity of elimination-based computations remain an active area of research
and are widely implemented in modern computer algebra systems. Since our visualizations
were created in Mathematica, we restricted ourselves to its implementation of the Buchberger
and Gröbner walk algorithms for Gröbner basis computation (last updated in Mathematica
in 2007), which typically perform well for low-degree polynomials over the rationals. For
future work, it might be interesting to compare these methods with those of other computer
algebra systems, such as Maple or Magma, using implementations of Faugère’s F4 or F5 al-
gorithms on polynomial systems arising from illumination applications (see, e.g., [28]). In
summary, these methods are not suitable for real-time manipulation, but they are effective
when algebraic precision is required in low-degree polynomial scenarios, such as ours. The
computations with hypersurfaces of degree four and higher in 4-D scenarios ly failed led to
too long computation times after minor adjustments in our experiments. Furthermore, the
diversion between dimensions became important in the final visualizations of the inner points
of shadows. While in 3-D, we could cover the regions with a satisfying number of points, our
solution in 4-D was defeated by time to solve a system of equations and inequalities in four
variables. We dropped this case because filling the 3-dimensional volumes would not clarify
our visualizations in any way.

The question of perceiving four- and more-dimensional spaces is very challenging. We
only added one more “perspective” open for further investigation. One of the possibilities
is to study the properties of 3-surfaces through their projections. Since we developed our
method on implicit surfaces, it is convenient for mathematical visualization. Second, we can
pursue more “natural” illumination details, including 4-dimensional light intensity, specular-
ity, reflections, etc. In our cases, polynomial systems that created tangent cones and occluding
contours contained first-degree polynomials. Hence, there might be possibilities for improving
the algorithms tailored to our situation and consequently reducing the computation time.

Although our exploration focuses on seemingly abstract higher-dimensional objects, it re-
mains closely connected to the study of natural phenomena and real-world applications. Such
problems typically emerge when systems involve multiple variables. For example, the visual
aspects of higher-dimensional surfaces in kinematics are emphasized in [12, 27]. In physics,
projections of 3- and 4-dimensional surfaces and their topological features are employed to vi-
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sualize and gain intuition about the phase spaces of dynamical systems [14, 15, 32]. A natural
way to extend the dimension is to introduce time as a geometric property. This approach is
demonstrated in [6], where numerical simulations yield visualizations of moving 3-D geome-
tries. Likewise, interpreting a 4-D scene through illumination may aid in motion planning
with time-dependent obstacles, where the objective is to design feasible paths [36]. In many
such scenarios, a crucial first step is to identify at least one valid solution, which can then
be refined numerically. The existence of connecting paths and the connectivity of workspace
components are of utmost importance—and, in principle, accessible to visual inspection. Last
but not least, illuminated four-dimensional scenes might be used to study, understand, and
train four-dimensional spatial ability (if possible).

5 Conclusion

This paper focuses on a four-dimensional visualization based on implicit representations of
hypersurfaces. We have described a general method to find shadow boundaries in an arbitrary
dimension and applied it in a three- and four-dimensional space. Furthermore, we have
designed a system of polynomial equations to construct occluding contours of hypersurfaces
in a 4-D perspective. The method was presented on a composed 3-D scene and three 4-D
cases with gradual complexity. Our experimental journey was extensively commented on
throughout the article.
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Appendices

The attachments are available at GitHub repository:
https://github.com/mbzamboj/4-D-shadows/tree/50fde9cb27eef46849a67fb82b6c99
2c0b03b491/v2

Attachment 1

• Equations: attachment01-3D-bakery.rtf
• Video: https://youtu.be/tKqZn7tzAQE

Attachment 2

• Equations: attachment02-4D-hyperquadrics.rtf
• Code: code02-4D-HyperQuadrics-v2.nb
• Video: https://youtu.be/01kYwSblPEY

https://github.com/mbzamboj/4-D-shadows/tree/50fde9cb27eef46849a67fb82b6c992c0b03b491/v2
https://github.com/mbzamboj/4-D-shadows/tree/50fde9cb27eef46849a67fb82b6c992c0b03b491/v2
https://youtu.be/tKqZn7tzAQE
https://youtu.be/01kYwSblPEY
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Attachment 3

• Equations: attachment03-4D-hypermoon.rtf
• Code: code03-4D-HyperMoon-v2.nb

Attachment 4

• Equations: attachment04-4D-hyperring.rtf
• Code: code04-4D-HyperRing-v2.nb
• Video: https://youtu.be/6ZdwJ-P18Gw

Attachment 5

Table 1 (Computation times: 4-D Scene: “Full HyperMoon Between HyperMountains” (Sub-
section 3.2.4))

Table 2 (Computation times: 4-D Scene: “HyperRing” (Subsection 3.2.5))

Notation:
deg – degrees of polynomials
WM-GB – Wolfram Mathematica implementation of the function GroebnerBasis with the
attributes:

LO: default lexicographic monomial order
MO (BEO): MonomialOrder → EliminationOrder, Method → ”Buchberger”
MO (EE): MonomialOrder → EliminationOrder, Method → {”GroebnerWalk”,
”EarlyElimination→True”}
MO (GWEE): MonomialOrder → EliminationOrder, Method → {”GroebnerWalk”,
”EarlyElimination→True”}

WM-Dix – function DixonResultant in Wolfram Mathematica
Fer-Dix-EDF – Dixon resultant implementation in Fermat
T – terminated after 5 hours or more
F – failed

Table 1: Computation times: 4-D Scene: “Full HyperMoon Between HyperMountains” (Subsec-
tion 3.2.4)

object deg WM-GB LO WM-GB MO WM-Dix Fer-Dix-EDF
occ. cont. Sν , Pν 3, 6 0.03s 0.01s (EO) 0.14s —
terminators cν

S , cν
P 2, 6 0.26s 0.01s (EO) 0.19s —

tang. hypcon. τS , τP 2, 6 0.1s 0.03s (GWEE) F —
shadow S → P 6 25s 0.03s (GWEE) 0.33s —
shadow P → P 18 T F 11s 26s
shadow P → S 14 T 0.24s (BEO) 15966s 79s

https://youtu.be/6ZdwJ-P18Gw
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Table 2: Computation times: 4-D Scene: “HyperRing” (Subsection 3.2.5)
object deg WM-GB LO WM-GB MO WM-Dix Fer-Dix-EDF
occ. cont. Sν 8 1.2s 0.02s (EO) 0.27s —
terminator cν

S 8 516s 0.06s (EO) 0.40s —
tang. hypcon. T 8 2701s 0.20s (EO) 75s 3.08s
shadow S → P 8 0.06s 0.05s (BEO) 8.6s —
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220 M. Zamboj, J. Řada: 3-D Shadows of 4-D Algebraic Hypersurfaces in a 4-D Perspective

[13] D. Kapur and Y. N. Lakshman: Elimination methods: An introduction. In B. R.
Donald, D. Kapur, and J. L. Mundy, eds., Symbolic and Numerical Computation
for Artificial Intelligence, 45–89. Academic Press, 1992.

[14] M. Katsanikas and P. A. Patsis: The structure of invariant tori in a
3D galactic potential. Int. J. Bifurcation Chaos 21(2), 467–496, 2011. doi:
10.1142/S0218127411028520.

[15] M. Katsanikas, P. A. Patsis, and A. D. Pinotsis: Chains of rotational tori and
filamentary structures close to high multiplicity periodic orbits in a 3D galactic potential.
Int. J. Bifurcation Chaos 21(8), 2331–2342, 2011. doi: 10.1142/S0218127411029823.

[16] N. Khan: Silhouette-based 2D–3D pose estimation using implicit algebraic surfaces.
Master’s thesis, Saarland University, 2007.

[17] N. Khan, B. Rosenhahn, R. H. Lewis, and J. Weickert: Silhouette-based 2D–3D
Pose Estimation Using Algebraic Surfaces, 2014. https://www.researchgate.net/pub
lication/255455984_Silhouette-based_2D-3D_Pose_Estimation_Using_Algebrai
c_Surfaces. Accessed November 12, 2025.

[18] R. H. Lewis: Example of Dixon-EDF, 2008. http://home.bway.net/lewis/dixon.
Accessed November 12, 2025.

[19] R. H. Lewis: Fermat computer algebra system. http://home.bway.net/lewis/, 2008.
http://home.bway.net/lewis/. Accessed November 12, 2025.

[20] R. H. Lewis: Heuristics to accelerate the Dixon resultant. Math. Comput. Simul. 77(4),
400–407, 2008. doi: 10.1016/j.matcom.2007.04.007.

[21] R. H. Lewis: Resultants, implicit parameterizations, and intersections of surfaces. In
J. H. Davenport, M. Kauers, G. Labahn, and J. Urban, eds., Mathematical
Software – ICMS 2018, 310–318. Springer, Cham, 2018.

[22] Q. Li, S. Zhang, and X. Ye: Algebraic algorithms for computing intersections between
torus and natural quadrics. Comput.-Aided Des. Appl. 1(1–4), 459–467, 2004. doi:
10.1080/16864360.2004.10738288.

[23] D. Lichtblau: DixonResultant, Wolfram Function Repository, version 1.1.0, 2023.
https://resources.wolframcloud.com/FunctionRepository/resources/DixonRes
ultant/. Accessed November 12, 2025.

[24] T. Liu: Geometric, kinematic and radiometric aspects of image-based measurements.
In 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference.
AIAA, Reston, Virginia, 2002. doi: 10.2514/6.2002-3239.

[25] T. Miwa, Y. Sakai, and S. Hashimoto: Four-dimensional viewing direction con-
trol by principal vanishing points operation and its application to four-dimensional fly-
through experience. In Proc. 25th Australas. Comput.-Human Interaction Conf.: Aug-
mentation, Application, Innovation, Collaboration, 95–104. ACM, New York, 2013. doi:
10.1145/2541016.2541029.

https://dx.doi.org/10.1142/S0218127411028520
https://dx.doi.org/10.1142/S0218127411028520
https://dx.doi.org/10.1142/S0218127411029823
https://www.researchgate.net/publication/255455984_Silhouette-based_2D-3D_Pose_Estimation_Using_Algebraic_Surfaces
https://www.researchgate.net/publication/255455984_Silhouette-based_2D-3D_Pose_Estimation_Using_Algebraic_Surfaces
https://www.researchgate.net/publication/255455984_Silhouette-based_2D-3D_Pose_Estimation_Using_Algebraic_Surfaces
http://home.bway.net/lewis/dixon
http://home.bway.net/lewis/
http://home.bway.net/lewis/
https://dx.doi.org/10.1016/j.matcom.2007.04.007
https://dx.doi.org/10.1080/16864360.2004.10738288
https://dx.doi.org/10.1080/16864360.2004.10738288
https://resources.wolframcloud.com/FunctionRepository/resources/DixonResultant/
https://resources.wolframcloud.com/FunctionRepository/resources/DixonResultant/
https://dx.doi.org/10.2514/6.2002-3239
https://dx.doi.org/10.1145/2541016.2541029
https://dx.doi.org/10.1145/2541016.2541029
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