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1. Graded Algebras

Let K denote the base field. K is assumed to be of characteristic zero.
In the examples K is the field of real or complex numbers.

Let Z denote the additive group of the integers. A Z-graded linear space
is a K -linear space V and a family of subspaces Vk , (k = 0,±1,±2, . . .) such
that

V =
⊕

k∈Z
Vk.

A Z-graded associative algebra is an associative K -algebra A , which is Z -graded
as a K -linear space

A =
⊕

k∈Z
Ak,

such that
AkAl ⊆ Ak+`, (k, l ∈ Z).

The elements of Ak are called homogeneous of degree k .

Example 1� . Let V =
⊕

k∈Z Vk be a Z -graded linear space. A linear operator
A:Vk −→ Vk+l (k ∈ Z) is called homogeneous of degree ` . If L`(V ) denotes the
space of linear operators of degree ` , then

L′(V ) =
⊕

k∈Z
Lk(V )

is a Z -graded associative algebra with unit. If V is finite dimensional we have

L(V ) =
⊕

k∈Z
Lk(V ).

Assume V to be finite dimensional and Vk = {0} , (k = −1,±2,±3, . . .),
V = V0 ⊕ V1.

Then the following relations hold

L0(V ) = L(V0)⊕ L(V1),

L−1(V ) = L(V1, V0),

L1(V ) = L(V0, V1), and

Lk(V ) = {0}, (k = ±2,±3, . . .).
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Chosing a basis of homogeneous elements in V we may represent the elements
of L0(V ) by diagonal block matrices

(1)

(
A0 0
0 A1

)
.

The elements of L−1(V ) and L1(V ) become represented by the block matrices

(2)

(
0 B1

0 0

)
and

(
0 0
B0 0

)
, respectively.

Example 2� . Let Λ(n) = Λ(y1, . . . , yn) denote the exterior or Grassmann
algebra with n generators, which are assumed to be homogeneous of degree 1 .
Put

Λ0 = K,

Λ1 = span{y1, . . . , yn},
Λk = span{yi1 · · · yik : 1 ≤ i1 < · · · < ik ≤ n}, (k = 2, . . . , n− 1),

Λn = span{y1 · · · yn},
Λ` = {0}, if ` = −1,−2, . . . or ` = n+ 1, n+ 2, . . . ,

then we have
Λ(n) = Λ0 ⊕ Λ1 ⊕ · · · ⊕ Λn,

and Λ(n) becomes a Z -graded associative algebra with unit. The Z -graded
algebra Λ(n) is (graded) commutative, i.e., for homogeneous elements ak ∈ Λk ,
a` ∈ Λ` the following equation holds:

a`ak = (−1)k`aka`.

Example 3� . Let A =
⊕

k∈ZAk be a Z -graded associative algebra with unit.
We define a new product by

[ak, a`] = aka` − (−1)k`a`ak, ak ∈ Ak.

With respect to that multiplication A becomes a Z -graded Lie algebra

AL =
⊕

k∈Z
Ak.

We have

(3) [a`, ak] = −(−1)k`[ak, a`],

and the modified Jacobi identity

(4) (−1)km[ak, [a`, am]] + (−1)`k[a`[am, ak]] + (−1)m`[am[ak, a`]] = 0.
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A Z -graded Lie algebra is a Z -graded linear space L =
⊕

k∈Z Lk
with a bracket multiplication compatible with the grading [Lk,L`] ⊆ Lk+` and
satisfying (3) and (4) for homogeneous elements.

Let Z2 = Z/(2) = {0, 1} denote the additive group of two elements. A
Z2 -graded linear space is a K -linear space V with two distinguished subspaces
V0 and V1 such that V = V0 ⊕ V1 holds. The elements of V0 are called even ,
those of V1 are called odd. A homogeneous element is either even or odd.

Every Z -graded linear space admits a canonical Z2 -gradation by V0 =⊕
k∈Z V2k , V1 =

⊕
k∈Z V2k+1 .

A Z2 -graded associative algebra or an associative superalgebra is a K -
algebra, which is Z2 -graded as a linear space

A = A0 ⊕A1,

such that the multiplication satisfies

A0A0 ⊆ A0, A1A1 ⊆ A0,

A0A1 ⊆ A1, A1A0 ⊆ A1.

Every Z -graded algebra A admits a canonical Z2 -gradation by

A0 =
⊕

k∈Z
A2k, A1 =

⊕

k∈Z
A2k+1.

Example 4� . Let V = V0 ⊕ V1 denote a Z2 -graded linear space. A linear
operator A on V is called paritiy preserving or even, if it satisfies A:V0 → V0

and A:V1 → V1 . The operator A is called parity reversing or odd if A:V0 → V1

and A:V1 → V0 . By L0(V ) and L1(V ) we denote the linear space of even and
odd linear operators on V , respectively.

L′(V ) = L0(V )⊕ L1(V )

is a Z2 -graded associative algebra with unit. If V is finite dimensional then

L(V ) = L0(V )⊕ L1(V )

holds and
L0(V ) ∼= L(V0)⊕ L(V1),

L1
∼= L(V0, V1)⊕ L(V1, V0).

Choosing a basis of homogeneous elements in V , the elements of L0(V )
are represented by diagonal block matrices as in (1), while the elements of L1(V )
are represented by block matrices of the following type

(
0 B1

B0 0

)
.

Example 5� . The Grassmann algebra Λ(n) admits a canonical Z2 -grading
with respect to a chosen system of generators Λ(n) = Λ0 ⊕ Λ1 with Λ0 =
Λ0 ⊕ Λ2 ⊕ · · ·, Λ1 = Λ1 ⊕ Λ3 ⊕ · · · Now Λ(n) is a Z2 -graded associative
and (graded) commutative algebra with unit or, equivalently, an associative,
commutative superalgebra with unit.
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Example 6� . Let A = A0 ⊕A1 denote a Z2 -graded associative algebra with
unit. We define brackets by [a, b] = ab− (−1)|a||b|ba for homogeneous elements
a, b ∈ A . Define the parity |a| as follows:

|a| =
{

0 if a ∈ A0,
1 if a ∈ A1.

With respect to the brackets, A becomes a Z2 -graded Lie algebra or,equivalently,
a Lie superalgebra AL = A0 ⊕ A1. For homogeneous elements a, b, c ∈ A the
following equations hold:

(4) [b, a] = −(−1)|a||b|[a, b],

(5) (−1)|a||c|[a, [b, c]] + (−1)|b||a|[b, [c, a]] + (−1)|c||b|[c, [a, b]] = 0

(the modified Jacobi equation). A Z2 -graded Lie algebra or Lie superalgebra
is a Z2 -graded linear space L = L0 ⊕ L1 with a bracket multiplication [·, ·]
compatible with the gradation

[L0,L0] ⊆ L0, [L1,L1] ⊆ L0,

[L0,L1] ⊆ L1, [L1,L0] ⊆ L1

and satisfying (4) and (5).

2. LIE Superalgebras:
The series A, B, C, D, Q

Let L = L0 ⊕ L1 denote a Z2 -graded Lie algebra. Its even part L0 is
a Lie algebra. In view of [L0,L1] ⊆ L1 , multiplication of odd elements by even
ones defines a representation ad0 of the Lie algebra L0 on the linear space L1

(ad0 x0)x1 = [x0, x1] x0 ∈ L0, x1 ∈ L1.

ad0 is called the adjoint representation of the even part L0 on the odd part L1.

A Z2 -graded Lie algebra L = L0 ⊕ L1 is called simple , if there are no
nontrivial Z2 -graded ideals: If I = I0 ⊕ I1 denotes a Z2 -graded ideal of L then
we have I = {0} or I = L . A simple Z2 -graded Lie algebra is called classical, if
the representation ad0 is completely reducible. A simple Z2 -graded Lie algebra
is classical iff its even part L0 is a reductive Lie algebra.

Denote by Mat(m,n) the Z2 -graded associative algebra with unit con-
sisting of (m+ n)× (m+ n) block matrices with entries from K

(
A0 B1

B0 A1

)
.
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We observe Mat(m,n) = Mat−1(m,n)⊕Mat0(m,n)⊕Mat1(m,n) (compare (1)
and (2)).

The Z2 -graded Lie algebra defined by Mat(m,n) is denoted by gl(m,n)
or pl(m,n). It is called the general linear Lie superalgebra. gl(m,n) admits a
Z -gradation

gl(m,n) = gl−1(m,n)⊕ gl0(m,n)⊕ gl1(m,n)

implying the Z2 -gradation in the natural way. We have

gl0(m,n) = gl0(m,n) ∼= gl(m)× gl(n),

gl1(m,n) = gl−1(m,n)⊕ gl1(m,n).

We shall discuss several subalgebras of gl(m,n).

Example 1• . sl(m,n) or spl(m,n) denotes the subalgebra consisting of those
block matrices for which the diagonal blocks have equal trace, i.e., satisfying
the equation Tr(A0) = Tr(A1). It is called the special linear Lie superalgebra.
sl(m,n) admits the Z -gradation induced by gl(m,n) and the corresponding Z2 -
grading. We have sl0(m,n) ∼= sl(m)× sl(n)×K .

Example 2• . osp(m,n) consists of those block matrices satisfying the follow-
ing relations

A0
> + A0 = 0,

B1
> − InB0 = 0,

A1
>In + InA1 = 0.

Here A> denotes the transpose of A , and n is assumed to be even n = 2` , and

In =

(
0 E`
−E` 0

)
,

where E` denotes the ` × ` unit matrix. The matrices of osp(m, 2`) may be
written in the following form




A0 B1 B2

−B2
> A1 A12

B1
> A21 −A1

>


 with A0

> = −A0, A
>
12 = A12, and A>21 = A21.

Note that osp(m,n) is a Z2 -graded Lie algebra. It is called the orthogonal-
symplectic Lie superalgebra. For the even part one has

osp0(m,n) ∼= o(m)× sp(n).

Example 3• . g̃l(m) consists of those block matrices satisfying m = n and
A1 = A0 and B1 = B0. It is called the general linear Lie superalgebra of the
second kind. g̃l(m) is a Z2 -graded Lie algebra and we have g̃l0(m) ∼= gl(m).
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Example 4• . s̃l(m) consists of those block matrices satisfying m = n and
A1 = A0 , B1 = B0 , and Tr(B1) = 0. It is called the special linear Lie

superalgebra of the second kind. s̃l(m) is a Z2 -graded Lie algebra, a subalgebra

of g̃l(m), and the following relation holds: s̃l0(m) = g̃l0(m) ∼= gl(m).

The Lie superalgebra sl(m,n) is simple if m 6= n , m ≥ 1 , n ≥ 1 .

The multiples of the unit matrix {αE2m;α ∈ K} make up a Z2 -graded
ideal of sl(m,m), namely, the center.

The quotient algebra sl(m,m)/{αE2m : α ∈ K} is simple if m > 1.

The A -series of simple Lie superalgebras is defined in analogy with the
usual classification of simple Lie algebras by

A(m,n) = sl(m+ 1, n+ 1), m 6= n, m ≥ 0, n ≥ 0.

A(m,m) = sl(m+ 1,m+ 1)/{αE2m+2 : α ∈ K}, m > 0.

The orthogonal-symplectic Lie superalgebra osp(m,n) is simple if m ≥
1 , n > 1 .

The series B,C,D are defined as follows

B(m,n) = osp(2m+ 1, 2n), m ≥ 0, n > 0.

C(n) = osp(2, 2n− 2), n ≥ 2.

D(m,n) = osp(2m, 2n), m ≥ 2, n > 0.

As in sl(m,m), the multiples of unity {αE2m;α ∈ K} make up a

homogeneous ideal in s̃l(m), namely, its center.

The quotient algebra s̃l(m)/{αE2m : α ∈ K} is simple if m ≥ 3 .

The Q -series is defined by

Q(m) = s̃l(m+ 1)/{αE2m+2 : α ∈ K}, m ≥ 2.

The Lie superalgebras Q(m) are often called the f − d-algebras of Michal and
Radicati.

The Lie superalgebras of the series A,B,C,D, and Q are classical Lie
superalgebras.

The decomposition of the even parts in a direct product of simple Lie
algebras is given by the following isomorphisms

A0(m,n) ∼= A(m)×A(n)×K, m 6= n

A0(m,m) ∼= A(m)×A(m)

B0(m,n) ∼= B(m)×C(n)

C0(m) ∼= C(m− 1)×K
D0(m,n) ∼= D(m)×C(n)

Q0(m) ∼= A(m).
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3. The GRASSMANN-hull

The Grassmann-hull is a construction, which enables us to make a Z2 -
graded Lie algebra into a Lie algebra. Let Λ denote a finitely generated Grass-
mann algebra and let L be a Z2 -graded Lie algebra. Taking the tensorproduct
Λ⊗ L of Z2 -graded algebras we have

(Λ⊗ L)0 = Λ0 ⊗ L0 + Λ1 ⊗ L1,

(Λ⊗ L)1 = Λ0 ⊗ L1 + Λ1 ⊗ L0.

Writing the elements of Λ⊗L for simplicity as λx , the brackets are de-
fined for homogeneous elements as follows: [λαxβ , λγxδ] = (−1)βγλαλγ [xβ, xδ] ,
α, β, γ, δ ∈ Z2 . If α = β and γ = δ , then we have

[λγxδ, λαxβ] = (−1)αδλγλα[xδ, xβ]

= (−1)αδ+αγ+βδ(−1)λαλγ [xβ, xδ]

= −(−1)αδ+αγ+βδ+βγ [λαxβ , λγxδ]

Since αδ + βδ = αγ + βγ = 0 we have [λγxδ, λαxβ ] = −[λαxβ , λγxδ] . The even
part (Λ ⊗ L)0 of the tensor product Λ ⊗ L is a Lie algebra. It is called the
Grassmann-hull of the Lie superalgebra L .

Let L denote one of the Lie superalgebras gl(m,n), sl(m,n),

osp(m,n), g̃l(m), or s̃l(m). The Grassmann-hull consists of block matrices

(5)

(
A0(Λ0) B1(Λ1)
B0(Λ1) A1(Λ0)

)
.

The entries of the diagonal blocks A0 and A1 belong to Λ0 , while the entries
of the matrices B0 and B1 are from Λ1 . We denote the Grassmann-hulls

by gl(m,n; Λ), sl(m,n; Λ), osp(m,n; Λ), g̃l(m; Λ), s̃l(m; Λ), respectively. Note
that sl(m,n; Λ) is the Lie algebra of block matrices of type (5) such that
Tr(A0(Λ0)) = Tr(A1(Λ0)). Further, osp(m, 2l; Λ) is the Lie algebra of block
matrices 


A0(Λ0) B1(Λ1) B2(Λ1)

−B>2 (Λ1) A1(Λ0) A12(Λ0)

B>1 (Λ0) A21(Λ0) −A>1 (Λ0)




satisfying the relations A>0 (Λ0) = A0(Λ0), A>12(Λ0) = A12(Λ0), A>21(Λ0) =

A21(Λ0). Finally, s̃l(m; Λ) consists of block matrices

(
A(Λ0) B(Λ1)
B(Λ1) A(Λ0)

)

satisfying the relation TrB(Λ1) = 0.
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In all of our considerations Λ denotes an arbitrary finitely generated
Grassmann algebra. Later it will become clear, that it is necessary to assume,
that the number of generators ”is not to small” with respect to m and n .

Let p0: Λ → Λ0 = K denote the canonical projection of the Z -graded
algebra Λ onto its zero component. Then p0 defines a canonical projection of
the Grassmann-hull (Λ ⊗ L)0 of a Lie superalgebra L onto its even part L0 .
We denote it once more by p0 , so that p0(λx) = p0(λ)x . With respect to the
matrix Lie algebra gl(m,n; Λ) and its subalgebras we have

p0

(
A0(Λ0) B1(Λ1)
B0(Λ1) A1(Λ0)

)
=

(
A0 0
0 A1

)

with entries from K in the diagonal blocks A0 and A1 .

In the case of osp(m,n; Λ) the matrices A0 make up the Lie algebra
o(m), while the matrices A1 are the matrices of sp(n).

In the same way we may define the Grassmann-hull of a Z2 -graded
associative algebra. The Grassmann-hull of the matrix algebra Mat(m,n) is
denoted by Mat(m,n; Λ) = (Λ⊗Mat(m,n))0 , the elements are the block matrices
(5).

4. GRASSMANN LIE groups

The series GL, SL, OSp, G̃L, S̃L. We define matrix Lie groups
corresponding to the Grassmann-hulls of matrix Lie superalgebras. First we
answer the question of invertibility of a matrix (5) from Mat(m,n; Λ).

A block matrix of type (5) is invertible iff the matrices A0 = p0(A0(Λ0))
and A1 = p0(A1(Λ0)) are invertible.

It follows that the diagonal blocks A0(Λ0) and A1(Λ0) are invertible for
invertible block matrices. The inverse of a block matrix is written

(
A

(−1)
0 (Λ0) B

(−1)
1 (Λ1)

B
(−1)
0 (Λ1) A

(−1)
1 (Λ0)

)

satisfying the equations

A
(−1)
0 (Λ0) = (A0(Λ0)−B1(Λ1)A1(Λ0)−1B0(Λ1))−1,

A
(−1)
1 (Λ0) = (A1(Λ0)−B0(Λ1)A0(Λ0)−1B1(Λ1))−1,

B
(−1)
1 (Λ1) = −A0(Λ0)−1B1(Λ1)(A1(Λ0)−B0(Λ1)A0(Λ0)−1B1(Λ1))−1,

B
(−1)
0 (Λ1) = −A1(Λ0)−1B0(Λ1)(A0(Λ0)−B1(Λ1)A1(Λ0)−1B0(Λ1))−1.

Let GL(m,n; Λ) denote the group of units in Mat(m,n; Λ). It consists
of the invertible block matrices of type (5) which for simplicity are written

A(Λ) =

(
A0(Λ) B1(Λ)
B0(Λ) A1(Λ)

)
.
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The superdeterminant or Berezinian of A is defined by sdetA(Λ) =
det
(
A0(Λ)−B1(Λ)A1(Λ)−1B0(Λ)

)
detA−1

1 (Λ). The superdeterminant is defined
on the Grassmann Lie group GL(m,n; Λ). It is multiplicative, i.e., sdet is a
homomorphism of GL(m,n; Λ) into the group of units K× of Λ.

Also, SL(m,n; Λ) is the subgroup of GL(m,n; Λ) defined by

sdetA(Λ) = 1,

or, equivalently, by

det(A0(Λ)−B1(Λ)A1(Λ)−1B0(Λ)) = detA1(Λ).

Using the projection p0: Λ→ K we get

detA0 = p0(detA0(Λ)) = p0(detA1(Λ)) = detA1.

We observe that GL(m,n; Λ) and SL(m,n; Λ) are the Λ-matrix groups
corresponding to the Λ-matrix Lie algebras gl(m,n; Λ) and sl(m,n; Λ), respec-
tively.

OSp(m,n; Λ) is the subgroup of GL(m,n; Λ) defined by the following
relations

A0(Λ)>A0(Λ)−B0(Λ)>InB0(Λ) = Em,

A0(Λ)>B1(Λ)−B0(Λ)>InA1(Λ) = 0,

B1(Λ)>B1(Λ) +A1(Λ)>InA1(Λ) = In.

Applying the projection p0 to these equations, we get

A>0 A0 = Em and A>1 InA1 = In,

hence p0: OSp(m,n; Λ)→ O(m)× Sp(n).

OSp(m,n; Λ) is the Λ-matrix group corresponding to the Λ-matrix
Lie algebra osp(m,n; Λ). The projection p0 is a homomorphism mapping the
Grassmann Lie group OSp(m,n; Λ) onto the Lie group O(m)× Sp(n) corre-
sponding to the even part of osp(m,n).

We observe that G̃L(m; Λ) denotes the group of block matrices

Ã(Λ) =

(
A(Λ) B(Λ)
B(Λ) A(Λ)

)
,

with A(Λ) = A(Λ0) and B(Λ) = B(Λ1).

S̃L(m; Λ) is the subgroup of G̃L(m; Λ) consisting of those block matrices

Ã(Λ) satisfying s̃detÃ = 1. Here the superdeterminant of the second kind s̃det

is defined on the Grassmann Lie group G̃L(m; Λ) by

(6) s̃detÃ(Λ) = 1 + Tr log(Em +A(Λ)−1B(Λ)).
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The relation (6) may be rewritten by

Tr log(Em +A(Λ)−1B(Λ)) =
∑

ν

1

2ν + 1
Tr(A(Λ)−1B(Λ))2ν+1 = 0.

Notice that the entries of the product matrix A(Λ)−1B(Λ) belong to Λ1 which
implies that the series of the logarithm is finite.

The superdeterminant of the second kind is multiplicative. Thus s̃det is
a homomorphism of G̃L(m; Λ) into the group K× of units in Λ. The projection

p0 maps the Grassmann Lie group S̃L(m; Λ) onto the Lie group GL(m) which

corresponds to the even part of s̃l(m).

G̃L(m; Λ) and S̃L(m; Λ) are the Λ-matrix groups corresponding to the

Λ-matrix Lie algebras g̃l(m; Λ) and s̃l(m; Λ), respectively.

The center of the Λ-matrix group S̃L(m; Λ) consists of the even multiples
of the unit matrix, and the quotient

S̃L(m+ 1; Λ)/{λ0E2m+2 : λ0 ∈ Λ0}
is a Grassmann Lie group, which corresponds to the Grassmann -hull of the
Lie superalgebra Q(m).

5. HOPF Superalgebras

Let H = H0 ⊕H1 denote a Z2 -graded Hopf algebra. Here H is a Z2 -
graded associative algebra with unit—the product and the unit are considered
as linear mappings µ:H ⊗ H → H and ι:K → H , respectively—endowed
with a coproduct ∆ : H → H ⊗ H , a counit ε:H → K , and an antipode
σ:H → H . Here ∆ and ε are homomorphisms of the corresponding Z2 -graded
algebras, σ is an antiautomorphism of H . The following relations are satisfied
(∆ ⊗ idH)◦∆ = (idH ⊗ ∆) ◦ ∆, called the coassociativity of the coproduct,
(ε⊗ idH)◦∆ = idH = (idH⊗ε)◦∆, and µ◦(σ⊗ idH)◦∆ = ιε = µ◦(idH⊗σ)◦∆.
Let ν:H⊗H → H⊗H denote the twist homomorphism given by ν(h1 ⊗ h2) =
(−1)|h1||h2|h2h1 for homogeneous elements h1 and h2 in H . Then H is called
commutative or cocommutative if the relations

µ ◦ ν = µ or ν ◦∆ = ∆

hold, respectively.

Example 1 . Put H = K[X1, ..., Xm]⊗ Λ(Y1, ..., Yn). Then we have

H0 = K[X1, ..., Xm]⊗ Λ0(Y1, ..., Yn),

H1 = K[X1, ..., Xm]⊗ Λ1(Y1, ..., Yn).

Now H is a Hopf algebra with respect to the usual product, the usual
unit , the coproduct ∆(Xµ) = 1 ⊗ Xµ + Xµ ⊗ 1, ∆(Yν) = 1 ⊗ Yν + Yν ⊗ 1,
∆(1) = 1 ⊗ 1, the counit ε(Xµ) = ε(Yν) = 0, ε(1) = 1, and the antipode
σ(Xµ) = −Xµ , σ(Yν) = −Yν , σ(1) = 1, for µ = 1, . . . ,m , ν = 1, . . . , n . The
Hopf superalgebra H is commutative and cocommutative.
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Example 2 . Let G = GL(m,n; Λ) denote the Λ-matrix group defined in
Section 4. We define a block matrix of commuting and anticommuting variables
by

X =

(
X Y ′

Y X ′

)
.

We assume
X = (Xij) i=1,...m

j=1,...m
, Y ′ = (Y ′i`) i=1,...,m

`=1,...,n
,

Y = (Ykj) k=1,...,n
j=1,...m

, X ′ = (X ′k`) k=1,...,n
`=1,...,n

.

Put

H(G) = K[Xij, x,X
′
k`, x

′]⊗ Λ(Y ′i`, Ykj)/(x det |Xij| − 1, x′ det |X ′k`| − 1),

then H(G) is an associative and commutative Z2 -graded algebra with unit.
Using the matrix product we define the coproduct as follows:

∆(Xij) =

m∑

j′=1

Xij′ ⊗Xj′j +

n∑

`′=1

Y ′i`′ ⊗ Y`′`,

∆(X ′k`) =

m∑

j′=1

Ykj′ ⊗ Y ′j′` +

n∑

`′=1

X ′k`′ ⊗X ′`′l,

∆(Y ′i`) =
m∑

j′=1

Xij′ ⊗ Y ′j′` +
n∑

`′=1

Y ′i`′ ⊗X ′`′`,

∆(Ykj) =
m∑

j′=1

Ykj′ ⊗Xj′j +
n∑

`′=1

X ′k`′ ⊗ Y`′j ,

∆(x) = x⊗ x,
∆(x′) = x′ ⊗ x′.

For short we may write ∆(X ) = X ⊗ X . The counit is given by

ε(Xij) = δij ,

ε(X ′k`) = δkl,

ε(Y ′i`) = 0.

ε(Ykj) = 0,

ε(x) = 1,

ε(x′) = 1.

For short we may write ε(X ) = Em+n . The coproduct in H(G) mirrors the
matrix product, i.e., the product in the group G , the counit represents the
evaluation at the unit matrix, i.e., the evaluation at the identity of the group
G . Now we define the antipode, which mirrors the inverse of matrices or group
elements

σ(X) = (X − Y ′X ′−1Y )−1,

σ(X ′) = (X ′ − Y X−1Y ′)−1,

σ(Y ′) = −X−1Y ′σ(X, σ(Y ) = −X ′−1Y σ(X ′),

σ(x) = detX,

σ(x′) = detX ′.
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For short we may write σ(X ) = X−1 . Now H(G) is a commutative and not
cocommutative Hopf superalgebra, which we shall denote by P(m,n).

Example 3 . Assume G = SL(m,n; Λ). Put

H(G) = P(m,n)/(sdetX − 1)

= P(m,n)/(det(X − Y ′X ′−1Y )− detX ′).

It follows from sdet(X1X2) = sdetX1 sdetX2 that the homogeneous ideal gener-
ated by sdetX − 1 is a coideal, too. We have

∆(sdetX − 1) = ∆ sdetX − 1⊗ 1

= sdet(X ⊗ X )− 1⊗ 1

= sdetX ⊗ sdetX − 1⊗ 1

= sdetX ⊗ sdetX − sdetX ⊗ 1 + sdetX ⊗ 1− 1⊗ 1

= sdetX ⊗ (sdetX − 1) + (sdetX − 1)⊗ 1.

Moreover, ε(sdetX ) = 1 and σ(sdetX ) = sdetX−1 , i.e., the ideal generated
by sdetX − 1 is contained in the kernel of ε and invariant under σ . Hence it
is possible to factorize ∆, ε , σ , and H(G) becomes a commutative and not
cocommutative Hopf superalgebra, which is denoted by SP(m,n).

A Λ-matrix group, i.e, a subgroup of GL(m,n; Λ) is called algebraic, if
it is the annihilator set of a Z2 − graded ideal of P(m,n).

Let G denote an algebraic Λ-matrix group, and let I(G) denote its an-
nihilator ideal in P(m,n) , then H(G) = P(m,n)/I(G) is a Hopf superalgebra.
The coproduct, the counit, and the antipode of H(G) are induced by factoriza-
tion of the coproduct, the counit, and the antipode of P(m,n) . The annihilator
ideal I(G) is a coideal of P(m,n) , it is contained in the kernel of ε , and it is
invariant under σ .

Example 4 . The Λ-matrix group OSp(m,n; Λ) is an algebraic Λ-matrix
group. Its annihilator ideal is generated by the “polynomials” X>X−Y >InY −
Em , X>Y ′ − Y InX ′ , and Y ′>Y ′ + X ′>InX ′ − In . The corresponding Hopf
superalgebra is denoted by OSpP(m,n).

Example 5 . The Λ-matrix group G̃L(m; Λ) is an algebraic Λ-matrix group.

Its Hopf superalgebra is denoted by P̃(m):

P̃(m) ∼= K[Xij, x]⊗ Λ(Yij)/(x det |Xij | − 1).

Example 6 . The Λ-matrix group S̃L(m; Λ) is an algebraic Λ-matrix group.

Its Hopf superalgebra is denoted by S̃P(m).

A Hopf superalgebra H = H0 ⊕H1 is called affine if it is commutative
and finitely generated.
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The Hopf superalgebra H(G) = P(m,n)/I(G) of an algebraic Λ-matrix
group G is affine.

The Hopf superalgebras P(m,n) , SP(m,n) , OSpP(m,n) , P̃(m) , and

S̃P(m) are affine Hopf superalgebras.

We mention the following

Structure Theorem. Let H denote an affine Hopf superalgebra. Then
there exists an affine Hopf algebra H0 and odd elements W1, ...,Ws such that
H ∼= H0 ⊗ Λ(W1, . . . ,Ws) . The isomorphism is an isomorphism of commutative
superalgebras. The following relations hold:

(p⊗ p) ◦∆ = ∆0 ◦ p,
ε = ε0 ◦ p,

p ◦ σ = σ0 ◦ p.
Here p denotes the canonical projection annihilating all odd elements of H , i.e.,
p:H → H0 , and ∆0 ε0 , σ0 denote the coproduct, the counit, and the antipode
of the Hopf algebra H0 , respectively.

The affine Hopf algebra H0 is the algebra of polynomial functions of an
(affine) algebraic group G0 .

Example 2 (continued). Assume G = GL(m,n; Λ), H = H(G) = P(m,n).
Then one has

H0
∼= K[Xij , x,X

′
k`, x

′]/(x det |Xij| − 1, x′ det |X ′kl| − 1),

and
G0
∼= GL(m)×GL(n) = p0(GL(m,n; Λ)).

Example 3 (continued). Assume G = SL(m,n; Λ) H = H(G) = SP(m,n).
Then one has

H0
∼= K[Xij , x,X

′
k`, x

′]/(x det |Xij| − 1, x′ det |X ′k`| − 1, det |Xij | − det |X ′k`|),
and

G0
∼= SL(m)× SL(n)×K× = p0(SL(m,n; Λ).

Example 4 (continued). Assume G = OSp(m,n; Λ),

H = H(G) = OSpP(m,n).

Then one has
H0
∼= K[Xij, X

′
k`, ]/I0,

and the ideal I0 is generated by
m∑

i′=1

Xi′iXi′j − δij ,

n′−1∑

k′=0

(X ′n−k′,kX
′
k′+1,` −X ′n′−k′,kX ′n′+k′+1,` − δk`), (n = 2n′).

This implies G0
∼= O(m)× Sp(n) = p0(OSp(m,n; Λ)).
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Example 5 (continued). Assume G = G̃L(m; Λ), H = H(G) = P̃(m).
Then one has

H0
∼= K[Xij, x]/(x det |Xij| − 1)

and
G0
∼= GL(m) = p0(G̃L(m; Λ)).

Example 6 (continued). Assume G = S̃L(m; Λ), H = H(G) = S̃P(m).
Then one has

H0
∼= K[Xij, x]/(x det |Xij| − 1)

and
G0
∼= GL(m) = p0(S̃L(m; Λ)).

Notice that the isomorphism of superalgebras stated in the structure
theorem is not a canonical one. In some sense it is the choice of a coordinate
system.

Example 6 (continued once more). We have

S̃P(m) ∼= K[Xij, x]⊗ Λ(Yij)/I(S̃L(m; Λ)).

The annihilator ideal I(S̃L(m; Λ)) is generated by x det |Xij|−1 and Tr log(Em+
X−1Y ) =

∑
ν

1
2ν+1 Tr(X−1Y )2ν+1 . Choosing instead of the Yij new odd vari-

ables Wij defined by the matrix equation W = X−1Y , then using the second
relation it is possible to eliminate one of the odd variables. In this case we have
s = m2 − 1.

The last two sections, namely, Section 6, “Affine algebraic Supergroups”
and Section 7, “The Hopf dual. Representations”, as well as the list of references
are postponed to the next seminar.
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