Lie Superalgebras and Lie Supergroups, I

Helmut Boseck

1. Graded Algebras

Let K denote the base field. K is assumed to be of characteristic zero. In the examples K is the field of real or complex numbers.

Let \mathbb{Z} denote the additive group of the integers. A \mathbb{Z}-graded linear space is a K-linear space V and a family of subspaces $V_{k},(k=0, \pm 1, \pm 2, \ldots)$ such that

$$
V=\bigoplus_{k \in \mathbb{Z}} V_{k}
$$

A \mathbb{Z}-graded associative algebra is an associative K-algebra \mathcal{A}, which is \mathbb{Z}-graded as a K-linear space

$$
\mathcal{A}=\bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k}
$$

such that

$$
\mathcal{A}_{k} \mathcal{A}_{l} \subseteq \mathcal{A}_{k+\ell}, \quad(k, l \in \mathbb{Z})
$$

The elements of \mathcal{A}_{k} are called homogeneous of degree k.
Example 1 ${ }^{\diamond}$. Let $V=\bigoplus_{k \in \mathbb{Z}} V_{k}$ be a \mathbb{Z}-graded linear space. A linear operator $A: V_{k} \longrightarrow V_{k+l}(k \in \mathbb{Z})$ is called homogeneous of degree ℓ. If $L_{\ell}(V)$ denotes the space of linear operators of degree ℓ, then

$$
L^{\prime}(V)=\bigoplus_{k \in \mathbb{Z}} L_{k}(V)
$$

is a \mathbb{Z}-graded associative algebra with unit. If V is finite dimensional we have

$$
L(V)=\bigoplus_{k \in \mathbb{Z}} L_{k}(V)
$$

Assume V to be finite dimensional and $V_{k}=\{0\},(k=-1, \pm 2, \pm 3, \ldots)$, $V=V_{0} \oplus V_{1}$.

Then the following relations hold

$$
\begin{aligned}
L_{0}(V) & =L\left(V_{0}\right) \oplus L\left(V_{1}\right) \\
L_{-1}(V) & =L\left(V_{1}, V_{0}\right) \\
L_{1}(V) & =L\left(V_{0}, V_{1}\right), \text { and } \\
L_{k}(V) & =\{0\}, \quad(k= \pm 2, \pm 3, \ldots) .
\end{aligned}
$$

Chosing a basis of homogeneous elements in V we may represent the elements of $L_{0}(V)$ by diagonal block matrices

$$
\left(\begin{array}{cc}
A_{0} & 0 \tag{1}\\
0 & A_{1}
\end{array}\right) .
$$

The elements of $L_{-1}(V)$ and $L_{1}(V)$ become represented by the block matrices

$$
\left(\begin{array}{cc}
0 & B_{1} \tag{2}\\
0 & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & 0 \\
B_{0} & 0
\end{array}\right), \quad \text { respectively. }
$$

Example 2 ${ }^{\diamond}$ Let $\Lambda(n)=\Lambda\left(y_{1}, \ldots, y_{n}\right)$ denote the exterior or Grassmann algebra with n generators, which are assumed to be homogeneous of degree 1 . Put

$$
\begin{aligned}
& \Lambda_{0}=K \\
& \Lambda_{1}=\operatorname{span}\left\{y_{1}, \ldots, y_{n}\right\}, \\
& \Lambda_{k}=\operatorname{span}\left\{y_{i_{1}} \cdots y_{i_{k}}: \quad 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}, \quad(k=2, \ldots, n-1), \\
& \Lambda_{n}=\operatorname{span}\left\{y_{1} \cdots y_{n}\right\}, \\
& \Lambda_{\ell}=\{0\}, \quad \text { if } \ell=-1,-2, \ldots \text { or } \ell=n+1, n+2, \ldots,
\end{aligned}
$$

then we have

$$
\Lambda(n)=\Lambda_{0} \oplus \Lambda_{1} \oplus \cdots \oplus \Lambda_{n}
$$

and $\Lambda(n)$ becomes a \mathbb{Z}-graded associative algebra with unit. The \mathbb{Z}-graded algebra $\Lambda(n)$ is (graded) commutative, i.e., for homogeneous elements $a_{k} \in \Lambda_{k}$, $a_{\ell} \in \Lambda_{\ell}$ the following equation holds:

$$
a_{\ell} a_{k}=(-1)^{k \ell} a_{k} a_{\ell}
$$

Example 3 ${ }^{\diamond}$. Let $\mathcal{A}=\bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k}$ be a \mathbb{Z}-graded associative algebra with unit. We define a new product by

$$
\left[a_{k}, a_{\ell}\right]=a_{k} a_{\ell}-(-1)^{k \ell} a_{\ell} a_{k}, \quad a_{k} \in \mathcal{A}_{k}
$$

With respect to that multiplication \mathcal{A} becomes a \mathbb{Z}-graded Lie algebra

$$
\mathcal{A}_{L}=\bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{k}
$$

We have

$$
\begin{equation*}
\left[a_{\ell}, a_{k}\right]=-(-1)^{k \ell}\left[a_{k}, a_{\ell}\right] \tag{3}
\end{equation*}
$$

and the modified Jacobi identity

$$
\begin{equation*}
(-1)^{k m}\left[a_{k},\left[a_{\ell}, a_{m}\right]\right]+(-1)^{\ell k}\left[a_{\ell}\left[a_{m}, a_{k}\right]\right]+(-1)^{m \ell}\left[a_{m}\left[a_{k}, a_{\ell}\right]\right]=0 \tag{4}
\end{equation*}
$$

A \mathbb{Z}-graded LiE algebra is a \mathbb{Z}-graded linear space $\mathcal{L}=\bigoplus_{k \in \mathbb{Z}} \mathcal{L}_{k}$ with a bracket multiplication compatible with the grading $\left[\mathcal{L}_{k}, \mathcal{L}_{\ell}\right] \subseteq \mathcal{L}_{k+\ell}$ and satisfying (3) and (4) for homogeneous elements.

Let $\mathbb{Z}_{2}=\mathbb{Z} /(2)=\{\overline{0}, \overline{1}\}$ denote the additive group of two elements. A \mathbb{Z}_{2}-graded linear space is a K-linear space V with two distinguished subspaces $V_{\overline{0}}$ and $V_{\overline{1}}$ such that $V=V_{\overline{0}} \oplus V_{\overline{1}}$ holds. The elements of $V_{\overline{0}}$ are called even, those of $V_{\overline{1}}$ are called odd. A homogeneous element is either even or odd.

Every \mathbb{Z}-graded linear space admits a canonical \mathbb{Z}_{2}-gradation by $V_{\overline{0}}=$ $\oplus_{k \in Z} V_{2 k}, V_{\bar{T}}=\oplus_{k \in \mathbb{Z}} V_{2 k+1}$.

A \mathbb{Z}_{2}-graded associative algebra or an associative superalgebra is a K algebra, which is \mathbb{Z}_{2}-graded as a linear space

$$
\mathcal{A}=\mathcal{A}_{\overline{0}} \oplus \mathcal{A}_{\overline{1}},
$$

such that the multiplication satisfies

$$
\begin{array}{ll}
\mathcal{A}_{\overline{0}} \mathcal{A}_{\overline{0}} \subseteq \mathcal{A}_{\overline{0}}, & \mathcal{A}_{\overline{1}} \mathcal{A}_{\overline{1}} \subseteq \mathcal{A}_{\overline{0}} \\
\mathcal{A}_{\overline{0}} \mathcal{A}_{\overline{1}} \subseteq \mathcal{A}_{\overline{1}}, & \mathcal{A}_{\overline{1}} \mathcal{A}_{\overline{0}} \subseteq \mathcal{A}_{\overline{1}} .
\end{array}
$$

Every \mathbb{Z}-graded algebra \mathcal{A} admits a canonical Z_{2}-gradation by

$$
\mathcal{A}_{\overline{0}}=\bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{2 k}, \quad \mathcal{A}_{\overline{1}}=\bigoplus_{k \in \mathbb{Z}} \mathcal{A}_{2 k+1}
$$

Example 4 ${ }^{\diamond}$. Let $V=V_{\overline{0}} \oplus V_{\overline{1}}$ denote a \mathbb{Z}_{2}-graded linear space. A linear operator A on V is called paritiy preserving or even, if it satisfies $A: V_{\overline{0}} \rightarrow V_{\overline{0}}$ and $A: V_{\overline{1}} \rightarrow V_{\overline{1}}$. The operator A is called parity reversing or odd if $A: V_{\overline{0}} \rightarrow V_{\overline{1}}$ and $A: V_{\overline{1}} \rightarrow V_{\overline{0}}$. By $L_{\overline{0}}(V)$ and $L_{\overline{1}}(V)$ we denote the linear space of even and odd linear operators on V, respectively.

$$
L^{\prime}(V)=L_{\overline{0}}(V) \oplus L_{\overline{1}}(V)
$$

is a \mathbb{Z}_{2}-graded associative algebra with unit. If V is finite dimensional then

$$
L(V)=L_{\overline{0}}(V) \oplus L_{\overline{1}}(V)
$$

holds and

$$
\begin{aligned}
L_{\overline{0}}(V) \cong L\left(V_{\overline{0}}\right) \oplus L\left(V_{\overline{1}}\right) & \\
& L_{\overline{1}} \cong L\left(V_{\overline{0}}, V_{\overline{1}}\right) \oplus L\left(V_{\overline{1}}, V_{\overline{0}}\right) .
\end{aligned}
$$

Choosing a basis of homogeneous elements in V, the elements of $L_{\overline{0}}(V)$ are represented by diagonal block matrices as in (1), while the elements of $L_{\overline{1}}(V)$ are represented by block matrices of the following type

$$
\left(\begin{array}{cc}
0 & B_{1} \\
B_{0} & 0
\end{array}\right) .
$$

Example 5 ${ }^{\diamond}$. The Grassmann algebra $\Lambda(n)$ admits a canonical \mathbb{Z}_{2}-grading with respect to a chosen system of generators $\Lambda(n)=\Lambda_{\overline{0}} \oplus \Lambda_{\overline{1}}$ with $\Lambda_{\overline{0}}=$ $\Lambda_{0} \oplus \Lambda_{2} \oplus \cdots, \Lambda_{\overline{1}}=\Lambda_{1} \oplus \Lambda_{3} \oplus \cdots$ Now $\Lambda(n)$ is a \mathbb{Z}_{2}-graded associative and (graded) commutative algebra with unit or, equivalently, an associative, commutative superalgebra with unit.

Example 6 ${ }^{\diamond}$. Let $\mathcal{A}=\mathcal{A}_{\overline{0}} \oplus \mathcal{A}_{\overline{1}}$ denote a \mathbb{Z}_{2}-graded associative algebra with unit. We define brackets by $[a, b]=a b-(-1)^{|a||b|} b a$ for homogeneous elements $a, b \in \mathcal{A}$. Define the parity $|a|$ as follows:

$$
|a|= \begin{cases}0 & \text { if } a \in \mathcal{A}_{\overline{0}}, \\ 1 & \text { if } a \in \mathcal{A}_{\overline{1}} .\end{cases}
$$

With respect to the brackets, \mathcal{A} becomes a \mathbb{Z}_{2}-graded LiE algebra or,equivalently, a Lie superalgebra $\mathcal{A}_{L}=\mathcal{A}_{\overline{0}} \oplus \mathcal{A}_{\overline{1}}$. For homogeneous elements $a, b, c \in \mathcal{A}$ the following equations hold:

$$
\begin{equation*}
[b, a]=-(-1)^{|a||b|}[a, b], \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
(-1)^{|a||c|}[a,[b, c]]+(-1)^{|b||a|}[b,[c, a]]+(-1)^{|c||b|}[c,[a, b]]=0 \tag{5}
\end{equation*}
$$

(the modified Jacobi equation). A \mathbb{Z}_{2}-graded Lie algebra or Lie superalgebra is a \mathbb{Z}_{2}-graded linear space $\mathcal{L}=\mathcal{L}_{\overline{0}} \oplus \mathcal{L}_{\overline{1}}$ with a bracket multiplication $[\cdot, \cdot]$ compatible with the gradation

$$
\begin{array}{ll}
{\left[\mathcal{L}_{\overline{0}}, \mathcal{L}_{\overline{0}}\right] \subseteq \mathcal{L}_{\overline{0}},} & {\left[\mathcal{L}_{\overline{1}}, \mathcal{L}_{\overline{1}}\right] \subseteq \mathcal{L}_{\overline{0}}} \\
{\left[\mathcal{L}_{\overline{0}}, \mathcal{L}_{\overline{1}}\right] \subseteq \mathcal{L}_{\overline{1}},} & {\left[\mathcal{L}_{\overline{1}}, \mathcal{L}_{\overline{0}}\right] \subseteq \mathcal{L}_{\overline{1}}}
\end{array}
$$

and satisfying (4) and (5).

2. Lie Superalgebras:
 The series A, B, C, D, Q

Let $\mathcal{L}=\mathcal{L}_{\overline{0}} \oplus \mathcal{L}_{\overline{1}}$ denote a \mathbb{Z}_{2}-graded Lie algebra. Its even part $\mathcal{L}_{\overline{0}}$ is a LIE algebra. In view of $\left[\mathcal{L}_{\overline{0}}, \mathcal{L}_{\overline{1}}\right] \subseteq \mathcal{L}_{\overline{1}}$, multiplication of odd elements by even ones defines a representation $\operatorname{ad}_{\overline{0}}$ of the Lie algebra $\mathcal{L}_{\overline{0}}$ on the linear space $\mathcal{L}_{\overline{1}}$

$$
\left(\operatorname{ad}_{\overline{0}} x_{\overline{0}}\right) x_{\overline{1}}=\left[x_{\overline{0}}, x_{\overline{1}}\right] \quad x_{\overline{0}} \in \mathcal{L}_{\overline{0}}, x_{\overline{1}} \in \mathcal{L}_{\overline{1}} .
$$

$\mathrm{ad}_{\overline{0}}$ is called the adjoint representation of the even part $\mathcal{L}_{\overline{0}}$ on the odd part \mathcal{L}_{1}.
A \mathbb{Z}_{2}-graded Lie algebra $\mathcal{L}=\mathcal{L}_{\overline{0}} \oplus \mathcal{L}_{\overline{1}}$ is called simple, if there are no nontrivial \mathbb{Z}_{2}-graded ideals: If $I=I_{\overline{0}} \oplus I_{\overline{1}}$ denotes a \mathbb{Z}_{2}-graded ideal of \mathcal{L} then we have $I=\{0\}$ or $I=\mathcal{L}$. A simple \mathbb{Z}_{2}-graded Lie algebra is called classical, if the representation $\mathrm{ad}_{\overline{0}}$ is completely reducible. A simple \mathbb{Z}_{2}-graded Lie algebra is classical iff its even part $\mathcal{L}_{\overline{0}}$ is a reductive Lie algebra.

Denote by $\operatorname{Mat}(m, n)$ the \mathbb{Z}_{2}-graded associative algebra with unit consisting of $(m+n) \times(m+n)$ block matrices with entries from K

$$
\left(\begin{array}{ll}
A_{0} & B_{1} \\
B_{0} & A_{1}
\end{array}\right)
$$

We observe $\operatorname{Mat}(m, n)=\operatorname{Mat}_{-1}(m, n) \oplus \operatorname{Mat}_{0}(m, n) \oplus \operatorname{Mat}_{1}(m, n)(c o m p a r e ~(1)$ and (2)).

The \mathbb{Z}_{2}-graded Lie algebra defined by $\operatorname{Mat}(m, n)$ is denoted by $\mathfrak{g l}(m, n)$ or $\mathfrak{p l}(m, n)$. It is called the general linear Lie superalgebra. $\mathfrak{g l}(m, n)$ admits a \mathbb{Z}-gradation

$$
\mathfrak{g l}(m, n)=\mathfrak{g l}_{-1}(m, n) \oplus \mathfrak{g l}_{0}(m, n) \oplus \mathfrak{g l}_{1}(m, n)
$$

implying the \mathbb{Z}_{2}-gradation in the natural way. We have

$$
\begin{aligned}
\mathfrak{g l}_{\overline{0}}(m, n) & =\mathfrak{g l}_{0}(m, n) \cong \mathfrak{g l}(m) \times \mathfrak{g l}(n), \\
\mathfrak{g l} \overline{\overline{1}}(m, n) & =\mathfrak{g l}_{-1}(m, n) \oplus \mathfrak{g l}_{1}(m, n) .
\end{aligned}
$$

We shall discuss several subalgebras of $\mathfrak{g l}(m, n)$.
Example 1•. $\mathfrak{s l}(m, n)$ or $\mathfrak{s p l}(m, n)$ denotes the subalgebra consisting of those block matrices for which the diagonal blocks have equal trace, i.e., satisfying the equation $\operatorname{Tr}\left(A_{0}\right)=\operatorname{Tr}\left(A_{1}\right)$. It is called the special linear LIE superalgebra. $\mathfrak{s l}(m, n)$ admits the \mathbb{Z}-gradation induced by $\mathfrak{g l}(m, n)$ and the corresponding \mathbb{Z}_{2} grading. We have $\mathfrak{s l}(m, n) \cong \mathfrak{s l}(m) \times \mathfrak{s l}(n) \times K$.

Example $2^{\bullet} . \quad \mathfrak{o s p}(m, n)$ consists of those block matrices satisfying the following relations

$$
\begin{array}{r}
A_{0}^{\top}+A_{0}=0, \\
B_{1}^{\top}-I_{n} B_{0}=0, \\
A_{1}^{\top} I_{n}+I_{n} A_{1}=0 .
\end{array}
$$

Here A^{\top} denotes the transpose of A, and n is assumed to be even $n=2 \ell$, and

$$
I_{n}=\left(\begin{array}{cc}
0 & E_{\ell} \\
-E_{\ell} & 0
\end{array}\right)
$$

where E_{ℓ} denotes the $\ell \times \ell$ unit matrix. The matrices of $\mathfrak{o s p}(m, 2 \ell)$ may be written in the following form

$$
\left(\begin{array}{ccc}
A_{0} & B_{1} & B_{2} \\
-B_{2}^{\top} & A_{1} & A_{12} \\
B_{1}{ }^{\top} & A_{21} & -A_{1}^{\top}
\end{array}\right) \quad \text { with } A_{0}^{\top}=-A_{0}, A_{12}^{\top}=A_{12}, \text { and } A_{21}^{\top}=A_{21} .
$$

Note that $\mathfrak{o s p}(m, n)$ is a \mathbb{Z}_{2}-graded Lie algebra. It is called the orthogonalsymplectic Lie superalgebra. For the even part one has

$$
\mathfrak{o s p}_{\overline{0}}(m, n) \cong \mathfrak{o}(m) \times \mathfrak{s p}(n)
$$

Example 3^{\bullet}. $\tilde{\mathfrak{g l l}}(m)$ consists of those block matrices satisfying $m=n$ and $A_{1}=A_{0}$ and $B_{1}=B_{0}$. It is called the general linear LIE superalgebra of the second kind. $\widetilde{\mathfrak{g l}}(m)$ is a \mathbb{Z}_{2}-graded LIE algebra and we have $\widetilde{\mathfrak{g}} \overline{0}(m) \cong \mathfrak{g l}(m)$.

Example $4^{\bullet} . ~ \tilde{\mathfrak{s l}}(m)$ consists of those block matrices satisfying $m=n$ and $A_{1}=A_{0}, B_{1}=B_{0}$, and $\operatorname{Tr}\left(B_{1}\right)=0$. It is called the special linear LIE superalgebra of the second kind. $\tilde{\mathfrak{s l}}(m)$ is a \mathbb{Z}_{2}-graded LIE algebra, a subalgebra of $\widetilde{\mathfrak{g l}}(m)$, and the following relation holds: $\widetilde{\mathfrak{s l}}(m)=\widetilde{\mathfrak{g}} \overline{\mathrm{l}}(m) \cong \mathfrak{g l}(m)$.

The LiE superalgebra $\mathfrak{s l}(m, n)$ is simple if $m \neq n, m \geq 1, n \geq 1$.
The multiples of the unit matrix $\left\{\alpha E_{2 m} ; \alpha \in K\right\}$ make up a \mathbb{Z}_{2}-graded ideal of $\mathfrak{s l}(m, m)$, namely, the center.

The quotient algebra $\mathfrak{s l}(m, m) /\left\{\alpha E_{2 m}: \alpha \in K\right\}$ is simple if $m>1$.
The \mathbf{A}-series of simple Lie superalgebras is defined in analogy with the usual classification of simple Lie algebras by

$$
\begin{aligned}
\mathbf{A}(m, n) & =\mathfrak{s l}(m+1, n+1), \quad m \neq n, m \geq 0, n \geq 0 . \\
\mathbf{A}(m, m) & =\mathfrak{s l}(m+1, m+1) /\left\{\alpha E_{2 m+2}: \alpha \in K\right\}, \quad m>0 .
\end{aligned}
$$

The orthogonal-symplectic LIE superalgebra $\mathfrak{o s p}(m, n)$ is simple if $m \geq$ $1, n>1$.

The series $\mathbf{B}, \mathbf{C}, \mathbf{D}$ are defined as follows

$$
\begin{aligned}
\mathbf{B}(m, n) & =\mathfrak{o s p}(2 m+1,2 n), \quad m \geq 0, n>0 . \\
\mathbf{C}(n) & =\mathfrak{o s p}(2,2 n-2), \quad n \geq 2 . \\
\mathbf{D}(m, n) & =\mathfrak{o s p}(2 m, 2 n), \quad m \geq 2, n>0 .
\end{aligned}
$$

As in $\mathfrak{s l}(m, m)$, the multiples of unity $\left\{\alpha E_{2 m} ; \alpha \in K\right\}$ make up a homogeneous ideal in $\tilde{\mathfrak{s l}}(m)$, namely, its center.

The quotient algebra $\tilde{\mathfrak{s l}}(m) /\left\{\alpha E_{2 m}: \alpha \in K\right\}$ is simple if $m \geq 3$.
The \mathbf{Q}-series is defined by

$$
\mathbf{Q}(m)=\widetilde{\mathfrak{s l}}(m+1) /\left\{\alpha E_{2 m+2}: \alpha \in K\right\}, \quad m \geq 2
$$

The Lie superalgebras $\mathbf{Q}(m)$ are often called the $f-d$-algebras of Michal and Radicati.

The Lie superalgebras of the series $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, and \mathbf{Q} are classical Lie superalgebras.

The decomposition of the even parts in a direct product of simple LIE algebras is given by the following isomorphisms

$$
\begin{aligned}
\mathbf{A}_{\overline{0}}(m, n) & \cong \mathbf{A}(m) \times \mathbf{A}(n) \times K, \quad m \neq n \\
\mathbf{A}_{\overline{0}}(m, m) & \cong \mathbf{A}(m) \times \mathbf{A}(m) \\
\mathbf{B}_{\overline{0}}(m, n) & \cong \mathbf{B}(m) \times \mathbf{C}(n) \\
\mathbf{C}_{\overline{0}}(m) & \cong \mathbf{C}(m-1) \times K \\
\mathbf{D}_{\overline{0}}(m, n) & \cong \mathbf{D}(m) \times \mathbf{C}(n) \\
\mathbf{Q}_{\overline{0}}(m) & \cong \mathbf{A}(m) .
\end{aligned}
$$

3. The Grassmann-hull

The Grassmann-hull is a construction, which enables us to make a \mathbb{Z}_{2} graded LiE algebra into a Lie algebra. Let Λ denote a finitely generated Grassmann algebra and let \mathcal{L} be a \mathbb{Z}_{2}-graded Lie algebra. Taking the tensorproduct $\Lambda \otimes \mathcal{L}$ of \mathbb{Z}_{2}-graded algebras we have

$$
\begin{aligned}
& (\Lambda \otimes \mathcal{L})_{\overline{0}}=\Lambda_{\overline{0}} \otimes \mathcal{L}_{\overline{0}}+\Lambda_{\overline{1}} \otimes \mathcal{L}_{\overline{1}}, \\
& (\Lambda \otimes \mathcal{L})_{\overline{1}}=\Lambda_{\overline{0}} \otimes \mathcal{L}_{\overline{1}}+\Lambda_{\overline{1}} \otimes \mathcal{L}_{\overline{0}} .
\end{aligned}
$$

Writing the elements of $\Lambda \otimes \mathcal{L}$ for simplicity as λx, the brackets are defined for homogeneous elements as follows: $\left[\lambda_{\alpha} x_{\beta}, \lambda_{\gamma} x_{\delta}\right]=(-1)^{\beta \gamma} \lambda_{\alpha} \lambda_{\gamma}\left[x_{\beta}, x_{\delta}\right]$, $\alpha, \beta, \gamma, \delta \in \mathbb{Z}_{2}$. If $\alpha=\beta$ and $\gamma=\delta$, then we have

$$
\begin{aligned}
{\left[\lambda_{\gamma} x_{\delta}, \lambda_{\alpha} x_{\beta}\right] } & =(-1)^{\alpha \delta} \lambda_{\gamma} \lambda_{\alpha}\left[x_{\delta}, x_{\beta}\right] \\
& =(-1)^{\alpha \delta+\alpha \gamma+\beta \delta}(-1) \lambda_{\alpha} \lambda_{\gamma}\left[x_{\beta}, x_{\delta}\right] \\
& =-(-1)^{\alpha \delta+\alpha \gamma+\beta \delta+\beta \gamma}\left[\lambda_{\alpha} x_{\beta}, \lambda_{\gamma} x_{\delta}\right]
\end{aligned}
$$

Since $\alpha \delta+\beta \delta=\alpha \gamma+\beta \gamma=\overline{0}$ we have $\left[\lambda_{\gamma} x_{\delta}, \lambda_{\alpha} x_{\beta}\right]=-\left[\lambda_{\alpha} x_{\beta}, \lambda_{\gamma} x_{\delta}\right]$. The even part $(\Lambda \otimes \mathcal{L})_{\overline{0}}$ of the tensor product $\Lambda \otimes \mathcal{L}$ is a LiE algebra. It is called the Grassmann-hull of the Lie superalgebra \mathcal{L}.

Let \mathcal{L} denote one of the Lie superalgebras $\mathfrak{g l}(m, n), \mathfrak{s l}(m, n)$, $\mathfrak{o s p}(m, n), \tilde{\mathfrak{g l}}(m)$, or $\widetilde{\mathfrak{s l}(m) \text {. The Grassmann-hull consists of block matrices }}$

$$
\left(\begin{array}{ll}
A_{0}\left(\Lambda_{\overline{0}}\right) & B_{1}\left(\Lambda_{\overline{1}}\right) \tag{5}\\
B_{0}\left(\Lambda_{\overline{1}}\right) & A_{1}\left(\Lambda_{\overline{0}}\right)
\end{array}\right) .
$$

The entries of the diagonal blocks A_{0} and A_{1} belong to $\Lambda_{\overline{0}}$, while the entries of the matrices B_{0} and B_{1} are from $\Lambda_{\overline{1}}$. We denote the Grassmann-hulls by $\mathfrak{g l}(m, n ; \Lambda), \mathfrak{s l}(m, n ; \Lambda), \mathfrak{o s p}(m, n ; \Lambda), \widetilde{\mathfrak{g l}(m ; \Lambda), \tilde{\mathfrak{s l}}(m ; \Lambda) \text {, respectively. Note }}$ that $\mathfrak{s l}(m, n ; \Lambda)$ is the LIE algebra of block matrices of type (5) such that $\operatorname{Tr}\left(A_{0}\left(\Lambda_{\overline{0}}\right)\right)=\operatorname{Tr}\left(A_{1}\left(\Lambda_{\overline{0}}\right)\right)$. Further, $\mathfrak{o s p}(m, 2 l ; \Lambda)$ is the LiE algebra of block matrices

$$
\left(\begin{array}{ccc}
A_{0}\left(\Lambda_{\overline{0}}\right) & B_{1}\left(\Lambda_{\overline{1}}\right) & B_{2}\left(\Lambda_{\overline{1}}\right) \\
-B_{2}^{\top}\left(\Lambda_{\overline{1}}\right) & A_{1}\left(\Lambda_{\overline{0}}\right) & A_{12}\left(\Lambda_{\overline{0}}\right) \\
B_{1}^{\top}\left(\Lambda_{\overline{0}}\right) & A_{21}\left(\Lambda_{\overline{0}}\right) & -A_{1}^{\top}\left(\Lambda_{\overline{0}}\right)
\end{array}\right)
$$

satisfying the relations $A_{0}^{\top}\left(\Lambda_{\overline{0}}\right)=A_{0}\left(\Lambda_{\overline{0}}\right), A_{12}^{\top}\left(\Lambda_{\overline{0}}\right)=A_{12}\left(\Lambda_{\overline{0}}\right), A_{21}^{\top}\left(\Lambda_{\overline{0}}\right)=$ $A_{21}\left(\Lambda_{\overline{0}}\right)$. Finally, $\widetilde{\mathfrak{s l}}(m ; \Lambda)$ consists of block matrices

$$
\left(\begin{array}{ll}
A\left(\Lambda_{\overline{0}}\right) & B\left(\Lambda_{\overline{1}}\right) \\
B\left(\Lambda_{\overline{1}}\right) & A\left(\Lambda_{\overline{0}}\right)
\end{array}\right)
$$

satisfying the relation $\operatorname{Tr} B\left(\Lambda_{\overline{1}}\right)=0$.

In all of our considerations Λ denotes an arbitrary finitely generated Grassmann algebra. Later it will become clear, that it is necessary to assume, that the number of generators "is not to small" with respect to m and n.

Let $p_{0}: \Lambda \rightarrow \Lambda_{0}=K$ denote the canonical projection of the \mathbb{Z}-graded algebra Λ onto its zero component. Then p_{0} defines a canonical projection of the Grassmann-hull $(\Lambda \otimes \mathcal{L})_{\overline{0}}$ of a Lie superalgebra \mathcal{L} onto its even part $\mathcal{L}_{\overline{0}}$. We denote it once more by p_{0}, so that $p_{0}(\lambda x)=p_{0}(\lambda) x$. With respect to the matrix Lie algebra $\mathfrak{g l}(m, n ; \Lambda)$ and its subalgebras we have

$$
p_{0}\left(\begin{array}{ll}
A_{0}\left(\Lambda_{\overline{0}}\right) & B_{1}\left(\Lambda_{\overline{1}}\right) \\
B_{0}\left(\Lambda_{\overline{1}}\right) & A_{1}\left(\Lambda_{\overline{0}}\right)
\end{array}\right)=\left(\begin{array}{cc}
A_{0} & 0 \\
0 & A_{1}
\end{array}\right)
$$

with entries from K in the diagonal blocks A_{0} and A_{1}.
In the case of $\mathfrak{o s p}(m, n ; \Lambda)$ the matrices A_{0} make up the Lie algebra $\mathfrak{o}(m)$, while the matrices A_{1} are the matrices of $\mathfrak{s p}(n)$.

In the same way we may define the Grassmann-hull of a \mathbb{Z}_{2}-graded associative algebra. The Grassmann-hull of the matrix algebra $\operatorname{Mat}(m, n)$ is denoted by $\operatorname{Mat}(m, n ; \Lambda)=(\Lambda \otimes \operatorname{Mat}(m, n))_{\overline{0}}$, the elements are the block matrices (5).

4. Grassmann Lie groups

The series GL, SL, OSp, $\widetilde{G L}, \widetilde{\text { SL }}$. We define matrix LiE groups corresponding to the Grassmann-hulls of matrix Lie superalgebras. First we answer the question of invertibility of a matrix (5) from $\operatorname{Mat}(m, n ; \Lambda)$.

A block matrix of type (5) is invertible iff the matrices $A_{0}=p_{0}\left(A_{0}\left(\Lambda_{\overline{0}}\right)\right)$ and $A_{1}=p_{0}\left(A_{1}\left(\Lambda_{\overline{0}}\right)\right)$ are invertible.

It follows that the diagonal blocks $A_{0}\left(\Lambda_{\overline{0}}\right)$ and $A_{1}\left(\Lambda_{\overline{0}}\right)$ are invertible for invertible block matrices. The inverse of a block matrix is written

$$
\left(\begin{array}{ll}
A_{0}^{(-1)}\left(\Lambda_{\overline{0}}\right) & B_{1}^{(-1)}\left(\Lambda_{\overline{1}}\right) \\
B_{0}^{(-1)}\left(\Lambda_{\overline{1}}\right) & A_{1}^{(-1)}\left(\Lambda_{\overline{0}}\right)
\end{array}\right)
$$

satisfying the equations

$$
\begin{aligned}
& A_{0}^{(-1)}\left(\Lambda_{\overline{0}}\right)=\left(A_{0}\left(\Lambda_{\overline{0}}\right)-B_{1}\left(\Lambda_{\overline{1}}\right) A_{1}\left(\Lambda_{\overline{0}}\right)^{-1} B_{0}\left(\Lambda_{\overline{1}}\right)\right)^{-1}, \\
& A_{1}^{(-1)}\left(\Lambda_{\overline{0}}\right)=\left(A_{1}\left(\Lambda_{\overline{0}}\right)-B_{0}\left(\Lambda_{\overline{1}}\right) A_{0}\left(\Lambda_{\overline{0}}\right)^{-1} B_{1}\left(\Lambda_{\overline{1}}\right)\right)^{-1}, \\
& B_{1}^{(-1)}\left(\Lambda_{\overline{1}}\right)=-A_{0}\left(\Lambda_{\overline{0}}\right)^{-1} B_{1}\left(\Lambda_{\overline{1}}\right)\left(A_{1}\left(\Lambda_{\overline{0}}\right)-B_{0}\left(\Lambda_{\overline{1}}\right) A_{0}\left(\Lambda_{\overline{0}}\right)^{-1} B_{1}\left(\Lambda_{\overline{1}}\right)\right)^{-1}, \\
& B_{0}^{(-1)}\left(\Lambda_{\overline{1}}\right)=-A_{1}\left(\Lambda_{\overline{0}}\right)^{-1} B_{0}\left(\Lambda_{\overline{1}}\right)\left(A_{0}\left(\Lambda_{\overline{0}}\right)-B_{1}\left(\Lambda_{\overline{1}}\right) A_{1}\left(\Lambda_{\overline{0}}\right)^{-1} B_{0}\left(\Lambda_{\overline{1}}\right)\right)^{-1} .
\end{aligned}
$$

Let $\operatorname{GL}(m, n ; \Lambda)$ denote the group of units in $\operatorname{Mat}(m, n ; \Lambda)$. It consists of the invertible block matrices of type (5) which for simplicity are written

$$
\mathcal{A}(\Lambda)=\left(\begin{array}{ll}
A_{0}(\Lambda) & B_{1}(\Lambda) \\
B_{0}(\Lambda) & A_{1}(\Lambda)
\end{array}\right) .
$$

The superdeterminant or Berezinian of \mathcal{A} is defined by $\operatorname{sdet} \mathcal{A}(\Lambda)=$ $\operatorname{det}\left(A_{0}(\Lambda)-B_{1}(\Lambda) A_{1}(\Lambda)^{-1} B_{0}(\Lambda)\right) \operatorname{det} A_{1}^{-1}(\Lambda)$. The superdeterminant is defined on the Grassmann Lie group GL $(m, n ; \Lambda)$. It is multiplicative, i.e., sdet is a homomorphism of GL $(m, n ; \Lambda)$ into the group of units K^{\times}of Λ.

Also, $\mathrm{SL}(m, n ; \Lambda)$ is the subgroup of $\mathrm{GL}(m, n ; \Lambda)$ defined by

$$
\operatorname{sdet} \mathcal{A}(\Lambda)=1
$$

or, equivalently, by

$$
\operatorname{det}\left(A_{0}(\Lambda)-B_{1}(\Lambda) A_{1}(\Lambda)^{-1} B_{0}(\Lambda)\right)=\operatorname{det} A_{1}(\Lambda)
$$

Using the projection $p_{0}: \Lambda \rightarrow K$ we get

$$
\operatorname{det} A_{0}=p_{0}\left(\operatorname{det} A_{0}(\Lambda)\right)=p_{0}\left(\operatorname{det} A_{1}(\Lambda)\right)=\operatorname{det} A_{1} .
$$

We observe that $\mathrm{GL}(m, n ; \Lambda)$ and $\mathrm{SL}(m, n ; \Lambda)$ are the Λ-matrix groups corresponding to the Λ-matrix LiE algebras $\mathfrak{g l}(m, n ; \Lambda)$ and $\mathfrak{s l}(m, n ; \Lambda)$, respectively.
$\operatorname{OSp}(m, n ; \Lambda)$ is the subgroup of $\operatorname{GL}(m, n ; \Lambda)$ defined by the following relations

$$
\begin{aligned}
& A_{0}(\Lambda)^{\top} A_{0}(\Lambda)-B_{0}(\Lambda)^{\top} I_{n} B_{0}(\Lambda)=E_{m} \\
& A_{0}(\Lambda)^{\top} B_{1}(\Lambda)-B_{0}(\Lambda)^{\top} I_{n} A_{1}(\Lambda)=0 \\
& B_{1}(\Lambda)^{\top} B_{1}(\Lambda)+A_{1}(\Lambda)^{\top} I_{n} A_{1}(\Lambda)=I_{n}
\end{aligned}
$$

Applying the projection p_{0} to these equations, we get

$$
A_{0}^{\top} A_{0}=E_{m} \quad \text { and } \quad A_{1}^{\top} I_{n} A_{1}=I_{n}
$$

hence $p_{0}: \operatorname{OSp}(m, n ; \Lambda) \rightarrow \mathrm{O}(m) \times \operatorname{Sp}(n)$.
$\operatorname{OSp}(m, n ; \Lambda)$ is the Λ-matrix group corresponding to the Λ-matrix Lie algebra $\mathfrak{o s p}(m, n ; \Lambda)$. The projection p_{0} is a homomorphism mapping the Grassmann Lie group $\operatorname{OSp}(m, n ; \Lambda)$ onto the Lie group $\mathrm{O}(m) \times \operatorname{Sp}(n)$ corresponding to the even part of $\mathfrak{o s p}(m, n)$.

We observe that $\widetilde{\mathrm{GL}}(m ; \Lambda)$ denotes the group of block matrices

$$
\widetilde{\mathcal{A}}(\Lambda)=\left(\begin{array}{ll}
A(\Lambda) & B(\Lambda) \\
B(\Lambda) & A(\Lambda)
\end{array}\right)
$$

with $A(\Lambda)=A\left(\Lambda_{\overline{0}}\right)$ and $B(\Lambda)=B\left(\Lambda_{\overline{1}}\right)$.
$\widetilde{\mathrm{SL}}(m ; \Lambda)$ is the subgroup of $\widetilde{\mathrm{GL}}(m ; \Lambda)$ consisting of those block matrices $\widetilde{\mathcal{A}}(\Lambda)$ satisfying $\widetilde{\operatorname{sdet}} \widetilde{\mathcal{A}}=1$. Here the superdeterminant of the second kind $\widetilde{\text { sdet }}$ is defined on the Grassmann Lie group $\widetilde{\mathrm{GL}}(m ; \Lambda)$ by

$$
\begin{equation*}
\widetilde{\operatorname{sdet}} \widetilde{\mathcal{A}}(\Lambda)=1+\operatorname{Tr} \log \left(E_{m}+A(\Lambda)^{-1} B(\Lambda)\right) . \tag{6}
\end{equation*}
$$

The relation (6) may be rewritten by

$$
\operatorname{Tr} \log \left(E_{m}+A(\Lambda)^{-1} B(\Lambda)\right)=\sum_{\nu} \frac{1}{2 \nu+1} \operatorname{Tr}\left(A(\Lambda)^{-1} B(\Lambda)\right)^{2 \nu+1}=0
$$

Notice that the entries of the product matrix $A(\Lambda)^{-1} B(\Lambda)$ belong to $\Lambda_{\overline{1}}$ which implies that the series of the logarithm is finite.

The superdeterminant of the second kind is multiplicative. Thus $\widetilde{\text { sdet }}$ is a homomorphism of $\widetilde{\mathrm{GL}}(m ; \Lambda)$ into the group K^{\times}of units in Λ. The projection p_{0} maps the Grassmann LiE group $\widetilde{\mathrm{SL}}(m ; \Lambda)$ onto the LIE group GL (m) which corresponds to the even part of $\widetilde{\mathfrak{s l}}(m)$.
$\widetilde{\mathrm{GL}}(m ; \Lambda)$ and $\widetilde{\mathrm{SL}}(m ; \Lambda)$ are the Λ-matrix groups corresponding to the Λ-matrix LIE algebras $\widetilde{\mathfrak{g l}}(m ; \Lambda)$ and $\widetilde{\mathfrak{s l}}(m ; \Lambda)$, respectively.

The center of the Λ-matrix group $\widetilde{\mathrm{SL}}(m ; \Lambda)$ consists of the even multiples of the unit matrix, and the quotient

$$
\widetilde{\mathrm{SL}}(m+1 ; \Lambda) /\left\{\lambda_{\overline{0}} E_{2 m+2}: \lambda_{\overline{0}} \in \Lambda_{\overline{0}}\right\}
$$

is a Grassmann Lie group, which corresponds to the Grassmann -hull of the Lie superalgebra $\mathbf{Q}(m)$.

5. Hopf Superalgebras

Let $\mathcal{H}=\mathcal{H}_{\overline{0}} \oplus \mathcal{H}_{\overline{1}}$ denote a \mathbb{Z}_{2}-graded Hopf algebra. Here \mathcal{H} is a \mathbb{Z}_{2} graded associative algebra with unit-the product and the unit are considered as linear mappings $\mu: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H}$ and $\iota: K \rightarrow \mathcal{H}$, respectively endowed with a coproduct $\Delta: \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$, a counit $\varepsilon: \mathcal{H} \rightarrow K$, and an antipode $\sigma: \mathcal{H} \rightarrow \mathcal{H}$. Here Δ and ε are homomorphisms of the corresponding \mathbb{Z}_{2}-graded algebras, σ is an antiautomorphism of \mathcal{H}. The following relations are satisfied $\left(\Delta \otimes \operatorname{id}_{\mathcal{H}}\right) \circ \Delta=\left(\operatorname{id}_{\mathcal{H}} \otimes \Delta\right) \circ \Delta$, called the coassociativity of the coproduct, $\left(\varepsilon \otimes \mathrm{id}_{\mathcal{H}}\right) \circ \Delta=\mathrm{id}_{\mathcal{H}}=\left(\mathrm{id}_{\mathcal{H}} \otimes \varepsilon\right) \circ \Delta$, and $\mu \circ\left(\sigma \otimes \mathrm{id}_{\mathcal{H}}\right) \circ \Delta=\iota \varepsilon=\mu \circ\left(\mathrm{id}_{\mathcal{H}} \otimes \sigma\right) \circ \Delta$. Let $\nu: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$ denote the twist homomorphism given by $\nu\left(h_{1} \otimes h_{2}\right)=$ $(-1)^{\left|h_{1}\right|\left|h_{2}\right|} h_{2} h_{1}$ for homogeneous elements h_{1} and h_{2} in \mathcal{H}. Then \mathcal{H} is called commutative or cocommutative if the relations

$$
\mu \circ \nu=\mu \quad \text { or } \nu \circ \Delta=\Delta
$$

hold, respectively.
Example 1 ${ }^{\text {口 }}$. Put $\mathcal{H}=K\left[X_{1}, \ldots, X_{m}\right] \otimes \Lambda\left(Y_{1}, \ldots, Y_{n}\right)$. Then we have

$$
\begin{aligned}
& \mathcal{H}_{\overline{0}}=K\left[X_{1}, \ldots, X_{m}\right] \otimes \Lambda_{\overline{0}}\left(Y_{1}, \ldots, Y_{n}\right), \\
& \mathcal{H}_{\overline{1}}=K\left[X_{1}, \ldots, X_{m}\right] \otimes \Lambda_{\overline{1}}\left(Y_{1}, \ldots, Y_{n}\right) .
\end{aligned}
$$

Now \mathcal{H} is a Hopf algebra with respect to the usual product, the usual unit, the coproduct $\Delta\left(X_{\mu}\right)=1 \otimes X_{\mu}+X_{\mu} \otimes 1, \Delta\left(Y_{\nu}\right)=1 \otimes Y_{\nu}+Y_{\nu} \otimes 1$, $\Delta(1)=1 \otimes 1$, the counit $\varepsilon\left(X_{\mu}\right)=\varepsilon\left(Y_{\nu}\right)=0, \varepsilon(1)=1$, and the antipode $\sigma\left(X_{\mu}\right)=-X_{\mu}, \sigma\left(Y_{\nu}\right)=-Y_{\nu}, \sigma(1)=1$, for $\mu=1, \ldots, m, \nu=1, \ldots, n$. The Hopf superalgebra \mathcal{H} is commutative and cocommutative.

Example $2^{\text {a }}$. Let $G=\operatorname{GL}(m, n ; \Lambda)$ denote the Λ-matrix group defined in Section 4. We define a block matrix of commuting and anticommuting variables by

$$
\mathcal{X}=\left(\begin{array}{ll}
X & Y^{\prime} \\
Y & X^{\prime}
\end{array}\right)
$$

We assume

$$
\begin{array}{ll}
X=\left(X_{i j}\right)_{\substack{i=1, \ldots m \\
j=1, \ldots m}}, \quad Y^{\prime}=\left(Y_{i \ell}^{\prime}\right)_{\substack{i=1, \ldots, m \\
\ell=1, \ldots, n}}, \\
Y=\left(Y_{k j}\right)_{\substack{k=1, \ldots, n \\
j=1, \ldots m}}, & X^{\prime}=\left(X_{k \ell}^{\prime}\right)_{\substack{k=1, \ldots, n \\
\ell=1, \ldots, n}} .
\end{array}
$$

Put

$$
\mathcal{H}(G)=K\left[X_{i j}, x, X_{k \ell}^{\prime}, x^{\prime}\right] \otimes \Lambda\left(Y_{i \ell}^{\prime}, Y_{k j}\right) /\left(x \operatorname{det}\left|X_{i j}\right|-1, x^{\prime} \operatorname{det}\left|X_{k \ell}^{\prime}\right|-1\right),
$$

then $\mathcal{H}(G)$ is an associative and commutative \mathbb{Z}_{2}-graded algebra with unit. Using the matrix product we define the coproduct as follows:

$$
\begin{aligned}
\Delta\left(X_{i j}\right) & =\sum_{j^{\prime}=1}^{m} X_{i j^{\prime}} \otimes X_{j^{\prime} j}+\sum_{\ell^{\prime}=1}^{n} Y_{i \ell^{\prime}}^{\prime} \otimes Y_{\ell^{\prime} \ell}, \\
\Delta\left(X_{k \ell}^{\prime}\right) & =\sum_{j^{\prime}=1}^{m} Y_{k j^{\prime}} \otimes Y_{j^{\prime} \ell}^{\prime}+\sum_{\ell^{\prime}=1}^{n} X_{k \ell^{\prime}}^{\prime} \otimes X_{\ell^{\prime} l}^{\prime}, \\
\Delta\left(Y_{i \ell}^{\prime}\right) & =\sum_{j^{\prime}=1}^{m} X_{i j^{\prime}} \otimes Y_{j^{\prime} \ell}^{\prime}+\sum_{\ell^{\prime}=1}^{n} Y_{i \ell^{\prime}}^{\prime} \otimes X_{\ell^{\prime} \ell}^{\prime}, \\
\Delta\left(Y_{k j}\right) & =\sum_{j^{\prime}=1}^{m} Y_{k j^{\prime}} \otimes X_{j^{\prime} j}+\sum_{\ell^{\prime}=1}^{n} X_{k \ell^{\prime}}^{\prime} \otimes Y_{\ell^{\prime} j}, \\
\Delta(x) & =x \otimes x, \\
\Delta\left(x^{\prime}\right) & =x^{\prime} \otimes x^{\prime} .
\end{aligned}
$$

For short we may write $\Delta(\mathcal{X})=\mathcal{X} \otimes \mathcal{X}$. The counit is given by

$$
\begin{aligned}
\varepsilon\left(X_{i j}\right) & =\delta_{i j}, \\
\varepsilon\left(X_{k \ell}^{\prime}\right) & =\delta_{k l}, \\
\varepsilon\left(Y_{i \ell}^{\prime}\right) & =0 . \\
\varepsilon\left(Y_{k j}\right) & =0, \\
\varepsilon(x) & =1, \\
\varepsilon\left(x^{\prime}\right) & =1 .
\end{aligned}
$$

For short we may write $\varepsilon(\mathcal{X})=E_{m+n}$. The coproduct in $\mathcal{H}(G)$ mirrors the matrix product, i.e., the product in the group G, the counit represents the evaluation at the unit matrix, i.e., the evaluation at the identity of the group G. Now we define the antipode, which mirrors the inverse of matrices or group elements

$$
\begin{aligned}
\sigma(X) & =\left(X-Y^{\prime} X^{\prime-1} Y\right)^{-1}, \\
\sigma\left(X^{\prime}\right) & =\left(X^{\prime}-Y X^{-1} Y^{\prime}\right)^{-1}, \\
\sigma\left(Y^{\prime}\right) & =-X^{-1} Y^{\prime} \sigma\left(X, \sigma(Y)=-X^{\prime-1} Y \sigma\left(X^{\prime}\right),\right. \\
\sigma(x) & =\operatorname{det} X, \\
\sigma\left(x^{\prime}\right) & =\operatorname{det} X^{\prime} .
\end{aligned}
$$

For short we may write $\sigma(\mathcal{X})=\mathcal{X}^{-1}$. Now $\mathcal{H}(G)$ is a commutative and not cocommutative Hopf superalgebra, which we shall denote by $\mathcal{P}(m, n)$.

Example 3 ${ }^{\text {口 }}$. Assume $G=\operatorname{SL}(m, n ; \Lambda)$. Put

$$
\begin{aligned}
\mathcal{H}(G) & =\mathcal{P}(m, n) /(\operatorname{sdet} \mathcal{X}-1) \\
& =\mathcal{P}(m, n) /\left(\operatorname{det}\left(X-Y^{\prime} X^{\prime-1} Y\right)-\operatorname{det} X^{\prime}\right)
\end{aligned}
$$

It follows from $\operatorname{sdet}\left(\mathcal{X}_{1} \mathcal{X}_{2}\right)=\operatorname{sdet} \mathcal{X}_{1} \operatorname{sdet} \mathcal{X}_{2}$ that the homogeneous ideal generated by $\operatorname{sdet} \mathcal{X}-1$ is a coideal, too. We have

$$
\begin{aligned}
\Delta(\operatorname{sdet} \mathcal{X}-1) & =\Delta \operatorname{sdet} \mathcal{X}-1 \otimes 1 \\
& =\operatorname{sdet}(\mathcal{X} \otimes \mathcal{X})-1 \otimes 1 \\
& =\operatorname{sdet} \mathcal{X} \otimes \operatorname{sdet} \mathcal{X}-1 \otimes 1 \\
& =\operatorname{sdet} \mathcal{X} \otimes \operatorname{sdet} \mathcal{X}-\operatorname{sdet} \mathcal{X} \otimes 1+\operatorname{sdet} \mathcal{X} \otimes 1-1 \otimes 1 \\
& =\operatorname{sdet} \mathcal{X} \otimes(\operatorname{sdet} \mathcal{X}-1)+(\operatorname{sdet} \mathcal{X}-1) \otimes 1
\end{aligned}
$$

Moreover, $\varepsilon(\operatorname{sdet} \mathcal{X})=1$ and $\sigma(\operatorname{sdet} \mathcal{X})=\operatorname{sdet} \mathcal{X}^{-1}$, i.e., the ideal generated by $\operatorname{sdet} \mathcal{X}-1$ is contained in the kernel of ε and invariant under σ. Hence it is possible to factorize $\Delta, \varepsilon, \sigma$, and $\mathcal{H}(G)$ becomes a commutative and not cocommutative Hopf superalgebra, which is denoted by $\mathcal{S P}(m, n)$.

A Λ-matrix group, i.e, a subgroup of $\mathrm{GL}(m, n ; \Lambda)$ is called algebraic, if it is the annihilator set of a \mathbb{Z}_{2}-graded ideal of $\mathcal{P}(m, n)$.

Let G denote an algebraic Λ-matrix group, and let $I(G)$ denote its annihilator ideal in $\mathcal{P}(m, n)$, then $\mathcal{H}(G)=\mathcal{P}(m, n) / I(G)$ is a Hopf superalgebra. The coproduct, the counit, and the antipode of $\mathcal{H}(G)$ are induced by factorization of the coproduct, the counit, and the antipode of $\mathcal{P}(m, n)$. The annihilator ideal $I(G)$ is a coideal of $\mathcal{P}(m, n)$, it is contained in the kernel of ε, and it is invariant under σ.

Example 4^{\square}. The Λ-matrix group $\operatorname{OSp}(m, n ; \Lambda)$ is an algebraic Λ-matrix group. Its annihilator ideal is generated by the "polynomials" $X^{\top} X-Y^{\top} I_{n} Y-$ $E_{m}, X^{\top} Y^{\prime}-Y I_{n} X^{\prime}$, and $Y^{\prime \top} Y^{\prime}+X^{\prime \top} I_{n} X^{\prime}-I_{n}$. The corresponding HopF superalgebra is denoted by $\mathcal{O S p} \mathcal{P}(m, n)$.

Example 5^{\square}. The Λ-matrix group $\widetilde{\mathrm{GL}}(m ; \Lambda)$ is an algebraic Λ-matrix group. Its Hopf superalgebra is denoted by $\widetilde{\mathcal{P}}(m)$:

$$
\widetilde{\mathcal{P}}(m) \cong K\left[X_{i j}, x\right] \otimes \Lambda\left(Y_{i j}\right) /\left(x \operatorname{det}\left|X_{i j}\right|-1\right)
$$

Example 6 ${ }^{\text {a }}$. The Λ-matrix group $\widetilde{\mathrm{SL}}(m ; \Lambda)$ is an algebraic Λ-matrix group. Its Hopf superalgebra is denoted by $\widetilde{\mathcal{S P}}(m)$.

A Hopf superalgebra $\mathcal{H}=\mathcal{H}_{\overline{0}} \oplus \mathcal{H}_{\overline{1}}$ is called affine if it is commutative and finitely generated.

The Hopf superalgebra $\mathcal{H}(G)=\mathcal{P}(m, n) / I(G)$ of an algebraic Λ-matrix group G is affine.

The Hopf superalgebras $\mathcal{P}(m, n), \mathcal{S} \mathcal{P}(m, n), \mathcal{O} \mathcal{S} p \mathcal{P}(m, n), \widetilde{\mathcal{P}}(m)$, and $\widetilde{\mathcal{S P}}(m)$ are affine HopF superalgebras.

We mention the following
Structure Theorem. Let \mathcal{H} denote an affine Hopf superalgebra. Then there exists an affine Hopf algebra \mathcal{H}_{0} and odd elements W_{1}, \ldots, W_{s} such that $\mathcal{H} \cong \mathcal{H}_{0} \otimes \Lambda\left(W_{1}, \ldots, W_{s}\right)$. The isomorphism is an isomorphism of commutative superalgebras. The following relations hold:

$$
\begin{aligned}
(p \otimes p) \circ \Delta & =\Delta_{0} \circ p, \\
\varepsilon & =\varepsilon_{0} \circ p, \\
p \circ \sigma & =\sigma_{0} \circ p .
\end{aligned}
$$

Here p denotes the canonical projection annihilating all odd elements of \mathcal{H}, i.e., $p: \mathcal{H} \rightarrow \mathcal{H}_{0}$, and $\Delta_{0} \varepsilon_{0}, \sigma_{0}$ denote the coproduct, the counit, and the antipode of the Hopf algebra \mathcal{H}_{0}, respectively.

The affine Hopf algebra \mathcal{H}_{0} is the algebra of polynomial functions of an (affine) algebraic group G_{0}.

Example 2 ${ }^{\square}$ (continued). Assume $G=\operatorname{GL}(m, n ; \Lambda), \mathcal{H}=\mathcal{H}(G)=\mathcal{P}(m, n)$. Then one has

$$
\mathcal{H}_{0} \cong K\left[X_{i j}, x, X_{k l}^{\prime}, x^{\prime}\right] /\left(x \operatorname{det}\left|X_{i j}\right|-1, x^{\prime} \operatorname{det}\left|X_{k l}^{\prime}\right|-1\right),
$$

and

$$
G_{0} \cong \mathrm{GL}(m) \times \mathrm{GL}(n)=p_{0}(\mathrm{GL}(m, n ; \Lambda)) .
$$

Example 3^{\square} (continued). Assume $G=\operatorname{SL}(m, n ; \Lambda) \mathcal{H}=\mathcal{H}(G)=\mathcal{S P}(m, n)$. Then one has

$$
\mathcal{H}_{0} \cong K\left[X_{i j}, x, X_{k \ell}^{\prime}, x^{\prime}\right] /\left(x \operatorname{det}\left|X_{i j}\right|-1, x^{\prime} \operatorname{det}\left|X_{k \ell}^{\prime}\right|-1, \operatorname{det}\left|X_{i j}\right|-\operatorname{det}\left|X_{k \ell}^{\prime}\right|\right),
$$

and

$$
G_{0} \cong \mathrm{SL}(m) \times \mathrm{SL}(n) \times K^{\times}=p_{0}(\mathrm{SL}(m, n ; \Lambda) .
$$

Example 4^{\square} (continued). Assume $G=\operatorname{OSp}(m, n ; \Lambda)$,

$$
\mathcal{H}=\mathcal{H}(G)=\mathcal{O} \mathcal{S} p \mathcal{P}(m, n) .
$$

Then one has

$$
\mathcal{H}_{0} \cong K\left[X_{i j}, X_{k \ell}^{\prime},\right] / I_{0},
$$

and the ideal I_{0} is generated by

$$
\begin{aligned}
& \sum_{i^{\prime}=1}^{m} X_{i^{\prime} i} X_{i^{\prime} j}-\delta_{i j}, \\
& \sum_{k^{\prime}=0}^{n^{\prime}-1}\left(X_{n-k^{\prime}, k}^{\prime} X_{k^{\prime}+1, \ell}^{\prime}-X_{n^{\prime}-k^{\prime}, k}^{\prime} X_{n^{\prime}+k^{\prime}+1, \ell}^{\prime}-\delta_{k \ell}\right), \quad\left(n=2 n^{\prime}\right) .
\end{aligned}
$$

This implies $G_{0} \cong \mathrm{O}(m) \times \operatorname{Sp}(n)=p_{0}(\operatorname{OSp}(m, n ; \Lambda))$.

Example 5^{\square} (continued). Assume $G=\widetilde{\mathrm{GL}}(m ; \Lambda), \mathcal{H}=\mathcal{H}(G)=\widetilde{\mathcal{P}}(m)$. Then one has

$$
\mathcal{H}_{0} \cong K\left[X_{i j}, x\right] /\left(x \operatorname{det}\left|X_{i j}\right|-1\right)
$$

and

$$
G_{0} \cong \mathrm{GL}(m)=p_{0}(\widetilde{\mathrm{GL}}(m ; \Lambda)) .
$$

Example 6 ${ }^{\square}$ (continued). Assume $G=\widetilde{\mathrm{SL}}(m ; \Lambda), \mathcal{H}=\mathcal{H}(G)=\widetilde{\mathcal{S P}}(m)$. Then one has

$$
\mathcal{H}_{0} \cong K\left[X_{i j}, x\right] /\left(x \operatorname{det}\left|X_{i j}\right|-1\right)
$$

and

$$
G_{0} \cong \mathrm{GL}(m)=p_{0}(\widetilde{\mathrm{SL}}(m ; \Lambda)) .
$$

Notice that the isomorphism of superalgebras stated in the structure theorem is not a canonical one. In some sense it is the choice of a coordinate system.

Example 6^{\square} (continued once more). We have

$$
\widetilde{\mathcal{S P}}(m) \cong K\left[X_{i j}, x\right] \otimes \Lambda\left(Y_{i j}\right) / I(\widetilde{\mathrm{SL}}(m ; \Lambda)) .
$$

The annihilator ideal $I(\widetilde{\mathrm{SL}}(m ; \Lambda))$ is generated by x det $\left|X_{i j}\right|-1$ and $\operatorname{Tr} \log \left(E_{m}+\right.$ $\left.X^{-1} Y\right)=\sum_{\nu} \frac{1}{2 \nu+1} \operatorname{Tr}\left(X^{-1} Y\right)^{2 \nu+1}$. Choosing instead of the $Y_{i j}$ new odd variables $W_{i j}$ defined by the matrix equation $W=X^{-1} Y$, then using the second relation it is possible to eliminate one of the odd variables. In this case we have $s=m^{2}-1$.

The last two sections, namely, Section 6, "Affine algebraic Supergroups" and Section 7, "The Hopf dual. Representations", as well as the list of references are postponed to the next seminar.

References

References to the literature will be given in the sequel to this article:
[1] Boseck, H., Lie superalgebras and Lie supergroups, II, Seminar Sophus Lie (Heldermann Verlag Berlin) 2 (1992), to appear.

Fachrichtungen Mathematik/Informatik

