On complex Lie algebras with a simple real form

S. S. L. Darmstadt

The following observations, motivated by a question of LAWSON's [1], does not seem to be readily accessible in the literature.

Let \mathfrak{a} denote a complex Lie algebra and \mathfrak{g} a real subalgebra. Then $\mathfrak{g}+i\mathfrak{g}$ and $\mathfrak{g}\cap i\mathfrak{g}$ are complex subalgebras. If $X \in \mathfrak{g}$ then $[X, \mathfrak{g}\cap i\mathfrak{g}] \subseteq [X, \mathfrak{g}] \cap i[X, \mathfrak{g}] \subseteq \mathfrak{g} \cap i\mathfrak{g}$. Then $[iX, \mathfrak{g} \cap i\mathfrak{g}] = i[X, \mathfrak{g} \cap i\mathfrak{g}] \subseteq i(\mathfrak{g} \cap i\mathfrak{g}) = \mathfrak{g} \cap i\mathfrak{g}$. Thus $\mathfrak{g} \cap i\mathfrak{g}$ is an ideal of $\mathfrak{g} + i\mathfrak{g}$.

Remark 1. If \mathfrak{g} is simple, then either $\mathfrak{g} = \mathfrak{g} \cap i\mathfrak{g}$, i.e., $i\mathfrak{g} = \mathfrak{g}$ and \mathfrak{g} is a complex subalgebra, or else $\mathfrak{g} \cap i\mathfrak{g} = \{0\}$, i.e. $\mathfrak{g} + i\mathfrak{g} = \mathfrak{g} \oplus i\mathfrak{g} \cong \mathbb{C} \otimes \mathfrak{g}$ is the complexification of \mathfrak{g} embedded into \mathfrak{a} .

Lemma 2. Assume $\mathfrak{g}_1 \oplus \mathfrak{i}\mathfrak{g}_1 \cong \mathbb{C} \otimes \mathfrak{g}_1$ and $\mathfrak{g}_2 \oplus \mathfrak{i}\mathfrak{g}_2 \cong \mathbb{C} \otimes \mathfrak{g}_2$, and suppose that there is a morphism $f:\mathfrak{g}_1 \to \mathfrak{g}_2$ of real Lie algebras. Then $F:\mathfrak{g}_1 \oplus \mathfrak{i}\mathfrak{g}_1 \to \mathfrak{g}_2 \oplus \mathfrak{i}\mathfrak{g}_2$, $F(X + \mathfrak{i}Y) = f(X) + \mathfrak{i}f(Y)$ is a morphism of complex algebras.

Proof. Compute or observe that under the isomorphisms $\mathfrak{g}_j + i\mathfrak{g}_j \cong \mathbb{C} \otimes \mathfrak{g}_j$ the map F corresponds to the map $\mathrm{id}_{\mathbb{C}} \otimes f \colon \mathbb{C} \otimes \mathfrak{g}_1 \to \mathbb{C} \otimes \mathfrak{g}_2$!

If \mathfrak{a} is the complexification of a real simple Lie algebra \mathfrak{g} which itself is the underlying real vector space of a complex Lie algebra then $\mathfrak{a} = \mathfrak{g} \oplus i\mathfrak{g}$ has a real involution τ given by $\tau(X + iY) = X - iY$ which is a complex conjugate automorphism of \mathfrak{a} , satisfying $\tau(iZ) = -i\tau(Z)$ for all $Z \in \mathfrak{a}$. The complex Lie algebra \mathfrak{a} is isomorphic to the direct sum $\mathfrak{g}^+ \oplus \mathfrak{g}^-$ of two simple complex ideals which are conjugate complex (i.e., $g^- = \tau(g^+)$). These may nevertheless be isomorphic as complex algebras. Each real isomorphism $f:\mathfrak{g}^+ \to \mathfrak{g}^-$ gives a subalgebra $\mathfrak{g}_f = \{X \oplus f(X): X \in \mathfrak{g}^+\}$ which is isomorphic to $\mathfrak{g}^+ \cong \mathfrak{g}$. We call these graph subalgebras of \mathfrak{a} . If we define $\sigma:\mathfrak{g}^+ \to \mathfrak{g}^-$ by $\sigma(X) = \tau(X)$, i.e., by restricting and corestricting τ , then $\mathfrak{g} = \mathfrak{g}_{\sigma}$. The graph subalgebra \mathfrak{g}_f is complex if and only if $f:\mathfrak{g}^+ \to \mathfrak{g}^-$ is a complex isomorphism. A real automorphism of \mathfrak{a} will be called special if it leaves the ideals \mathfrak{g}^{\pm} invariant.

Lemma 3. For two graph subalgebras \mathfrak{g}_f and \mathfrak{g}_g there is a special real automorphism F of \mathfrak{a} with $F(\mathfrak{g}_f) = \mathfrak{g}_g$. If $f = \sigma$ and \mathfrak{g}_g is complex, then F is neither complex nor complex conjugate.

Proof. We note that $gf^{-1}: \mathfrak{g}^- \to \mathfrak{g}^-$ is an automorphism α of \mathfrak{g}^- , and $g = \alpha \circ f$. We define a special automorphism $F: \mathfrak{a} \to \mathfrak{a}$ by $F(X \oplus Y) = X \oplus \alpha(Y)$. Now we have $\mathfrak{g}_g = \{X \oplus g(X): X \in \mathfrak{g}^+\} = \{X \oplus \alpha(f(X)): X \in \mathfrak{g}^+\} = \{X \oplus \alpha(f(X)): X \in \mathfrak{g}^+\}$ $F{X \oplus f(X): X \in \mathfrak{g}} = F(\mathfrak{g}_f)$. Suppose that $f = \sigma$ and that g is complex, then $F|\mathfrak{g}^+ = \mathrm{id}_{\mathfrak{g}^+}$ is complex and $F|\mathfrak{g}^- = \alpha$ is complex conjugate. Thus F is neither complex nor complex conjugate.

Proposition 4. Let \mathfrak{a} be a complex Lie algebra with a simple real form \mathfrak{g} and a real subalgebra \mathfrak{g}^* which is isomorphic to \mathfrak{g} . Then one of the following mutually exclusive cases occurs:

- (A) There is a complex automorphism $F: \mathfrak{a} \to \mathfrak{a}$ with $F(\mathfrak{g}) = \mathfrak{g}^*$.
- (B) \mathfrak{a} is not simple, and there is a special real autmorphism $F: \mathfrak{a} \to \mathfrak{a}$ which is neither complex nor complex conjugate with $F(\mathfrak{g}) = \mathfrak{g}^*$.
- (C) a is not simple, and g* is one of the two unique ideals g⁺ or g⁻ with a = g⁺ ⊕ g⁻. There is no isomorphism of a mapping g to g*, but the projection onto g* is a complex endomorphism of a mapping g isomorphically onto g*.

Proof. Since $\mathfrak{g}^* \cong \mathfrak{g}$, the real subalgebra \mathfrak{g}^* is simple. By Remark 1, we have two cases: Case (i): $\mathfrak{g}^* \oplus i\mathfrak{g}^*$. Case (ii): $i\mathfrak{g}^* = \mathfrak{g}^*$.

In Case (i), Lemma 2 shows the existence of an endomorphism F of \mathfrak{a} with $F(\mathfrak{g}) = \mathfrak{g}^*$. If \mathfrak{a} is simple, then F must be an automorphism. If $\mathfrak{a} = \mathfrak{g}^+ \oplus \mathfrak{g}^-$ then the complex endomorphism F must respect the two summands. If it were zero on one of the summands, then \mathfrak{g} would have to be contained in the other, but \mathfrak{g} is contained in neither. Hence F is an automorphism and we are in Case (A).

In Case (ii), because of $\mathfrak{g} \cong \mathfrak{g}^*$, the algebra \mathfrak{a} is the complexification of the underlying real algebra of a complex simple Lie algebra and is therefore of the form $\mathfrak{g} = \mathfrak{g}^+ \oplus \mathfrak{g}^-$ according to remarks preceding Lemma 3. The following mutually exclusive cases occur: (a) $\mathfrak{g}^* = \mathfrak{g}^+$. (b) $\mathfrak{g}^* = \mathfrak{g}^-$. (c) \mathfrak{g}^* is a complex graph subalgebra. In Cases (a) and (b) we have Case (C) of the Proposition. Then \mathfrak{g}^* is an ideal while \mathfrak{g} is not. Hence no real or complex automorphism of \mathfrak{a} maps \mathfrak{g} onto \mathfrak{g}^* . In Case (c) we apply Lemma 3 to the two graph subalgebras $\mathfrak{g} = \mathfrak{g}_{\sigma}$ and \mathfrak{g}^* and find ourselves in Case (B) of the Proposition.

Corollary 5. If \mathfrak{a} is a simple complex Lie algebra and \mathfrak{g} a real form, and if \mathfrak{g}^* is a real subalgebra of \mathfrak{a} which is isomorphic to \mathfrak{g} then there is a complex automorphism of \mathfrak{a} mapping \mathfrak{g} onto \mathfrak{g}^* .

We remark, that the automorphism group $\operatorname{Aut}(\mathfrak{g})$ of a complex simple Lie algebra is a semidirect product of the normal connected subgroup $\operatorname{Int}(\mathfrak{g}) = \langle e^{\operatorname{ad} X} \colon X \in \mathfrak{g} \rangle$ of inner automorphisms by a finite group E, namely, the automorphism group of a basis of a root system. The group E is of order 2 for A_n , n > 1, D_n , $n \neq 4$, E_6 and of order 3 for D_4 , and it is trivial in all other cases. (See [3] or [2], notably p. 298.)

Corollary 6. Let A be a complex simple and simply connected Lie group with complex conjugation κ , and let G denote the real form of elements fixed under κ . Let H denote any real analytic subgroup of A whose Lie algebra is isomorphic

to $\mathfrak{g} = L(G)$. Then H is conjugate to G under a complex automorphism of A. In particular, A is closed and isomorphic to H.

Proof. The Lie algebra \mathfrak{a} of A is the complexification of \mathfrak{g} and is simple. Hence we are in Case (A) of Proposition 4 and find a complex automorphism $F: \mathfrak{a} \to \mathfrak{a}$ with $F(g) = \mathfrak{h}$. We have Aut $\mathfrak{g} = (\operatorname{Inn} \mathfrak{g}) \rtimes E = \operatorname{Ad}(G) \rtimes E$ with a finite group E or order 1,2, or 3 according to the list above. Since A is simply connected, there is a unique automorphism $f: A \to A$ inducing F. The group H is connected (see e.g. [2], p. 214, Theorem 9). The analytic groups H and f(G) have the same Lie algebra and are both connected. Hence they agree.

If the group of automorphisms of \mathfrak{a} fixing \mathfrak{g} as a whole contains an automorphism which is not inner, or if there are no outer automorphisms of \mathfrak{a} then the group of inner automorphisms acts transitively on the set of subalgebras isomorphic to \mathfrak{g} . The algebra $\mathfrak{sl}(n\mathbb{C})$ (realizing type A_{n-1}) for instance admits a non-inner involution of the form $X \mapsto -X^{\top}$ which leaves $\mathfrak{sl}(n,\mathbb{R})$ invariant. A similar statement holds for D_n , n odd, and E_6 (see [2], 297f.) In such cases, in Corollary 6, the groups G and H are conjugate under an inner automorphism.

References

- [1] Lawson, J. D., A question on the simple real forms of the Lie algebra $sp(2,\mathbb{C})$, e-mail message, October 1991.
- [2] Onishchik, A. L., and E. B. Vinberg, "Lie Groups and Algebraic Groups", Springer-Verlag Berlin etc., 1990.
- [3] Tits, J., "Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen", (Springer) Lecture Notes in Mathematics **40** (1967).

Karl H. Hofmann Fachbereich Mathematik Technische Hochschule Darmstadt Schloßgartenstraße 7 D-6100 Darmstadt, Germany

Received October 10, 1991