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A short course on the Lie theory of Semigroups II
Lie Semialgebras

Anselm Eggert

Recall the definition 1.4 of Lie semialgebras. In the present discussion,
we will call them simply semialgebras for short. We collect some material, which
mostly can be found in [4].

Using the Propositions 1.3, 1.5 and 1.7, one observes immediately that
every invariant wedge is a semialgebra and that every semialgebra is a Lie
wedge. (For a rough orientation the following statement may be helpful: There
are “many” Lie wedges that are not semialgebras, but there are only “few”
semialgebras that are not invariant.)

There is a classification of invariant wedges due to Olshanskĭi, Vin-
berg, Paneitz, Kumaresan, Ranjan, Hilgert and Hofmann that can be
found in [4]. Furthermore, much in known about Lie algebras that contain
pointed invariant wedges with inner points. Spindler has given an explicit
construction of all these Lie algebras in [6].

Thus, the invariant wedges may serve as a supply of well understood
semialgebras. However, not every semialgebra is invariant. There is another
class of wellknown semialgebras, namely those that are special in the sense of
Part I of this “short course”. Typically, these are not invariant.

A half space is a semialgebra if and only if its bounding hyperplane
h(w) is a subalgebra. Since an arbitrary intersection of semialgebras is again
a semialgebra, this gives us again a large supply of semialgebras. For these, a
special term is usual:

Definition 2.1. Let g be a Lie algebra. A semialgebra that is a half space
in g is called a half space semialgebra, an an arbitrary intersection of half space
semialgebras is called an intersection semialgebra or just intersection algebra.
The german term is “Schnitt-Semialgebra” or “Schnittalgebra”.

Typically, intersection semialgebras are far from being invariant. On the
other hand, Hofmann achieved a classification of hyperplane subalgebras in [5],
so intersection semialgebras are fully understood, and we may consider them as
classified.

One final remark concludes this introduction: Usually, we will restrict
our attention to semialgebras that generate the underlying Lie algebra as a vector
space. This no loss of generality because of the follwing lemma, which follows
easily from Proposition 1.5.

Lemma 2.2. Let w be a semialgebra in g . Then w−w ist a subalgebra.
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A wedge w in g that fulfills w − w = g will be called generating, and
we note that a wedge is generating if and only if it contains inner points.

Examples

In order to establish a certain intuition about semialgebras, it is appro-
priate to take a look at some examples. In a Lie algebra of dimension less or
equal to 3, the follwing lemma leads easily to a description of the semialgebras
contained in it.

Lemma 2.3. Let g be a Lie algebra with dim g ≤ 3 . Then every generating
semialgebra w in g is an intersection algebra.

Proof. Let w be a semialgebra. From convex analysis we take the information
that

w =
⋂{

Lx(w) : x ∈W and tx(w) is a hyperplane
}
.

Here, Lx(w) denotes the half space bounded by the tangent space tx(w) and
containing w .

Next we show that all these half spaces Lx(w) are in fact semialgebras.
Let x ∈ w such that t := tx(w) is a hyperplane. we have to show that t is a
subalgebra. Certainly, there is an element y ∈ t such that t = Rx+Ry . A short
calculation yields

[t, t] ⊆ [Rx+ Ry,Rx+ Ry] ⊆ {0}+ R[x, y] + {0} ⊆ t,

where the last inclusion results form Proposition 1.5.

In a two-dimensional Lie algebra, every line is a subalgebra, so every
wedge is a semialgebra. The situation becomes more interesting in the three-
dimensional case. Here, we have to distinguish between the simple algebras,
namely sl(2) = sl(2,R) and so(3), and the solvable ones.

Let g be a three-dimensional solvable Lie algebra. Then g contains a
two-dimensional abelian ideal j . Let h ∈ g \ j . Then the real Jordan normal
form of adh|j is one of the follwing matrices

(i):

(
λ 0
0 λ

)
, (ii):

(
λ 1
0 λ

)
, (iii):

(
λ1 0
0 λ2

)
, (iv):

(
α −β
β α

)
.

with suitable λ , or λ1 and λ2 or α and β in R . If we assume λ1 6= λ2 or
β 6= 0, respectively, every three-dimensional Lie algebra g falls into exactly one
of the cases (i), (ii), (iii) or (iv).

Now, the description of all subalgebras of g that are planes is no longer
difficult: A plane E in g is a subalgebra if and only if E ∩ j is an ideal of g .
The one-dimensional subspaces of j that are ideals of g are exactly the one-
dimensional adh -invariant subspaces of j . Thus there are infinitely many of
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them in case (i), there is one of them in case (ii), there are two in case (iii) and
there is none in case (iv).

A typical picture of a semialgebra in each of the four cases should clarify
the situation. Note that in case (ii) and (iv) there are no pointed semialgebras.
In each of these cases, the only invariant wedges are the half-spaces bounded by
j . (Except g is abelian!)

Bild 1.1.

In the case of the three-dimensional simple Lie algebras, the situation
becomes entirely different. In so(3), that is R3 with the vector product, there
are no two-dimensional subalgebras, thus there are no nontrivial semialgebras
contained in so(3).

Let us turn to sl(2)! The Cartan-Killing form κ of sl(2) has signature
++− , so the set

D := {x ∈ sl(2) : κ(x, x) ≤ 0}

is a double cone. An elementary calculation now shows that the two-dimensional
subalgebras of sl(2) are exaclty the planes that are tangent to D . Again, we
draw a picture of some typical semialgebras in sl(2).
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Bild 2.2.

The only nontrival invariant wedges in sl(2) are the halves of the double cone
D .

As final example, we consider the four-dimensional Lie algebra gl(2) =
sl(2)⊕ R · 1 . Here, Lemma 2.2 does not help us anymore, and in fact there are
semialgebras in gl(2) that are not intersection algebras. It turns out that these
have to be invariant.

Theorem 2.4. Let w be a generating semialgebra in g = gl(2) = sl(2)⊕ R .
Then w is invariant or it is the sum of two semialgebras in sl(2) and R ,
respectively.

Proof. [1], Theorem 5.5.

The Classification

A semialgebra w in g may contain large ideals. (e.g. g itself is a
semialgebra in g of course.) We would like to factor out these ideals and this
possibility is guaranteed by the follwing fact.

Proposition 2.5. Let w be a semialgebra in g and i an ideal of g with i ⊆ w .
Then w/i is a wedge in g/i (i.e., it is closed) and a semialgebra.

Using Lemma 2.2 and Proposition 2.5 we usually will restrict our atten-
tion to semialgebras that are reduced in the following sense:

Definition 2.6. A semialgebra w in g is called reduced, if it is generating (!)
and there is no nontrivial ideal of g contained in w .

It turns out that the existence of a reduced semialgebra in a Lie algebra
g imposes rather strong restrictions on the structure of g . Typical results are
the follwing, due to Hofmann and Lawson.
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Theorem 2.7. Let g be a Lie algebra containing a reduced semialgebra. then
every Cartan algebra of g is abelian.

Theorem 2.8. Let w be a reduced semialgebra in g . If h is an element in
the interior of w , then spec(adh) ⊆ R ∪ iR .

The basic ideas that eventually lead to a classification of all reduced
semialgebras and the Lie algebras containing them, run along the following line
(the details may be found in [3]):

Let g be a Lie algebra containing a reduced semialgebra w . Let h denote
some regular element in the interior of w . Then h := ker adh is an abelian
Cartan algebra of g . Using the real root decomposition of g , and knowledge we
have on semialgebras in some particular low dimensional Lie algebras (including
the three-dimensional solvable ones mentioned above), one arrives at Theorem
2.9. It does not only give explicit information on semialgebras but also on the
Lie algebra containing it. The formulation chosen here is somewhat technical.

Recall that the semialgebras in sl(2) are described above.

Theorem 2.9. Let w be a reduced semialgebra in g . Then there are ideals
s1, . . . , sn and and g2 in g such that

(i) Each si is isomorphic to sl(2) .

(ii) g = s1 ⊕ · · · ⊕ sn ⊕ g2 .

(iii) w is a sum of semialgebras in each of these ideal.

Furthermore the semialgebra v := w ∩ g2 may be described as follows:
The subalgebra g2 is a direct sum of a subalgebra g0 and ideals m1, . . . ,mm , and
there are linear forms α1, . . . , αm: g0 → R , different from 0 , such that:

(iv) αi|g′0 = 0

(v) The Lie bracket on g2 = g0 ⊕ m1 ⊕ · · · ⊕ mm is given by

[x⊕ y1 ⊕ · · · ⊕ ym , x′ ⊕ y′1 ⊕ · · · ⊕ y′m]

= [x, x′]⊕
(
α1(x)y′1 − α1(x′)y1

)
⊕ · · · ⊕

(
αm(x)y′m − αm(x′)ym

)
.

(vi) g0 contains an invariant pointed generating wedge.

(vii) The semialgebra v is an intersection of semialgebras v0 , and v1 . . .vm ,
where

(a) v0 contains m1⊕· · ·⊕mm and is invariant. (Thus it is uniquely
determined by an invariant wedge in g0 . This wedge may be
different from the one mentioned in (vi).)

(b) Each vi for i = 1, . . . ,m contains the ideal g′0 ⊕ m1 ⊕ · · · ⊕
m̂i ⊕ · · · ⊕ mm , and is an intersection semialgebra. (As usual,
m̂i means that mi has to be omitted.)

From the Theorem one obtains a corollary, which is less explicit, but
much easier to state:

Corollary 2.10. Let w be a generating semialgebra in g . Then w is the
intersection of an intersection semialgebra and an invariant wedge.
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Theorem 2.11. Let g0 be a Lie algebra that contains an pointed generating
invariant wedge. Let αi: g0 → R (i = 1, . . . ,m) denote linear forms vanishing
on g′0 and let m1, . . . ,mm be vector spaces. Define a bracket on g2 := g0⊕m1⊕
· · · ⊕mm via

[x⊕ y1 ⊕ · · · ⊕ ym , x′ ⊕ y′1 ⊕ · · · ⊕ y′m]

= [x, x′]⊕
(
α1(x)y′1 − α1(x′)y1

)
⊕ · · · ⊕

(
αm(x)y′m − αm(x′)ym

)
.

Then g2 is a Lie algebra with respect to this operation.

Finally, let g = g2 ⊕ sl(2)⊕ · · · ⊕ sl(2) as a direct sum of Lie algebras.

Then g contains a reduced semialgebra and all Lie algebras containing a
reduced semialgebra may be obtained by this contruction.

There are at least three things in the Theorems 2.9 and 2.11, to which I’d
like to draw the reader’s attention: Firstly the Lie algebra sl(2) with its various
semialgebras is obviously an inevitable ingeredient of any theory of Lie semialge-
bras. Secondly, the theorems do not say anything about invariant wedges, they
just reduce the classification of semialgebras to that of invariant wedges. Finally
we may describe explicitly the Lie algebras that contain Lie semialgebras —
again up to the description of the ones containing invariant pointed generating
wedges.
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