An example of a differential calculus on the quantum complex n-space*

Rainer Matthes

Abstract. Modified notions of derivation and differential form on the noncommutative space \mathbb{C}_q^n are introduced. It is shown that in this way a first order differential calculus in the sense of Woronowicz is obtained.

Introduction

Recently there is a growing number of articles concerning the theory of so-called "quantum groups". For a survey and general references see the article [9] in this volume. As mentioned there one considers not only quantum groups but also other noncommutative spaces which are comodules of a quantum group. \mathbb{C}_q^n is the most simple example of such an object.

It is an important task to introduce analogues of notions of differential geometry on such noncommutative spaces ([2]). The most fundamental notions of this kind are those of tangent vectors and differential forms, whose definition will be our concern in this note. Since all the information about a noncommutative space is encoded in an algebra one has to define these notions in purely algebraic terms. By an algebra we always mean an associative algebra over the complex numbers $\mathbb C$ with unity I. The symbols $\mathbb Z$ and $\mathbb N$ denote the integers and the nonnegative integers respectively. Throughout the paper we use the so-called Einstein convention: We always form sums over pairs of equal upper and lower indices.

On a classical space (differentiable manifold) one introduces tangent vectors as equivalence classes of curves starting from a point and defines differential forms as duals to vector fields. From this geometric point of view, everything is based on the notion of a vector. For commutative algebras A (with the example $A = C^{\infty}(M)$, M a manifold, in mind) it is quite clear how to translate this approach into an algebraic language: One starts with Der(A), the Lie algebra of derivations of the algebra, and defines $\bigwedge^1(A)$, the space of 1-forms on A, as the space of A-linear maps $Der(A) \longrightarrow A$. This is possible because Der(A) is an A-(bi)module for commutative A. For noncommutative A, Der(A) isn't a left or right A-module in a natural way, and one could define $\bigwedge^1(A)$ only as the space of $\mathbb C$ -linear maps $Der(A) \longrightarrow A$ which is much to big in the classical case (contains even nonlocal mappings). One can try to replace the A-linearity condition by another one using e.g. certain maximal ideals of A as analogues

24 MATTHES

of points (see [5]). However, this defect may be taken equally well as a hint to replace the notion of derivation by something else.

There is another approach to differential forms on a general associative algebra which, at first sight, A does not use derivations ([12]):

Definition 1. A pair (Γ, d) is called first order differential calculus on A if

- 1. Γ is an A-bimodule.
- 2. $d: A \longrightarrow \Gamma$ is \mathbb{C} -linear and satisfies
 - (i) d(ab) = d(a)b + ad(b),
 - (ii) Any $\alpha \in \Gamma$ can be written $\alpha = \sum_{k=1}^{N} a_k db_k$ with $a_k, b_k \in A, k = 1, \ldots, N$.

Obviously, the classical example $A = C^{\infty}(M)$ (M a manifold), $\Gamma = \sec(T^*M)$, d the standard differential, is of this type. (Condition 2.(ii) is a mild restriction. It is satisfied at least for manifolds which can be covered by a finite number of charts.)

Now, let us assume that (Γ, d) is a given first order differential calculus on A, and let Γ be in particular a free A-bimodule with a finite basis $(\omega^i)_{i=1,\ldots,n}$. This means that any $\alpha \in \Gamma$ can be written $\alpha = a_i \omega^i = \omega^i b_i$ (summation over pairs of equal upper and lower indices, see remark at the end of the second paragraph) with uniquely determined a_i and $b_i \in A$. Then we must have

(1)
$$a\omega^i = \omega^j C^i_j(a)$$

with $C_j^i \in L(A) \stackrel{\text{def}}{=} \operatorname{End}_{\mathbb{C}}(A)$,

(2)
$$da = \omega^i X_i^r(a)$$

with $X_i^r \in L(A)$. It follows immediately that

$$C_j^i(ab) = C_j^k(a)C_k^i(b)$$

and

(4)
$$X_i^r(ab) = X_i^r(a)b + C_i^j(a)X_j^r(b)$$

(Notice that we could obtain similar relations starting from $\omega^i a = B^i_j(a)\omega^j$ and $da = X^l_i(a)\omega^i$.)

The examples of noncommutative algebras appearing in the theory of quantum groups are typically generated by elements x^i (subject to quadratic relations) which may be interpreted as analogues of the classical coordinate functions. In a differential calculus (Γ, d) one would like to have the dx^i as a basis of Γ . Then the above X_i^r should be interpreted as analogues of the partial derivatives ∂_i , and formula (4) says that the "partial derivatives" X_i^r do not satisfy the usual Leibniz rule, i.e. they aren't derivations. This is a typical phenomenon for quantum groups (cf. [12]).

We will now present a special example of a differential calculus on \mathbb{C}_q^n starting from a generalized notion of derivation. These q-derivations have properties analogous to all properties of usual derivations. In particular, they form a left \mathbb{C}_q^n -module which makes it possible to define differential forms in the classical spirit. In this way we obtain a differential calculus in the sense of Definition 1.

The algebra \mathbb{C}_q^n

We define \mathbb{C}_q^n , $q \in \mathbb{C} \setminus \{0\}$ as the quotient algebra

$$\mathbb{C}\langle x^1,\ldots,x^n\rangle/I_R$$

where $\mathbb{C}\langle x^1,\ldots,x^n\rangle$ is the free associative algebra with unity generated by the elements x^1,\ldots,x^n , and I_R is the two ideal generated by the relations

$$(5) x^i x^j = q x^j x^i \quad , \quad i < j$$

(see [8]). The elements $(x^{1^{i_1}}\cdots x^{n^{i_n}})_{(i_1,\ldots,i_n)\in\mathbb{N}^n}$ form a basis (as a vector space) of \mathbb{C}_q^n . We will consider \mathbb{C}_q^n as an \mathbb{N}^n -graded algebra with homogeneous components $\mathbb{C}_q^{n(i_1,\ldots,i_n)}=\{\lambda x^{1^{i_1}}\cdots x^{n^{i_n}}\mid \lambda\in\mathbb{C}\}$. Further, \mathbb{C}_q^{nh} denotes the set of homogeneous elements of \mathbb{C}_q^n . For homogeneous (basis) elements $x=x^{1^{i_1}}\cdots x^{n^{i_n}},\ y=x^{1^{k_1}}\cdots x^{n^{k_n}}$ with degrees $g(x)=(i_1,\ldots,i_n),\ g(y)=(k_1,\ldots,k_n)$ one immediately obtains the following commutation rule

(6)
$$xy = q^{m(g(x),g(y))}yx$$

(7)

$$m(g(x), g(y)) = (i_1 + \ldots + i_{n-1})k_n + (i_1 + \ldots + i_{n-2} - i_n)k_{n-1} + \ldots + (-i_2 - \ldots - i_n)k_1$$

The map $m: \mathbb{N}^n \times \mathbb{N}^n \longrightarrow \mathbb{Z}^n$ has two important properties:

- 1. m is additive in both arguments.
- 2. m is antisymmetric.

We will even consider \mathbb{C}_q^n as a \mathbb{Z}^n -graded algebra setting $\mathbb{C}_q^{n(i_1,\ldots,i_n)}=0$ if $i_k<0$ for some $k\in\{1,\ldots,n\}$. Obviously, m can be extended to a mapping $\mathbb{Z}^n\times\mathbb{Z}^n\longrightarrow\mathbb{Z}$ defined by (7).

q-derivations

We will follow the idea that any object related to the algebra \mathbb{C}_q^n should also be \mathbb{Z}^n -graded and that a commutation of any two homogeneous objects $a,\ b$ in algebraic manipulations should yield a factor according to the rule $ab=q^{m(g(a),g(b))}ba$ as in the algebra \mathbb{C}_q^n . This is a generalization of the well known case of \mathbb{Z}_2 -graded algebras ([1, 3, 4]), which corresponds to q=-1 in our case. (The relations $x^{i^2}=0$ are missing here.)

Definition 2. An element $\partial \in L(\mathbb{C}_q^n)$ is called homogeneous q-derivation of degree $g(\partial) \in \mathbb{Z}^n$ if

1.
$$g(\partial(x)) = g(\partial) + g(x)$$
,

2.
$$\partial(xy) = \partial(x)y + q^{m(g(\partial),g(x))}x\partial(y)$$

for $x \in \mathbb{C}_q^{nh}$. A q-derivation is a finite sum of homogeneous q-derivations. Also, $\operatorname{Der}_q^h(\mathbb{C}_q^n)$ denotes the set of homogeneous q-derivations, $\operatorname{Der}_q(\mathbf{C}_q^n)$ the vector space of all q-derivations.

Notice that the definition is made in such a way that every q-derivation is a finite sum of homogeneous components. The same remark applies to the definition of q-differential forms to be given later. Therefore, all propositions in this paper need a proof only for homogeneous elements.

Proposition 1. Let X_1 , $X_2 \in \operatorname{Der}_q^h(\mathbb{C}_q^n)$. Then we have

$$[X_1, X_2]_q \stackrel{\text{def}}{=} X_1 X_2 - q^{m(g(X_1), g(X_2))} X_2 X_1 \in \text{Der}_q^h(\mathbb{C}_q^n)$$

with $g([X_1, X_2]_q) = g(X_1) + g(X_2)$.

Proof. For $x \in \mathbb{C}_q^{nh}, y \in \mathbb{C}_q^n$ we have

$$(X_{1}X_{2} - q^{m(g(X_{1}),g(X_{2}))}X_{2}X_{1})(xy) = X_{1}(X_{2}(x)y + q^{m(g(X_{2}),g(x))}xX_{2}(y))$$

$$- q^{m(g(X_{1}),g(X_{2}))}X_{2}(X_{1}(x)y + q^{m(g(X_{1}),g(x))}xX_{1}(y))$$

$$= X_{1}X_{2}(x)y + q^{m(g(X_{1}),g(X_{2})+g(x))}X_{2}(x)X_{1}(y) + q^{m(g(X_{2}),g(x))}(X_{1}(x)X_{2}(y)$$

$$+ q^{m(g(X_{1}),g(x))}xX_{1}X_{2}(y) - q^{m(g(X_{1}),g(X_{2}))}(X_{2}X_{1}(x)y)$$

$$+ q^{m(g(X_{2}),g(X_{1})+g(x))}X_{1}(x)X_{2}(y) + q^{m(g(X_{1}),g(x))}(X_{2}(x)X_{1}(y)$$

$$+ q^{m(g(X_{2}),g(x))}xX_{2}X_{1}(y)).$$

The coefficient of the term $X_2(x)X_1(y)$ is

$$q^{m(g(X_1),g(X_2)+g(x))} - q^{m(g(X_1),g(X_2))+m(g(X_1),g(x))} = 0,$$

because m is additive. In the same way the coefficient of $X_1(x)X_2(y)$ is zero. The remaining terms are

$$(X_1 X_2 - q^{m(g(X_1), g(X_2))} X_2 X_1)(x)y + q^{m(g(X_1) + g(X_2), g(x))} x(X_1 X_2(y) - q^{m(g(X_1), g(X_2))} X_2 X_1(y)),$$

which proves the proposition.

The binary operation $[\cdot,\cdot]_q$ is called q-commutator. In this terminology, \mathbb{C}_q^n itself is q-commutative. The proofs of the following propositions are as simple and direct as the preceding one and make use of the two properties of m only. We therefore leave them to the reader.

Proposition 2. For $X, X_1, X_2, X_3 \in \operatorname{Der}_q^h(\mathbb{C}_q^n)$ we have

- 1. $[X,X]_q = 0$.
- $2. \ [X_2,X_1]_q = -q^{m(g(X_2),g(X_1))}[X_1,X_2]_q \,.$
- 3. $q^{m(g(X_3),g(X_1))}[[X_1,X_2]_q,X_3]_q + q^{m(g(X_1),g(X_2))}[[X_2,X_3]_q,X_1]_q + q^{m(g(X_2),g(X_3))}[[X_3,X_1]_q,X_2]_q = 0.$

These are modifications of the usual properties of a Lie algebra. Thus, $\mathrm{Der}_q(\mathbb{C}_q^n)$ could be called a q-Lie algebra.

Proposition 3. For $a \in \mathbb{C}_q^{nh}, X, X_1, X_2 \in \operatorname{Der}_q^h(\mathbb{C}_q^n)$ we have

1. $aX \in \operatorname{Der}_{a}^{h}(\mathbb{C}_{a}^{n})$ with g(aX) = g(a) + g(X).

2.
$$[aX_1, X_2]_q = a[X_1, X_2]_q - q^{m(g(X_1) + g(a), g(X_2))} X_2(a) X_1$$
.

Condition 1. says that $\operatorname{Der}_q(\mathbb{C}_q^n)$ is a left \mathbb{C}_q^n -module. Condition 2. is a modification of well known properties of vector fields.

We will now define analogues of partial derivatives and prove that they form a basis of the left \mathbb{C}_q^n -module $\mathrm{Der}_q(\mathbb{C}_q^n)$. First let us notice that derivations (in the usual sense) ∂_i of \mathbb{C}_q^n with the property $\partial_i(x^j) = \delta_i^j I$ do not exist: For example for i < j would follow $\partial_i(x^i x^j) = x^j = \partial_i(qx^j x^i) = qx^j$ (no summation over i!). We will define ∂_i first as operators on $\mathbb{C}\langle x^1, \ldots, x^n \rangle$ by

$$\partial_i(x^j) = \delta_i^j I, \qquad \partial_i(I) = 0,$$

$$\partial_i(x^j x) = \delta_i^j x + q^{m(g(\partial_i), g(x^j))} x^j \partial_i(x)$$

with $g(\partial_i) = -g(x^i) = (0, \dots, 0, -1, 0, \dots, 0)$ (-1 at *i*-th position). Here, a homogeneous element of $\mathbb{C}\langle x^1, \dots, x^n \rangle$ is any product of the x^1, \dots, x^n times a scalar, and the *j*-th component of the degree of such an element is the number of factors x^j appearing in this element.

Proposition 4. The following statements hold:

- 1. $\partial_i(xy) = \partial_i(x)y + q^{m(g(\partial_i),g(x))}x\partial_i(y)$ for homogeneous x, i .e., ∂_i is a q-derivation on $\mathbb{C}\langle x^1,\ldots,x^n\rangle$.
- 2. $\partial_i(I_R) \subset I_R$, where I_R is the ideal defined by the relations (5).

This means that ∂_i project to q-derivations of \mathbb{C}_q^n .

Theorem 1. Let $X \in \operatorname{Der}_q(\mathbb{C}_q^n)$ (not necessarily homogeneous). Then we have

$$X = X(x^1)\partial_1 + \ldots + X(x^n)\partial_n.$$

The proof can be performed by a direct computation. It is easy to show that the ∂_i are linearly independent as elements of the left \mathbb{C}_q^n -module $\mathrm{Der}_q(\mathbb{C}_q^n)$:

$$a^{i}\partial_{i} = 0 \Rightarrow a^{i}\partial_{i}(x^{j}) = a^{j}I = 0 \Rightarrow a^{j} = 0.$$

Thus, $\operatorname{Der}_q(\mathbb{C}_q^n)$ is a free left \mathbb{C}_q^n -module with basis $(\partial_i)_{i=1,\ldots,n}$.

q-differential forms

Definition 3. We denote by $\bigwedge_{0q}^{1h}(\mathbb{C}_q^n)$ the set of \mathbb{C} - linear maps

$$\alpha: \mathrm{Der}_q(\mathbb{C}_q^n) \to \mathbb{C}_q^n$$

28 MATTHES

with

1. $X \in \operatorname{Der}_q^h(\mathbb{C}_q^n) \Rightarrow \alpha(X) \in \mathbb{C}_q^{nh}, \ g(\alpha(X)) = g(\alpha) + g(X).$ (This defines $g(\alpha) \in \mathbb{Z}^n.$)

2. $\alpha(aX) = q^{m(g(\alpha),g(a))}a\alpha(X)$ for $a \in \mathbb{C}_q^{nh}$.

Further, $\bigwedge_{0q}^{1}(\mathbb{C}_{q}^{n})$ is the vector space of finite sums of elements of $\bigwedge_{0q}^{1h}(\mathbb{C}_{q}^{n})$. Elements of $\bigwedge_{0q}^{1}(\mathbb{C}_{q}^{n})$ and $\bigwedge_{0q}^{1h}(\mathbb{C}_{q}^{n})$ are called q-differential 1-forms and homogeneous q-differential 1-forms, respectively.

Condition 2. replaces A-linearity which for commutative algebras A gives a locality condition. Obviously, $\bigwedge_{0q}^1(\mathbb{C}_q^n)$ becomes a \mathbb{C}_q^n -bimodule with

$$a\alpha = q^{m(g(a),g(\alpha))}\alpha a, \quad \alpha a = q^{m(g(\alpha),g(a))}a\alpha$$

for $a \in \mathbb{C}_q^{nh}$, $\alpha \in \bigwedge_{0q}^{1h}(\mathbb{C}_q^n)$.

Definition 4. We define $d: \mathbb{C}_q^n \to \bigwedge_{0q}^1(\mathbb{C}_q^n)$ by

$$da(X) = q^{m(g(a), g(X))} X(a)$$

for $a \in \mathbb{C}_q^n$, $X \in \operatorname{Der}_q^h(\mathbb{C}_q^n)$.

Obviously, we have g(da) = g(a) and

$$da(bX) = q^{m(g(a),g(b)+g(X))}bX(a) = q^{m(g(a),g(b))}bda(X),$$

i. e., d indeed has its values in $\bigwedge_{0q}^{1}(\mathbb{C}_{q}^{n})$.

Theorem 2. $(\bigwedge_{0q}^1(\mathbb{C}_q^n), d)$ is a first order differential calculus on \mathbb{C}_q^n in the sense of Definition 1.

Proof. Firstly, we know that $\bigwedge_{0q}^1(\mathbb{C}_q^n)$ is a \mathbb{C}_q^n -bimodule. Secondly, we compute

$$\begin{split} d(ab)(X) &= q^{m(g(a)+g(b),g(X))}X(ab) \\ &= q^{m(g(a)+g(b),g(X))}(X(a)b + q^{m(g(X),g(a))}aX(b)) \\ &= q^{m(g(a)+g(b),g(X))}X(a)b + q^{m(g(b),g(X))}aX(b). \\ (d(a)b)(X) &= q^{m(g(a),g(b))}bda(X) = q^{m(g(a),g(b))+m(g(a),g(X))}bX(a) \\ &= q^{m(g(a),g(b)+g(X))+m(g(b),g(a)+g(X))}X(a)b \\ &= q^{m(g(a)+g(b),g(X))}X(a)b. \\ adb(X) &= q^{m(g(b),g(X))}aX(b). \end{split}$$

Also we have $dx^i(\partial_j) = q^{m(g(x^i),g(\partial_j))}\partial_j(x^i) = q^{m(g(x^j),g(x^i))}\delta_i^j I = \delta_i^j I$. By Theorem 1, $X = X^i\partial_i$ for any $X \in \mathrm{Der}_q(\mathbb{C}_q^n)$. We have

$$\alpha(X^i \partial_i) = q^{m(g(\alpha), g(X^i))} X^i \alpha(\partial_i).$$

With $\alpha_i = \alpha(\partial_i)$ and $g(\alpha) = g(\alpha_i) - g(\partial_i)$ we obtain

$$\alpha(X^i\partial_i) = q^{m(g(\alpha),g(X^i)) + m(g(X^i),g(x) + g(\partial_i))} \alpha_i X^i = q^{m(g(X^i),g(\partial_i))} \alpha_i X^i.$$

On the other hand,

$$\begin{split} \alpha_j dx^j(X^i\partial_i) &= \alpha_j q^{m(g(x^j),g(X^i))} X^i dx^j(\partial_i) \\ &= q^{m(g(x^i),g(X^i))} \alpha_i X^i = q^{m(g(X^i),g(\partial_i))} \alpha_i X^i. \end{split}$$

Therefore, $\alpha = \alpha(\partial_i)dx^i$ for homogeneous α , thus also for nonhomogeneous α .

Thus, the dx^i form a basis of the \mathbb{C}_q^n -bimodule $\bigwedge_{0q}^1(\mathbb{C}_q^n)$ as linear independence follows immediately from $dx^i(\partial_j) = \delta_j^i I$. The calculus presented here corresponds to $C_j^i(a) = \delta_j^i q^{m(g(a),g(x^i))}a$ for $a \in \mathbb{C}_q^{nh}$ in formula (1) of the introduction.

Remarks

- 1. Following the same ideas as above one can introduce q-differential forms of higher than first degree on \mathbb{C}_q^n , and define analogues of the usual operations (exterior derivative, Lie derivative, inner derivative). In particular, the q-differential forms on \mathbb{C}_q^n form a q-Graßmann algebra. This will be part of [6].
- 2. The calculus presented here can be extended to noncommutative tori. The algebra \mathbb{T}_q^n corresponding to such a torus is obtained from \mathbb{C}_q^n by first adding the inverses $x^{i^{-1}}$ and imposing further relations according to the rule (6). The resulting algebra consists of Laurent polynomials in x^1, \ldots, x^n . For |q|=1 this algebra can be completed in a certain topology. This completion, being the algebra \mathbb{T}_q^n , is the algebra of Laurent series in x^1, \ldots, x^n with fastly decreasing coefficients ([2, 8]). It is rather evident that the above notions are meaningful at least for the algebraic extension (see [6]).
- 3. From the viewpoint of quantum groups, \mathbb{C}_q^n appears as a left comodule, and one would be interested in differential calculi adapted to this structure, i.e. left covariant differential calculi (see [12] for the definition of left and right covariance for calculi on a quantum group, the definition for comodules is analogous). Unfortunately, though our calculus looks very natural it is not left or right covariant with respect to the coactions of $M_q(n)$ or $SU_q(n)$ on \mathbb{C}_q^n . In [7] all $SU_q(n)$ -bicovariant calculi on \mathbb{C}_q^n are classified (see also [11]). For $n \geq 3$ there are exactly two calculi, for n = 2 two one-parameter families of calculi. The two calculi given in [11] are the only $M_q(2)$ -bicovariant calculi on \mathbb{C}_q^2 ([10]).

Acknowledgements

I would like to thank K. Schmüdgen and G. Rudolph for their interest and several discussions and K. Voigt for his help in preparing the text on the computer.

References

- [1] Berezin, F. A., "Vvedenie v algebru i analiz s antikommutirujuščimi peremennymi", Izd. Mosk. Univ., 1983.
- [2] Connes, A., Noncommutative differential geometry, Publ. Math. IHES**62** (1986), 41–144.

30 MATTHES

- [3] Kostant, B., "Graded manifolds, graded Lie theory, and prequantisation", Lecture Notes in Math. 570, 1977.
- [4] Lejtes, D. A., Vvedenie v teoriju supermnogoobrazij, Usp. Mat. Nauk **35**,1 (1980),3–57.
- [5] Matthes, R., "A general approach to connections: algebra and geometry", Preprint KMU-NTZ 89-03, to appear in Rep. Math. Phys.
- [6] —, work in preparation.
- [7] Pusz, W. and S. L. Woronowicz, "Twisted second quantization", Preprint Warszawa, 1988.
- [8] Reshetikhin, N. Yu., L. A. Takhtajan, and L. D. Faddeev, Kvantovanie grupp Li i algebr Li, Algebra i analiz, 1(1989),178–206.
- [9] Schmüdgen, K., Eine Einführung in die Theorie der Quantenmatrixgruppen, in this volume.
- [10] —, Vortrag Leipzig 1991.
- [11] Wess, J. and B. Zumino, "Covariant differential calculus on the quantum hyperplane", Preprint 1990.
- [12] Woronowicz, S. L., Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989),125–170.

Institut für Mechanik der AdW Chemnitz Current address: Sektion Physik Universität Leipzig Augustusplatz 10/11 O-7010 Leipzig

Received February 18, 1991