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An example of a differential calculus

on the quantum complex n-space*

Rainer Matthes

Abstract. Modified notions of derivation and differential form on the noncommutative space
C, are introduced. It is shown that in this way a first order differential calculus in the sense

of Woronowicz is obtained.

Introduction

Recently there is a growing number of articles concerning the theory of
so-called “quantum groups”. For a survey and general references see the article
[9] in this volume. As mentioned there one considers not only quantum groups
but also other noncommutative spaces which are comodules of a quantum group.
C; 1s the most simple example of such an object.

It is an important task to introduce analogues of notions of differential
geometry on such noncommutative spaces ([2]). The most fundamental notions of
this kind are those of tangent vectors and differential forms, whose definition will
be our concern in this note. Since all the information about a noncommutative
space is encoded in an algebra one has to define these notions in purely algebraic
terms. By an algebra we always mean an associative algebra over the complex
numbers C with unity 7. The symbols Z and N denote the integers and the
nonnegative integers respectively. Throughout the paper we use the so-called
Einstein convention: We always form sums over pairs of equal upper and lower
indices.

On a classsical space (differentiable manifold) one introduces tangent vec-
tors as equivalence classes of curves starting from a point and defines differential
forms as duals to vector fields. From this geometric point of view, everything is
based on the notion of a vector. For commutative algebras A (with the example
A = C>®(M), M a manifold, in mind) it is quite clear how to translate this
approach into an algebraic language: One starts with Der(A), the Lie algebra
of derivations of the algebra, and defines /\I(A), the space of 1-forms on A, as
the space of A-linear maps Der(A) — A. This is possible because Der(A) is
an A-(bi)module for commutative A. For noncommutative A, Der(A) isn’t a
left or right A-module in a natural way, and one could define /\I(A) only as
the space of C-linear maps Der(A) — A which is much to big in the classical
case (contains even nonlocal mappings). One can try to replace the A-linearity
condition by another one using e.g. certain maximal ideals of A as analogues
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of points (see [5]). However, this defect may be taken equally well as a hint to
replace the notion of derivation by something else.

There is another approach to differential forms on a general associative
algebra which, at first sight, A does not use derivations ([12]):

Definition 1. A pair (T',d) is called first order differential calculus on A if
1. T is an A-bimodule.
2. d: A— T is C-linear and satisfies
(1) d(ab) = d(a)b+ ad(b),
(ii) Any a € T can be written a = 22;1 arpdby with ap, by € Ak =
1,...,N.

Obviously, the classical example A = C*°(M)(M a manifold), T' =
sec(T*M), d the standard differential, is of this type. (Condition 2.(ii) is a mild
restriction. It is satisfied at least for manifolds which can be covered by a finite
number of charts.)

Now, let us assume that (T',d) is a given first order differential calculus
on A, andlet T be in particular a free A-bimodule with a finite basis (wi)i:17,.,7n .
This means that any a € I' can be written a = a;w' = w'b; (summation over
pairs of equal upper and lower indices, see remark at the end of the second
paragraph) with uniquely determined «; and b; € A. Then we must have

(1) aw’ :ij;(a)

with C% € L(A) © Ende(A),

(2) da = w' X/ (a)

with X! € L(A). It follows immediately that

(3) Cj(ab) = C(a)Ci(b)

and

B X7 (ab) = X! ()b + Ca) X1 ()

(Notice that we could obtain similar relations starting from w'a = B;(a)wj and
da = X} (a)w'.)

The examples of noncommutative algebras appearing in the theory of
quantum groups are typically generated by elements z' (subject to quadratic
relations) which may be interpreted as analogues of the classical coordinate
functions. In a differential calculus (T',d) one would like to have the dz' as
a basis of I'. Then the above X should be interpreted as analogues of the
partial derivatives 0;, and formula (4) says that the “partial derivatives” X! do
not satisfy the usual Leibniz rule, i.e. they aren’t derivations. This is a typical
phenomenon for quantum groups (cf. [12]).

We will now present a special example of a differential calculus on Cj
starting from a generalized notion of derivation. These g-derivations have prop-
erties analogous to all properties of usual derivations. In particular, they form a
left € -module which makes it possible to define differential forms in the classi-
cal spirit. In this way we obtain a differential calculus in the sense of Definition

1.
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The algebra C}
We define C}, ¢ € C\ {0} as the quotient algebra

C<J;1,...,$">/IR

where C(z',...,2™) is the free associative algebra with unity generated by the
elements z',...,2", and Ig is the twosided ideal generated by the relations
(5) rird = qalat , i<

(see [8]). The elements (xli] "'xnin)(il,...,in)eN" form a basis (as a vector
space) of C . We will consider Cj as an N"-graded algebra with homogeneous
components (CZ(”""’Z") = {Mz'""---2"" | A € C}. Further, Cgh denotes
the set of homogeneous elements of C7. For homogeneous (basis) elements

19 e kq kp . . .
z =2z 2"y =2 2™ with degrees g(z) = (i1,...,in), g(y) =
(k1,...,k,) one immediately obtains the following commutation rule
(6) zy = gm0 9y
7)

The map m : N* x N — Z" has two important properties:
1. m 1s additive in both arguments.
2. m 1s antisymmetric.

We will even consider C7 as a Z"-graded algebra setting (Cg(il min) =

if i < 0 for some k € {1,...,n}. Obviously, m can be extended to a mapping
Z™ x " — Z defined by (7).

g-derivations

We will follow the idea that any object related to the algebra Cj should
also be Zm"-graded and that a commutation of any two homogeneous objects
a, b in algebraic manipulations should yield a factor according to the rule
ab = ¢™9(D:90)pg as in the algebra Cy - This is a generalization of the well
known case of Zjy-graded algebras ([1, 3, 4]), which corresponds to ¢ = —1 in
our case. (The relations 21" = 0 are missing here.)

Definition 2. An element 0 € L(Cg) is called homogeneous g-derivation of
degree g(0) € Z™ if
1. g(a(x)) = 9(0) + g(),
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for = € Cgh . A g-derivation is a finite sum of homogeneous g-derivations. Also,

Derg’(@’;) denotes the set of homogeneous g-derivations, Der,(C!) the vector

q
space of all gq-derivations.

Notice that the definition is made in such a way that every g-derivation
is a finite sum of homogeneous components. The same remark applies to the
definition of g-differential forms to be given later. Therefore, all propositions in
this paper need a proof only for homogeneous elements.

Proposition 1. Let X;, X, € Der?(@?). Then we have

[Xl,XQ]q déf X1X2 — qm(g(Xl)’g(Xg))XQXl € DGIZ(C:;>

with g([X1, Xalg) = g(X1) + g(Xa).
Proof. For z € (Cg’h,y € C; we have

(X)X, — qm(g(xl),g(XQ))XQX] Nxy) = X1(Xo(z)y + qm(g(sz(x))xXZ(y))

— gm9(X2)) X (X (2)y + ™D L X ()

= X1 X,y (2)y 4+ ¢mIED)9XH9@) X0, () X (y) 4+ ™29 (X (1) X, (y)
+ gm0 X X (y)) — ™D 92D (X, X (2)y

n qm(g(Xg),g()(l)-l-g(z))Xl(:E)XZ(y) + qm(g(Xl),g(z))(X2($)X1 (y)

+ ¢m9(X2)u0(2) 3. 3, X (y)))-

The coefficient of the term Xa(z)X1(y) is

QM(g(X1)7g(X2)+g(r)) _ qm(g(Xl),g(Xg))+7n(g(X1)7g(r)) =0,

because m is additive. In the same way the coefficient of X;(z)X3(y) is zero.
The remaining terms are

(X1 X, — qm(g(X1)’g(X2))X2X1)(x)y
+ qm(g(X1)+g(X2)7g(x))J;(X1X2(y> _ qm(g(Xl)’g(XQ))ngl(U)>,

which proves the proposition. ]

The binary operation [-, ], is called g-commutator. In this terminology,
C, itself is g-commutative. The proofs of the following propositions are as simple
and direct as the preceding one and make use of the two properties of m only.
We therefore leave them to the reader.

Proposition 2. For X, X;,X,, X3 € Der;’((cg) we have
1. [X,X], =0.
2. [X2,X1], = _qm(g(Xg)ﬂ(Xl))[Xl,XZ]q_
3. qm(g(XB)’g(Xl))[[Xl,Xz]q,Xg]q + qm(g(Xl)’g(Xﬂ)[[Xz,Xg]q,Xl]q
+ qm(g(Xg),g(Xs))[[X&Xl]q)){ﬂq =0. [ ]

These are modifications of the usual properties of a Lie algebra. Thus,

Der,(Cy) could be called a g-Lie algebra.
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Proposition 3. For a € Cgh,X, Xi1,X, € Derg((Cg) we have
1. aX € Der?(cg’) with g(aX) = g(a) + g(X).
2 [aX1,X2]q — a[X1,X2]q _ qm(g(Xo-l-g(a),g(Xz))Xz(Q)X] ] m

Condition 1. says that Dery(C7) is a left C7 -module. Condition 2. is a
modification of well known properties of vector fields.

We will now define analogues of partial derivatives and prove that they
form a basis of the left Cj -module Der,(Cy). First let us notice that derivations

(in the usual sense) 9; of C7 with the property Oi(x?) = 5{[ do not exist: For
example for i < § would follow 8;(z'2?) = 2/ = 8;(qa’2") = g’ (no summation
over i!). We will define §; first as operators on C(z',... z") by
di(a7) =611, ai(I) =0,
ai(,rjx) _ 511'30 + QM(Q(ai)y(xj))xjai(x)
with ¢(8;) = —g(z') = (0,...,0,—1,0,...,0) (-1 at i-th position). Here, a
homogeneous element of C(z',...,z") is any product of the z',..., 2" times a

scalar, and the j-th component of the degree of such an element is the number
of factors x/ appearing in this element.

Proposition 4.  The following statements hold:

1. 0i(zy) = 8i(x)y + ¢q™99)9D29,(y) for homogencous x, i .e., O; is a
g-derivation on C{zt,... a™)).
2. 0;(Ir) C Ig, where IR is the ideal defined by the relations (5). [

This means that 0; project to g-derivations of C7 .
Theorem 1. Let X € Derq((CZ;’) (not necessarily homogeneous). Then we

have

X=X("0 +...4+ X(2™)0. =

The proof can be performed by a direct computation. It is easy to show
that the 9; are linearly independent as elements of the left CJ -module Der,(C}):

a'd; :0:>ai8i($j) =ddI=0=d =0.

Thus, Derq(Cg) is a free left Cg -module with basis (0;)i=1,....n-

g-differential forms

Definition 3. We denote by /\(I)Z(C’q’) the set of C- linear maps

a: Derq(CZ) — CZ
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with
1. X € Der}ql(@;l) = a(X) € Cgh, g(a(X)) = g(a) + g(X). (This defines
gla) €Z".)
2. a(aX) = qm(g(a)’g(“))aa(X) for a € Cgh.
Further, /\éq((:g) is the vector space of finite sums of elements of /\(I)Z((C;’).

Elements of ./\éq(Cg) and /\SZ((C;‘) are called ¢-differential 1-forms and homo-
geneous q-differential 1-forms, respectively. ]

Condition 2. replaces A-linearity which for commutative algebras A
gives a locality condition. Obviously, /\éq(@;’) becomes a Cff -bimodule with

a0 = @9 g0 ga = g E@)9(0) 4

for a € Ci", a € /\ég(@g).

Definition 4.  We define d:C! — A, (C) by
da(X) = qM(g(aLg(X))X(a)
for a € C, XEDerZ((C;’). [ |
Obviously, we have g(da) = g(a) and
da(bX) = qm(g(a)7g(b)+g(X))bX(a) — qm(y(a)7.11(6))bda(_)()7
1. e., d indeed has its values in /\éq(cg).

Theorem 2. (/\éq(cg),d) is a first order differential calculus on C} in the
sense of Definition 1.

Proof. Firstly, we know that /\éq(cg) is a Cj -bimodule. Secondly, we
compute

d(ab)(X) = qm(g(a)Jrg(b),g(X))X(ab)
= ¢m@TIBLI) (X (q)b 4 X9 D) X (1))
- qm(g(a)+g(b),g(X))X(a)b + qm(y(b),g(X))aX(b)_
(d(a)b)(X) = g™ 9Bpda(X) = gmlo(@) 9B +mls(@).g(X))p ()
— qm(g(a)7g(b)-I-g(X))-I-m(g(b),g(a)-l-g(X))X(a)b
— qM(g(a)+g(b)7g(X))X(a)b_
adb(X) = ¢mM 9o X (b).
Also we have d;c’(a]) = qm(g(xi)’g(aj))aj(xi) = qm(g(rj)’g(ri))éff = 5{[. By
Theorem 1, X = X'0; for any X € Derq((C;’). We have
a(X'0;) = qmw(a),g(Xi))Xia(ai).
With a; = «(0;) and g(a) = g(ai) — ¢g(0;) we obtain
a(X'9;) = g9 g (X)) +m(g(X),9(2)+9(8) o X1 — m(9(X),9(8)) ¢y X7
On the other hand,
a;da? (X'9;) = aqu(g(rJ%g(X’))Xid:cj(az.>
— ™) 9(XD) o x1 = m(9(X),9(80) o, X
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Therefore, o = a(d;)dz' for homogeneous «a, thus also for nonhomogeneous o .m

Thus, the dz' form a basis of the Cy -bimodule /\éq((cg) as linear

independence follows immediately from dmi(aj) = 5;-]. The calculus presented

here corresponds to C]Z(a) = 5;-qm(g(“)’g(zi))a, for a € Cgh in formula (1) of the
introduction.

Remarks

1. Following the same ideas as above one can introduce q-differential
forms of higher than first degree on C7, and define analogues of the usual
operations (exterior derivative, Lie derivative, inner derivative). In particular,
the g-differential forms on Cj form a q-Grafimann algebra. This will be part of
[6].

2. The calculus presented here can be extended to noncommutative tori.

The algebra T corresponding to such a torus is obtained from Cj by first

adding the inverses 217" and imposing further relations according to the rule

(6). The resulting algebra consists of Laurent polynomials in z',...,z". For
| ¢|= 1 this algebra can be completed in a certain topology. This completion,
being the algebra TF, is the algebra of Laurent series in b, . 2™ with fastly
decreasing coefficients ([2, 8]). It is rather evident that the above notions are
meaningful at least for the algebraic extension (see [6]).

3. From the viewpoint of quantum groups, Cj appears as a left comod-
ule, and one would be interested in differential calculi adapted to this structure,
i.e. left covariant differential calculi (see [12] for the definition of left and right
covariance for calculi on a quantum group, the definition for comodules is anal-
ogous). Unfortunately, though our calculus looks very natural it is not left or
right covariant with respect to the coactions of My(n) or SU;(n) on C7. In
[7] all SU,(n)-bicovariant calculi on C} are classified (see also [11]). For n >3
there are exactly two calculi, for n = 2 two one-parameter families of calculi.
The two calculi given in [11] are the only M,(2)-bicovariant calculi on CZ ([10]).
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