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Convexity theorems in Harmonic Analysis

Karl-Hermann Neeb

I. Kostant’s Convexity Theorem

Let G be a connected semisimple Lie group, g = L(G) its Lie algebra,
and B(X,Y ) = tr(adX adY ) its Cartan Killing form. Then a Cartan involution
θ is an involutive automorphism of g such that the bilinear form Bθ(X,Y ) :=
−B(X, θY ) is positive definite. It is well know that Cartan involutions always
exist ([6, p.185]). Fix such an involution θ . Then we set

k := {X ∈ g : θ(X) = X} and p := {X ∈ g : θ(X) = −X}.

Then k is a compact subalgebra of g and all operators adX , X ∈ p are
semisimple with real spectrum because they are selfadjoint with respect to Bθ
([6, p.184]). We choose a maximal abelian subspace a ⊆ p . Since all Cartan
involutions on g are conjugate under inner automorphisms ([6, p.183]) and all
maximal abelian subspaces of p are conjugate under ead k ([6, p.247]), we don’t
loose any generality by making this choice. For a linear functional α ∈ a∗ we set
gα := {Y ∈ g : (∀X ∈ a)[X,Y ] = α(X)Y } . Since the operators adX , X ∈ a
commute and are semisimple, we have a direct vector space decomposition

g =
⊕

α∈∆

gα,

where ∆ := {α ∈ a∗ : gα 6= {0}} is called the system of restricted roots with
respect to a . Let X0 ∈ a be a regular element, i.e. an element of a such that
α(X0) 6= 0 for all non-zero elements of ∆ (such an element exists because we
only have to avoid a finite union of hyperplanes). A positive system ∆+ ⊆ ∆ is
a subset which is given by

∆+ = {α ∈ ∆ : α(X0) > 0},

where X0 is a regular element. We fix a positive system ∆+ ⊆ ∆ and define

n :=
⊕

α∈∆+

gα.

This is a nilpotent subalgebra of g and we have the direct vector space decom-
position

g = k + a + n
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called the Iwasawa decomposition of g .

On the group level we have an involution, which we also denote with θ ,
whose differential agrees with the corresponding involution on the Lie algebra
and which has the following properties:

1) K := 〈exp k〉 agrees with the fixed point set of θ .

2) The mapping K × exp p → G, (k,X) 7→ k exp(X) is a diffeomorphism
([6, p.253]).

Now we set A := exp a and N := exp n . These are closed simply
connected subgroups of G and the mapping

K × A×N → G, (k, a, n) 7→ kan

is a diffeomorphism ([6, p.270]). This is called an Iwasawa decomposition of
the group. These decompositions are very useful in harmonic analysis on the
Riemannian symmetric space G/K . They provide well behaved parametrizations
of the group which can be used to compute integrals or at least to obtain
estimations for certain integrals (see Faraut’s article in this volume). Clearly
G = KAN is not a direct product decomposition of a group and therefore one
has to analyse the way the pieces are built together. One theorem which gives
some information in this direction is Kostant’s Convexity Theorem.

In the following we consider a as an euclidean vector space, where the
scalar product comes from the restriction of the positive definite form Bθ to
a × a . Since a ⊆ p , this is the same as the restriction of the Cartan Killing
form to a . For a root α ∈ ∆ we write sα for the orthogonal reflection on the
hyperplane kerα in a . Then the Weyl group W =W(∆) is the group generated
by the reflections sα , α ∈ ∆. It may be identified with the quotient

NK(A)/ZK(A),

where

NK(A) = {k ∈ K : kAk−1 ⊆ A} and ZK(A) = {k ∈ K : (∀a ∈ A)kak−1 = a}

([6, p.289]). Let us write L : KAN → a for the analytic mapping determined by

g ∈ K expL(g)N.

Now we have all definitions to state Kostant’s theorem:

Theorem 1. (Kostant’s Convexity Theorem) Let a ∈ A . Then the set L(aK)
equals the convex hull of the Weyl group orbit W log a .

In the following we describe how this theorem can be generalized from
Riemannian symmetric spaces to symmetric spaces of regular type, and which
methods are used to prove this theorem.
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II. Symmetric spaces of regular type

Let G be a connected semisimple Lie group, and τ an involutive endo-
morphism of G . We write H for the 1 -component of the group Gτ of fixed
points of τ in G . Note that this implies that M := G/H is a symmetric space.
Let us use the same letter for the corresponding involution of the Lie algebra
g = L(G). We choose a Cartan involution θ such that τ and θ commute ([9, p.
153]). We set

h := {X ∈ g : τ(X) = X} and q := {X ∈ g : τ(X) = −X}.

Then the compatibility of τ and θ show that we have a direct vector space
decomposition

g = hk + hp + qk + qp,

where hk := h ∩ k, hp := h ∩ p etc., and all summands are invariant under τ and
θ . It is convenient to assume that h contains no non-trivial ideals of g , i.e. that
Zh(q) = {0} , and that G/H is an irreducible symmetric space. For all our main
results formulated below an easy reduction shows that they remain true without
this additional hypothesis ([10, I]).

Definition 2. Write ha := hk + qp for the subalgebra of τθ -fixed points in g .
Then it is shown in [8, Chapert 3] that

Z(ha) ∩ q = c := {X ∈ qp : [X, qp] = {0}}
= {X ∈ qp : [X, hk] = {0}}.

Let us write Zq(c) for the centralizer of c in q . Then we say that the symmetric
space G/H or equivalently the symmetric Lie algebra (g, τ) is of regular type if
the condition

Zq

(
c
)

= qp

is satisfied.

It is explained in [8, Chapter 4] that this condition is related to the
existence of certain H -invariant cones in q . As it stands it is not very instructive.
But let us remark that it is satisfied by two essential classes of symmetric spaces.

Remark 3. If G/H is a Riemannian symmetric space, i.e. if τ is a Cartan
involution, then h = k and q = p . Therefore c = {0} because [X, p] = {0}
implies that

B(X,X) ∈ B(X, p) = B(X, [p, k]) = B([X, p], k) = {0}.

So Zq(c) = p = qp .
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Remark 4. Let g be a simple hermitean Lie algebra and gC its complexifica-
tion. We define τ(X + iY ) := X − iY . Then (gC, τ) is of regular type. To see
this, let g = k + p be a Cartan decomposition of g . Then gC = (k + ip) + (ik + p)
is a Cartan decomposition of gC and therefore qp = ik . So c = iZ(k) and the
claim follows from the fact that k is the centralizer of its center ([6, p.382]).

Lemma 5. Let a ⊆ qp be a maximal abelian subspace. Then a is maximal
abelian in q and in p . Moreover Zg(c) = hk + qp .

Proof. Since a contains Z(qp), the regularity condition implies that a is
maximal abelian in q .

Write gc := h+ iq for the dual Lie algebra. Then kc := hk + iqp contains
ic in its center and we have to show that Zgc(ic) = kc . This is proved in [11,
pp.130,131]. Note that the condition that h contains no non-trivial ideal of g is
used in the proof.

Definition 6. As explained in Section I we get a root decomposition of g
with respect to a . We write

∆p := {α ∈ ∆ : α(c) 6= {0}} and ∆k := {α ∈ ∆ : α(c) = {0}}.

The elements of ∆k are called the compact roots and the elements of ∆p the
non-compact roots. Note that a root α is compact if and only if gα ⊆ Zg(c) =
ha = hk + qp (Lemma 5). So ∆k is the system of restricted roots with respect
to the subalgebra ha .

We choose a positive system corresponding to a regular element X0 with
α(X0) < β(X0) for all β ∈ ∆+

p and α ∈ ∆+
k (One has to choose X0 near to a

non-zero element of c). We write W := W(∆+
k ) for the Weyl group generated

by the reflections sα with α ∈ ∆+
k and set

Cmax := {X ∈ a : (∀α ∈ ∆+
p )α(X) ≥ 0}, Cmin = C?max,

and
Ck := {X ∈ a : (∀α ∈ ∆+

k )α(X) ≥ 0}.
Then Ck ∩ Cmax is the positive Weyl chamber of the root system and Ck is the
Weyl chamber with respect to ∆+

k . The subalgebra n , and the groups A and
N are defined as in Section I.

Theorem 7. (Generalized Iwasawa decomposition)

1) g = h + a + n is a direct vetor space sum.

2) The mapping
Gτ × A×N → G, (h, a, n) 7→ han

is a diffeomorphism onto the open subset GτAN of G .

Proof. 1) Since a is maximal abelian in p and q , it follows that g0 ⊆ a + hk .
If X ∈ g−α , where α ∈ ∆+ , then X =

(
X + τ(X)

)
− τ(X) ∈ h + n . So the

root decomposition shows that g = h + a + n . To see that the decomposition
is direct, let X = Y + Z ∈ h ∩ (a + n) with Y ∈ a and Z ∈ n . Then
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τ(X) = X = Y + Z = −Y + τ(Z), i.e. 2Y + Z − τ(Z) = 0. Now the
directness of the root decomposition implies that Z = 0 and Y = 0, because
τ(Z) ∈⊕α∈∆+ g−α .

2) In view of 1) and the fact that Gτ and AN are subgroups of G , one only has
to show that Gτ ∩AN = {1} . But this follows as in 1) from τ(N) ∩AN = {1}
(Bruhat decomposition) ([6, p.406]).

The main deficiency of the generalized Iwasawa decomposition is that
GτAN is in general different from the whole group (see Hilgert’s article for an
example). Since Gτ is in general not connected, the same holds for the set GτAN
and so we restrict our considerations to the connected component HAN . As in
Section I we consider the analytic mapping:

L : HAN → a, g 7→ L(g)

which is determined by g ∈ H expL(g)N .

The set L(aH) is only well defined if aH ⊆ HAN . The following Lemma
tells us when this is true.

Lemma 8. The condition aH ⊆ HAN is equivalent to a ∈ exp(Cmax) .

Proof. The proof can be found in [10]. It bases on the fact that

H exp(Cmax)H = {g ∈ G : gHAN ⊆ HAN}

which, more or less in this formulation, is proved in [8]. See also the discussion
in Section 2 of [3]

The preceding lemma describes those candidates in A for which the set
L(aH) is well defined. This explains the restriction in the assumptions of the
following theorem.

Theorem 9. (The Convexity Theorem) Let a ∈ A with 0 6= log a ∈ Cmax .
Then

L(aH) = co(log a) + Cmin,

where co(log a) denotes the closed convex hull of the W -orbit of log a .

Remark 10. If τ = θ , then ∆k = ∆ and H = K . Therefore Cmin = {0} and
Theorem 9 reduces to Theorem 1.

In the remainder we explain the methods which are used in the proof of
the convexity theorem. The details can be found in [10]

One starts with the invariance properties of the set L(aH).

Proposition 11. co(Y ) ⊆ L(aH) for every Y ∈ L(aH) .

Proof. (Sketch) The essential idea is to use rank-1-reduction. In view of
Lemma 10.4 in [7] one only has to show that the line segments {sα(Y ), Y } are
contained in L(aH) for every element Y ∈ L(aH) and every reflection sα ,
α ∈ ∆+

k . If this holds for the reflections associated to the elements α of a
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basis of the root system, then we conclude that L(aH) is invariant under the
Weyl group, and the general assertion follows from the fact that every root is
conjugate to a root in the basis. If α is a root in the basis, then N decomposes
as a semidirect product N ∼= NαN ′ , where Nα = exp gα is contained in the
subgroup Ha := 〈exp ha〉 . This paves the way to rank-1-reduction. For the
details we refer to [10] or [7, pp.476,477].

The next step is a description of the sets co(Y ) + Cmin in a more
convenient form.

Proposition 12. Let E be a euclidean vector space, H a finite system of
hyperplanes in E , W the group generated by the reflections on the elements of
H , and suppose that W is finite and leaves H invariant. If C is a chamber of
H , Y ∈ C , and C ′ a W -invariant closed convex cone in E , then

co(Y ) + C ′ = co(Y + C ′) =
⋂

s∈W
s(X + C ′ − C?).

Proof. ([10, I.12]) The proof is rather elementary, one only has to deal
with basic properties of finite groups generated by reflections ([1, Ch. V]) and
the finite dimensional version of the Hahn-Banach Separation Theorem. The
only difficulties come from the non-compactness of the set C ′ , but they can
be overcome with the crucial observation that C ′ − C? is always closed in this
situation.

Let us keep the notation from Proposition 12 for a moment.

Corollary 13. If X0 ∈ C and C ′ :=
∑
s∈W R+s(X0) , then

co(Y ) + C ′ = co(Y + R+X0) =
⋂

s∈W
s(X + R+X0 − C?).

Proof. One only has to show that the cones C ′ − C? and R+X0 − C? are
equal. But this follows from the fact that X0 − sα(X0) ∈ C? ([10, I.3]).

Now we can already proof one inclusion of the convexity theorem. Let
X := log a and assume that X 6= 0 (otherwise there is nothing to prove). For
a compact root α we choose an element Xα orthogonal to kerα such that
α(Xα) = 1. If Yα is a non-zero vector in gα , then span{Yα, θ(Yα), Xα} is a
subalgebra isomorphic to sl(2,R). After conjugation with W we may assume
that Xα ∈ Ck which implies that α(X) > 0. An explicit calculation in Sl(2,R)
(see Hilgert’s article) now shows that L(aH) contains the ray X + R+Xα .
Therefore

co(X + R+Xα) = co(X) + Cmin ⊆ L(aH)

because Cmin =
∑
s∈W R+s(Xα) ([10]).

The other inclusion of the theorem is harder to prove. It bases on Harish
Chandra’s construction of the holomorphic discrete series for a linear hermitean
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Lie group. The first observation is that, in view of Propositions 11 and 12, it
suffices to show that

L(aH) ⊆ log a+ Cmin − C?k .
But −Cmin + C?k = (−Cmax ∩ Ck)? because it is closed, as we have already
remarked above. So it would be sufficient to prove that

λ
(
L(ah)− log a

)
≤ 0

for all functionals in a set P ⊆ (−Cmax)∩Ck which has the property that R+P
is dense. It is shown in [10, II.1] that the following set satisfies this condition.
Let E ⊆ a denote the abelian group generated by the vectors corresponding
to the roots under the identification a ∼= a∗ . As P we take the subset of all
those elements λ in E which correspond to dominant integral weights of the
subalgebra hk + qp and which satisfy the additional condition that

〈λ+ ρ, β〉 < 0 ∀β ∈ ∆+
p ,

where ρ = 1
2

∑
α∈∆+ α.

We collect the essential facts in the following theorem:

Theorem 14. Let P be as defined above, suppose that G is contained in a
complex Lie group GC with L(GC) = gC , and set Gc := 〈exp(h + iq)〉. Then the
following assertions hold:

1) For every λ ∈ P there exists an irreducible unitary representation πλ :
Gc → U(H) on a Hilbert space H which has the following properties:

a) Let Kc := 〈exp(hk + iqp)〉 . Then the subspace HK of Kc -
finite vectors consists of analytic vectors and therefore carries
the structure of a gC -module. As gC -module it is a module with
highest weight λ .

b) For α ∈ a∗ we set Hα := {v ∈ H : (∀X ∈ a)dπλ(X)v = α(X)v}
and call α a weight if Hα 6= {0} . Then all weights are contained
in the set

W(λ− Cmin).

2) Let Smin denote the subsemigroup of G generated by H and exp(Cmin) .
Then Smin = H exp(Cmin)H and the restriction πλ|H permits a contin-
uation to a representation

π̃λ : Smin → C(H),

where C(H) denotes the semigroup of contractions on H . This represen-
tation is continuous with respect to the weak operator topology on C(H)
and analytic on the interior of Smin .

3) The restriction π̃λ|expCmin
permits a continuation to a representation π̂λ

of exp(Cmax) by bounded operators on H such that

||π̂λ(expX)|| = eλ(X) ∀X ∈ Cmax.
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4) Let v ∈ HK be a unit vector of highest weight λ , h ∈ H , and a ∈
expCmax such that ah ∈ h1 expL(ah)N . Then

πλ(h1)−1π̂λ(a)πλ(h) = eλ
(
L(ah)

)
v.

Proof. For a more precise formulation of the results we refer to [10]. 1) is
essentially due to Harish Chandra ([4], [5]), and 2) is a result of Ol’shanskĭı
who uses a theorem on analytic continuation of Lüscher and Mack ([12]). The
rest is proved in [10]. Assertion 3) bases on the fact, which follows from 1)b),
that the spectrum of the essentially selfadjoint operators dπλ(X), X ∈ Cmax

is bounded from above. To prove 4) one has to make use of the analyticity of
the representation π̃λ on int(Smin) for analytic continuation arguments because
neither π̃λ nor π̂λ is defined on the whole semigroup exp(Cmin)N ⊆ G .

With this theorem the proof of the convexity theorem is almost complete.
So let λ ∈ P , a ∈ exp(Cmax ∩ Ck), h ∈ H , ah ∈ h1 expL(ah)N , and v a unit
vector of highest weight λ . Then

eλ
(
L(ah)

)
= ||eλ

(
L(ah)

)
v|| = ||πλ(h1)−1π̂λ(a)πλ(h)v||

≤ ||πλ(h1)−1||||π̂λ(a)||||πλ(h)v|| = eλ(log a).

This proves that λ
(
L(ah)

)
≤ λ(log a) and the theorem follows.
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[1] Bourbaki, N., Groupes et algèbres de Lie, Chapitres 4 ,5 et 6, Masson,
Paris, 1981.

[2] Faraut, J., Quelques applications de la convexité à l’étude des fonctions
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