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On Locally compact groups whose set
of compact subgroups is inductive.

Christian Terp

The main concern of this paper is the set K of compact subgroups of a
locally compact group. We are interested in those groups which have inductive
K , where K is partially ordered by set inclusion. The main theorems of this
paper will give a characterization of such groups.

Definition 1. Let M be a set, and let {Fi}i∈I be a family of subsets of M .
We call {Fi}i∈I a tower if at least one of the two inclusions

Xi ⊆ Xj or Xj ⊆ Xi

holds for all i, j ∈ I .

Definition 2. Let G be a locally compact group. If the set

⋃

i∈I
Ki

has compact closure for every tower {Ki}i∈I of compact subgroups of G then G
is called an ICS group, where ICS is the short form of inductive set of compact
subgroups.

It is clear that a locally compact group has an inductive set of compact
subgroups if and only if it is an ICS group. Hence, the aim of this paper is to
give a classification of ICS groups.

Obviously, every ICS group G has maximal compact subgroups, and
every compact subgroup of G is contained in a maximal compact subgroup of
G . Since the topological structure of G is largely determined by its maximal
compact subgroups, it is important to guarantee the existence of maximal com-
pact subgroups for the biggest possible class of groups. There are some results
about the existence of maximal compact subgroups in locally compact groups.
Probably the most famous of all shows that a Lie group G has maximal compact
subgroups if G/G0 is finite (see [Ho], Theorem 3.1 on page 180, for example).

Of course, there are many groups which have no maximal compact sub-
groups at all, and it is clear that all such groups are examples of non-ICS groups.
One may wonder then, if there do exist any standard examples of non-ICS groups.
If we want to construct examples of non-ICS groups, it is only natural that we
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start with the case of discrete groups. For this class of groups, we may equiv-
alently define that a group G is an ICS group iff the union of every countable
tower of finite subgroups of G is finite.

There are three types of discrete non-ICS groups which are particularly
important for the classification of Lie ICS groups.

Example 1. Let p be any prime. Then

Z(p)(N)

endowed with the discrete topology is not an ICS group since it is the union of
a tower {Z(p)n}n∈N of finite subgroups.

Example 2. Let {pi}i∈N be a sequence of pairwise distinct primes pi . Then

⊕

i∈N
Z(pi)

endowed with the discrete topology is not an ICS group. It is an interesting
observation that this group is even the union of a tower of cyclic subgroups:

⊕

i∈N
Z(pi) =

⋃

n∈N

(
⊕ni=1 Z(pi)

)
=

⋃

n∈N
Z(p1p2 · . . . pn) .

Example 3. Let p be a prime. Then the set

{t ∈ T : tk = 1 with k = pn for some n ∈ N0}

of p -power roots of unity, when endowed with the discrete topology, is not an
ICS group. We call this group Prüfer group, and we use the abbreviation Z(p∞)
for it. Just as for the second example, we observe that Z(p∞) is the union of a
tower of cyclic subgroups:

Z(p∞) =
⋃

n∈N
Z(pn) .

It is not at all clear that this set of examples of non-ICS groups suffices
to give a satisfying picture of all non-ICS groups. Yet, these three types of groups
lie at the heart of the following classification of Lie ICS groups.

Theorem 1. A Lie group G is not an ICS group if and only if G contains a
discrete subgroup which is isomorphic to

Z(p∞), Z(p)(N) or
⊕

i∈N
Z(pi)

for a suitable prime p or for a suitable sequence {pi}i∈N of pairwise distinct
primes pi .
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This result cannot be carried over to the bigger class of locally compact
groups as can be seen in the case of the p-adic group Qp .

Example 4. Let p be any prime number, and let Qp be the set of all sequences

{zi}i∈Z ∈ {0, 1, 2, . . . , p− 1}Z

such that there exists an index k ∈ Z such that zi = 0 obtains for all i ≤ k . We
define an addition on Qp in the following way.

Let {ai}i∈Z and {bi}i∈Z be two elements of Qp . Then there exists an
integer k ∈ Z such that ai = 0 and bi = 0 obtain for all i ≤ k . We define
recursively two sequences {si}i∈Z, {ci}i∈Z ∈ Qp by

(i) si = 0 and ci = 0 for all i ≤ k ;

(ii) si+1 + p · ci+1 = ai+1 + bi+1 + ci for all i ≥ k .

These two sets of equations uniquely determine {ci}i∈Z and {si}i∈Z . We set

{ai}i∈Z + {bi}i∈Z := {si}i∈Z ,

then, and this operation provides Qp with the structure of an abelian group. If
we restrict this addition to the set of sequences of Qp which have finite support,
we see that this addition is simply addition with carry over. Thus, for any
sequence {zi}i∈Z ∈ Qp and for all n ∈ N we have

pn · {zi}i∈Z = {zi−n}i∈Z .

This shows that Qp does not contain any elements of finite order.

We now want to endow Qp with a topology which will make it a locally
compact group. It is enough to give a suitable system of neighbourhoods of the
identity. Set

Kn :=

{
{zi}i∈Z ∈ Qp| zi = 0 for all i < n

}
,

then the family {Kn}n∈Z is a system of neighbourhoods of the identity which
makes Qp a locally compact group that is not compact. We call this group the
p-adic group. It is easy to prove that Kn is a compact subgroup of Qp for all
n ∈ Z (see [HR], ]10, for example). In fact, they are the only compact subgroups
of Qp .

It is obvious that Qp is the union of the tower {Ki}i∈Z of compact
subgroups of Qp . Since the p-adic group is not compact, this gives an example
of a locally compact non-discrete group that is not an ICS group. Moreover,
since Qp doesn’t have any torsion elements, the p -adic group doesn’t contain
any discrete copy of Example 1, 2 or 3.

Yet, there is another characterization of ICS groups in the class of locally
compact groups. This characterization makes use of the well-known structure of
the connected component of the identity G0 of G , which is the projective limit
of connected Lie groups. We can prove the following theorem.
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Theorem 2. Let G be a locally compact group. Then G is an ICS group if
and only if G/G0 is an ICS group.

We now want to give some sketches of the methods which we have used
to prove the above theorems. For details and further information we refer to [Te].

To prove Theorem 1, we start with the classification of discrete ICS
groups. Firstly, we take a closer look at abelian groups. Since discrete ICS
groups should not contain any tower of finite subgroups, the torsion subgroup of
an discrete abelian ICS group should be finite. The reverse of this observation
gives that a discrete abelian non-ICS group has an infinite torsion subgroup.
This directs our attention towards infinite abelian torsion groups. It is due to
the structure theory of abelian torsion groups that the study of abelian non-ICS
groups can be reduced to the study of p-groups. We have the following result
about infinite abelian p-groups.

Proposition 1. Let G be an infinite abelian p-group. Then G contains a
copy of either Z(p∞) or

Z(p)(N) .

This gives rise to the result that an abelian torsion group G is infinite if and
only if G contains a copy of

Z(p∞), Z(p)(N) or
⊕

i∈N
Z(pi)

for a suitable prime p or for a suitable sequence {pi}i∈N of pairwise distinct
primes pi . Hence, a discrete abelian group G is not an ICS group if and only if
G contains a copy of

Z(p∞), Z(p)(N) or
⊕

i∈N
Z(pi)

for a suitable prime p or for a suitable sequence {pi}i∈N of pairwise distinct
primes pi . This shows for a first time the importance of the groups that we have
given in Examples 1, 2 and 3.

It is due to the Theorem of Hall-Kulatilaka-Kargapolov (see [Ro], Theo-
rem 14.3.7, pages 416-418, for example) that we can overcome the gap between
abelian and non-abelian groups. This theorem, which, until now, cannot be proved
without using the celebrated Theorem of Feit-Thompson, guarantees that every
infinite locally finite group has an infinite abelian subgroup.

Definition 3. Let G be a group. We call G a locally finite group if every
finite subset of G generates a finite subgroup of G .

We easily see that the union of every countable tower of finite subgroups
is a locally finite group. This shows the importance of the concept of a locally
finite group for the classification of discrete ICS groups.

Now, a discrete non-ICS group has at least one countable tower of finite
subgroups which has infinite union H . Since H is an infinite locally finite
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group, the Theorem of Hall-Kulatilaka-Kargapolov guarantees that H , hence
G , contains an infinite abelian subgroup, which, by the way, is a torsion group.
We may thus use our knowledge of abelian non-ICS groups to prove the central
theorem about discrete groups. It shows that a discrete group G , which need
not be abelian, is not an ICS group if and only if G contains a subgroup which
is a copy of

Z(p∞), Z(p)(N) or
⊕

i∈N
Z(pi)

for a suitable prime p or for a suitable sequence {pi}i∈N of pairwise distinct
primes pi . This line of reasoning can be continued for Lie groups. But to do so,
we first need to consider central extensions of discrete groups. An investigation of
those groups G which have a central subgroup N such that G/N is isomorphic
to

Z(p∞), Z(p)(N) or
⊕

i∈N
Z(pi)

for a suitable prime p or for a suitable sequence {pi}i∈N of pairwise distinct
primes pi , shows that, under certain restrictions, G itself contains a subgroup
of this type. We also need to consider the question of what can be said about a
factor group of G if G contains a subgroup of these three types. It is easy to
see that factoring by a finite subgroup does not change the type of group under
consideration.

We are now going to investigate Lie groups that are ICS groups. Of all
the classes of groups that we consider in this paper, the class of Lie groups surely
has the richest structure theory. And it is due to this structure theory that we
can continue the line of reasoning which we have begun in the case of discrete
groups. It is remarkable that it is possible to generalize the results obtained in
the case of discrete groups, which finally yields Theorem 1. Since this involves
both the Theorem of Feit-Thompson and the structure theory of Lie groups, this
is an interesting interplay between group theoretical and topological concepts.
Moreover, we see that certain properties of the set of compact subgroups of a
Lie group G are displayed by the set of finite subgroups of G . Results that are
concerned with the interplay between the set of finite subgroups and G have a
long history. For example, it is well-known that every finite extension H of a
connected Lie group G contains a finite subgroup F such that H is the product
of F and G , that is, we have H = F ·G (see [Le]). This gives then

F
/

(F ∩G) ∼= H
/
G .

To achieve Theorem 1, we have to proceed in several steps. It is crucial
for each step to consider the group of automorphisms of the connected component
of the identity G0 of the group G which is under inspection. This is due to the
fact that G0 is a normal subgroup of G such that conjugation by any element
of G gives an automorphism of G0 . Hence, the group of automorphisms of G0

contains a homomorphic image of G , which puts some severe restrictions on G .
Now, we have two important special cases.

Firstly, we consider the case of a non-ICS group G such that G0 is
a compact, semisimple and connected Lie group. In this case, it is no loss of
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generality to assume that G/G0 is isomorphic to Z(p∞), Z(p)(N) , or ⊕∞i=1Z(pi).
Moreover, the study of G can be reduced to the study of a subgroup H of G with
G0 ⊆ H such that conjugation by any element of H is an inner automorphism
of G0 . This, then, gives rise to a discrete subgroup F of H which satisfies
F ∩G0 = Z(G0) and

F
/

Z(G0) ∼= H
/
G0 .

Since Z(G0) is finite and central in F , the results on central extensions, which
we have achieved before, show that Theorem 1 is indeed true in this case.

Secondly, we consider the case of a non-ICS group G such that G0 is a
torus. As above, we may assume that G/G0 is isomorphic to Z(p∞), Z(p)(N) ,
or ⊕∞i=1Z(pi). Since the group of automorphisms of a torus Tn is isomorphic
to GL(n,Z), and since locally finite subgroups of GL(n,Z) are bounded, hence
finite, there exists a subgroup H of G such that G0 is a central subgroup of H ,
and such that H/G0 is isomorphic to Z(p∞), Z(p)(N) , or ⊕∞i=1Z(p). We may
then reduce to the case that H is abelian, which immediately proves Theorem
1.

In the general case, we combine these two building blocks with a proof
that proceeds by induction on the dimension of the connected component of the
identity of the Lie group under inspection.

Since locally finite subgroups of Lie groups have shown their importance
for the classification of Lie ICS groups, it is justified to take a closer look at them,
and we are especially interested in those subgroups of G which are isomorphic
to

Z(p∞), Z(p)(N) or
⊕

i∈N
Z(pi)

for a suitable prime p or for a suitable sequence {pi}i∈N of pairwise distinct
primes pi . We can show that G contains a discrete copy of Z(p∞) if and only
if G/G0 contains a copy of Z(p∞). Similiar results hold for

Z(p)(N) and
⊕

i∈N
Z(pi) .

The structure of arbitrary locally finite subgroups H of Lie ICS groups
G can be clarified too. We can prove that H contains a normal abelian subgroup
N which has finite index (H : N). This is a generalization of a theorem of C.
Jordan about locally finite subgroups of linear groups.

The classification of locally compact ICS groups demands totally different
methods. We have already seen that the analogue of Theorem 1 does not hold
in this class of groups. For example, take the p -adic group Qp , which we have
introduced in Example 4.

But the structure theory of locally compact groups, which rests heavily
on the theory of Lie groups, is rich enough to allow a characterization of locally
compact ICS groups too. The proof of Theorem 2 is achieved in several steps.

We begin with the group Aut(C) of automorphisms of a closed, pointed
and generating cone C in a finite dimensional real vector space.
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Definition 4. A subset C of some vector space V is called a pointed cone iff
it fulfills the following three conditions:

(i) C + C ⊆ C,
(ii) C ∩ (−C) = {0},
(iii) r · c ∈ C for all r ∈ R+, c ∈ C .

In particular, C is a convex set. We will say that C is generating iff C spans
V , that is, C − C = V . Providing V is a topological vector space, we call C
a closed, pointed cone, if C is both a pointed cone and a closed subset of the
topological space V .

We can show that Aut(C) is an ICS group. This is due to the fact that
we can quite easily describe the set of maximal compact subgroups of Aut(C)
in terms of fixed-points in the interior of C . We have the following proposition
(see [HHL], Theorem III.2.4 for a proof of this proposition).

Proposition 2. Let C be a closed, pointed and generating cone in a finite
dimensional real vector space V . Then the following two statements are valid:

(i) If K is a compact subgroup of Aut(C) then there exists an element
x ∈ int(C) such that

ϕ(x) = x

holds for all ϕ ∈ K , that is, x is a common fixed point for K .

(ii) The group
Kx :=

{
ϕ ∈ Aut(C) : ϕ(x) = x

}

is compact for every x ∈ int(C) .

It looks somewhat peculiar to start with this seemingly restricted class of
groups, but it isn’t. In fact, the general linear group GL(Rn) has a homomorphic
image in a group of automorphisms of some cone. The appropriate cone is
the cone P of all positive semi-definite operators in the vector space A of all
hermitean operators on Rn with respect to euclidean scalar product. We have
the following action π : GL(Rn)→ A of GL(Rn) on A :

π(g)(a) := gag∗ ,

where g∗ denotes the adjoint map associated with g . It is easy to see that
π
(

GL(Rn)
)

is a subgroup of Aut(P ). This gives rise to the proposition that
GL(Rn) is an ICS group. It is only natural that semisimple connected Lie groups
G come into focus now. This is due to the fact that G modulo its center is a
closed subgroup of a suitable general linear group GL(Rn). The structure theory
of Z -groups, that is of groups which have compact factor group G/Z(G), makes
it clear then that every semisimple connected Lie group is an ICS group. This
result can be generalized to connected Lie groups G by the familiar procedure
which proceeds by induction on the dimension of the radical of G . Hence, every
connected Lie group is an ICS group. It follows that every Lie group G with
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finite factor group G/G0 is an ICS group too. Since locally compact groups G
that have compact factor group G/G0 can be approximated by Lie groups H
with finite factor group H/H0 , we conclude that G is an ICS group. In a final
step, we show that a locally compact group G is an ICS group if and only if
G/G0 is an ICS group. It is surprising that the last argument involves Zorn’s
Lemma. This is due to the fact that at one point we need to lift a tower {Ki}i∈I
of compact subgroups of G/G0 to G . Since there is no canonical choice for a
compact subgroup Hi of G which satisfies π(Hi) = Ki , where π : G → G/G0

denotes the quotient map, we have to pick one by one a suitable subgroup Hi

for each i ∈ I . Since the index set I may be somewhat complicated, we need
Zorn’s Lemma.
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