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Lie Superalgebras and Lie Supergroups, II

Helmut Boseck

6. The Hopf Dual.

Let H = H0̄ ⊕ H1̄ denote an affine Hopf superalgebra, i.e. a Z2 -graded
commutative, finitely generated Hopf algebra. The set G(H) = homalg(H;K)
of algebra homomorphisms mapping the superalgebra H onto the base field is a
group with respect to convolution, called the structure group of H.

The convolution is defined by γ1 ∗ γ2 = (γ1⊗ γ2)∆. It holds γ1 ∗ γ2 ∈ G(H)
if γ1, γ2 ∈ G(H), and γ ∗ ε = γ = ε ∗ γ , and γ ∗ (γσ) = ε = (γσ) ∗ γ.

By an easy calculation we have f.i. γ∗ε = (γ⊗ε)∆ = γ(idH⊗ε)∆ = γidH =
γ , and (γσ) ∗ γ = ((γσ)⊗ γ)∆ = (γ ⊗ γ)(σ ⊗ idH)∆ = γµ(σ ⊗ idH)∆ = γιε = ε.

Let H◦ = H/(H1̄) denote the quotient of H by the homogeneous ideal
generated by H1̄ , which is a coideal too: ∆(H) ⊆ H1̄⊗H0̄ + H0̄⊗H1̄, ε(H1̄) = 0,
and σ(H1̄) ⊆ H1̄.

H◦ is an affine Hopf algebra and there is a canonical isomorphism between
the structure groups of H and H◦

G(H) ∼= G(H◦).
Let Λ denote a Grassmann algebra and let G(H; Λ) = homalg(H; Λ)

denote the set of algebra homomorphisms mapping H into Λ, then G(H; Λ) is
a group with respect to convolution. The equation πΛ(γΛ) = p0γΛ with γΛ ∈
G(H; Λ) defines an epimorphism πΛ mapping G(H; Λ) onto G(H). Moreover, by
the inclusion K ⊆ Λ we have a canonical embedding ιΛ of G(H) into G(H; Λ).
The diagram

G(H)
ιΛ−→ G(H; Λ)

πΛ−→ G(H)

implies a semidirect product structure of G(H; Λ)

G(H; Λ) ∼= G(H)� K(H; Λ).

The normal subgroup K(H; Λ) = ker πΛ is a unipotent group. In the representa-
tion by block matrices from Mat(m,n; Λ) the group K(H; Λ) consists of matrices
of the form

(
Em B1(Λ)
B0(Λ) En

)
.

A differentiation λ : H −→ K of H is a linear mapping satisfying the
equation

λ(XY ) = λ(X)ε(Y ) + ε(X)λ(Y ), X, Y ∈ H.
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Let λ1 and λ2 denote homogeneous differentiations of H . Then

[λ1, λ2] = λ1 ∗ λ2 − (−1)|λ1||λ2|λ2 ∗ λ1

is a homogeneous differentiation of H.
Let L0̄(H) and L1̄(H) denote the linear space of even and odd differentia-

tions of H respectively.

The linear space L(H) = L0̄(H)⊕ L1̄(H) is a Lie superalgebra with respect
to the brackets defined above.

L(H ) is called the Liesuperalgebra of the Hopf superalgebra H.
Let λΛ : H −→ Λ denote an even linear mapping satisfying the equation

λΛ(XY ) = λΛ(X)ε(Y )+ε(X)λΛ(Y ), X, Y ∈ H. We shall call it a Λ-differentiation
of H . Then it holds

The linear space L(H; Λ) of Λ- differentiations of H is a Lie algebra with
respect to the brackets [λ1Λ, λ2Λ] = λ1Λ ∗λ2Λ−λ2Λ ∗λ1Λ. The Lie algebra L(H; Λ)
is isomorphic to the Grassmann-hull of the Lie superalgebra L(H).

The algebraic dual H′ = H′0̄ ⊕ H′1̄ of the Hopf superalgebra H is an
associative superalgebra with unit. The product of H′ is the convolution, i.e. the
restriction of the dual mapping ∆′ : (H⊗H)′ −→ H′ of the coproduct ∆ to the
subspace H′ ⊗H′ of (H⊗H)′ .

Let H◦ denote the subalgebra of H′ consisting of those linear functionals
ϕ ∈ H′ which vanish on a homogeneous ideal of finite codimension in H . Then it
is known, that the restriction of the dual mapping µ′ of the product map

µ of H to H◦ maps H◦ into H◦⊗H◦ and hence defines a coproduct ∆◦ in
H◦ . Moreover, the restriction of the dual map σ′ of the antipode σ of H to H◦
is an antipode σ◦ of H◦ . At last, the counit of H◦ is the evaluation of the linear
functionals at the unit of H.

H◦ = H◦0̄ ⊕ H◦1̄ is a cocommutative Hopf superalgebra. It is called the
Hopfdual of H.

The structure group G(H) consists of the group-like elements of H◦ : γ ∈
G(H) iff ∆◦(γ) = γ ⊗ γ.

The structure group of H is the group of units in H◦.
The Lie superalgebra L(H) consists of the primitive or Liealgebra-like

elements of H◦ : λ ∈ L(H) iff ∆◦(λ) = λ⊗ ε+ ε⊗ λ.

It is easy to verify the following equations :

< ∆◦(γ), X ⊗ Y > = < γ,XY >

= < γ,X >< γ, Y > = < γ ⊗ γ,X ⊗ Y >,

and < ∆◦(λ), X ⊗ Y > = < λ,XY >

= < λ,X >< ε, Y > + < ε,X >< λ, Y >

= < λ⊗ ε + ε⊗ λ,X ⊗ Y >,X, Y ∈ H.

Structure Theorem of cocommutative Hopf superalgebras .
(Sweedler,Kostant) Let H denote a cocommutative Hopf superalgebra, G its
group of group-like elements and L its Lie superalgebra of primitive elements. Let
K(G) denote the group algebra of G and U(L) the enveloping superalgebra of L.
Then H is a smashed product of K(G) and U(L).
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As a corollary from this theorem we mention

The Hopf dual H◦ of a Hopf superalgebra H is generated by its structure
group G(H) and its Lie superalgebra L(H).

7. Affine Algebraic Supergroups.

Let G denote a group. A representative function on G is a K-valued
function f on G with the property that span{fg; g ∈ G} ( or span{gf ; g ∈ G} )
is finite dimensional. It is fg(g

′) = f(g′g) and gf(g′) = f(g−1g′).

Proposition.(Hochschild) The representative functions of G make up
an affine Hopf algebra R◦(G). The coproduct ∆◦ is defined by the equation
f̃(g1, g2) = f(g1g2) using the isomorphism of R◦(G × G) with R◦(G) ⊗ R◦(G).
The counit ε◦ is the evaluation at the identity : ε◦(f) = f(e) and the antipode σ◦
is defined by σ◦(f)(g) = f(g−1).

Definition.(Hochschild) The structure of an affine algebraic group is
a pair (G,P◦) consisting of a group G and a sub Hopf algebra P◦ of R◦(G)
satisfying the following properties

i.) P◦ separates the points of G ;

ii.) every algebra homomorphism γ◦ : P◦ −→ K is the evaluation at a group
element.

The algebra P◦ is called the algebra of polynomial functions on G.

The properties i.) and ii.) imply a canonical isomorphism G ∼= G(P◦) and
L0̄ = L(P◦) is the Lie algebra of the affine algebraic group (G,P◦).

Proposition.(Hochschild) Let H◦ denote an affine Hopf algebra, then
(G(H◦),H◦) is an affine algebraic group structure.

Definition. The structure of an affine algebraic supergroup is a pair (G,P)
consisting of a group G and an affine Hopf superalgebra P satisfying the following
property:.

There is a sub Hopf algebra P◦ of R◦(G) and a finite dimensional vector
space W such that it holds

i.) P ∼= P◦ ⊗ Λ(W ) is an isomorphism of associative superalgebras;

ii.) the canonical projection p : P −→ P◦ is a morphism of supercoalgebras
compatible with the antipodes;

iii.) (G,P◦) is the structure of an affine algebraic group.

Property ii.) is equivalent to the equations : (p ⊗ p)∆ = ∆◦p , ε =
ε◦p, and pσ = σ◦p. Property iii.) implies canonical isomorphisms G(P) ∼=
G(P◦) ∼= G. Every algebra homomorphism γ : P −→ K is of the following type:
projection by p and evaluation at a group element.

P = P0̄⊕P1̄ is called the superalgebra of polynomial functions in commuting
and anticommuting variables on G .

L(P) = L = L0̄ ⊕ L1̄ is called the Lie superalgebra of the affine algebraic
supergroup (G,P) .

Evidently holds: dimL0̄ = dim(G,P◦) = degree of transcendency of
Q(P◦)/K ; Q(P◦) denotes the quotient field of P◦ provided the algebraic group
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structure (G,P◦) is irreducible, i.e. P◦ is an integral domain; and dimL1̄ =
dimW .

Proposition. Let H = H0̄⊕H1̄ denote an affine Hopf superalgebra, then
(G(H),H) is the structure of an affine algebraic supergroup.

If H ∼= H◦ ⊗ Λ(W ), then it holds G(H) ∼= G(H◦) canonically and
(G(H),H◦) is the structure of an affine algebraic group, the underlying algebraic
group of the algebraic supergroup (G(H),H).

Assume L = L0̄ ⊕ L1̄ to be a finite dimensional Lie superalgebra. Denote
by U(L) its enveloping algebra, U(L) is a cocommutative Hopf superalgebra:
∆(λ) = λ ⊗ ε + ε ⊗ λ ; λ ∈ L , ε denotes the unit element of U(L). Its Hopf
dual U◦(L) is a commutative Hopf superalgebra.

It holds the following isomorphism of associative, commutative superalge-
bras:

U◦(L) ∼= U◦(L0̄)⊗ Λ(L′1̄).

Proposition. The following statements are equivalent

(i) U◦(L) is an affine Hopf superalgebra;

(ii) [L0̄,L0̄] = L0̄;

(iii) L(U◦(L)) ∼= L.
If one of the statements (i) - (iii) holds, then G̃ = G(U◦(L)) ∼= G(U◦(L0̄))

is the connectend and simply connected algebraic Lie group associated to L0̄ and
(G̃, U◦(L)) is the structure of an affine algebraic supergroup.

Corollary. Let L denote a finite dimensional Lie superalgebra with semi-
simple even part L0̄ , and let G̃ denote the connected, simply connected, semisimple
Lie group corresponding to L0̄ , then (G̃, U◦(L0̄)) is the structure of an affine
algebraic supergroup.

8. Representations.

Let us start with a motivation.

Let L = L0̄ ⊕ L1̄ denote a Lie superalgebra, and let V = V0̄ ⊕ V1̄ denote
a finite dimensional linear superspace. Assume that ρ : L −→ LL(V ) is a
representation of L and U(ρ) : U(L) −→ L(V ) its lift to the enveloping algebra
U(L). Put δ(v)(u) = (−1)|u||v|U(ρ)(u)v , with u ∈ U(L), v ∈ V and homogeneous.
δ(v) is a V -valued representative function of L : δ(v) ∈ U ◦(L) ⊗ V . The map
δ : V −→ U◦(L) makes V an U ◦(L)-left supercomodule.

Every representation of the Lie superalgebra L defines an U ◦(L)-left su-
percomodule structure on the representation superspace V .

Definition. Let H = H0̄ ⊕ H1̄ denote a Hopf superalgebra. A H-left
supercomodule is a linear superspace V = V0̄ ⊕ V1̄ endowed with an

even linear mapping δ : V −→ H⊗ V
satisfying the following equations:

(∆⊗ idV )δ = (idH ⊗ δ)δ ; (ε⊗ idV )δ = idV .

Example 1 � . Let H = H0̄⊕H1̄ denote a Hopf superalgebra. Put V = H
and δ = ∆.
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H is a H-left (-right) supercomodul.

Example 2 � . Assume H = SP(m,n) ∼= K[X,X ′]/(detX − detX ′) ⊗
Λ(Y, Y ′)

X =

(
X Y ′

Y X ′

)
; L = sl(m,n).

Take V = Km,n = Km,0⊕K0,n , and let e1, ..., em and f1, ..., fn denote the canonical
basis of Km,0 and K0,n respectively. Write

E =




e1
...
em
f1
...
fn




and δ(E) = X ⊗ E .

In more detail

δ(eµ) =
m∑

j=1

Xµj ⊗ ej +
n∑

k=1

Y ′µk ⊗ fk,

δ(fν) =
m∑

j=1

Yνj ⊗ ej +
n∑

k=1

X ′νk ⊗ fk.

It holds (∆⊗ idV )δ(E) = (∆⊗ idV )(X ⊗E) = ∆X ⊗E = (X ⊗X )⊗E = X ⊗
(X ⊗E) = (idH⊗δ)δ(E); (ε⊗idV )δ(E) = (ε⊗idV )(X ⊗E) = ε(X )⊗E = EE . Km,n

is a SP(m,n)-left supercomodule .

Let H = H0̄ ⊕ H1̄ denote a Hopf superalgebra. A block matrix X ∈
Mat(m,n;H) is called multiplicative, if it holds

∆(X ) = X ⊗ X .

Proposition.(Manin) The H-left supercomodules (Km,n, δ) are in one-
to-one correspondence to the multiplicative block matrices X ∈ Mat(m,n;H).

Given δ : Km,n −→ H⊗Km,n we may compute X from

δ(E) = X ⊗ E ,

and given a multiplicative X ∈ Mat(m,n;H) , δ is defined by the same equation.

A linear mapping f : Km,n −→ Km′,n′ is a morphism of the supercomodules
(Km,n, δ) and (Km′,n′, δ′), if there is a block matrix F interchanging the corre-
sponding multiplicative block matrices X and X ′ : FX ′ = XF and f(E) = FE ′ .

Let H = H0̄ ⊕ H1̄ denote a Hopf superalgebra and let (V, δ) denote a
H-left supercomodule ( not necessarily finite dimensional). If ϕ ∈ H′ = H′̄0 ⊕H′̄1
then the equation

ρ′(ϕ) = (ϕ⊗ idV )δ

defines a representation ρ′ of the associative superalgebra H′ over V .
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By suitable restrictions of ρ′ we get representations of the superalgebra H◦ ,
of the structure group G(H), and of the Lie superalgebra L(H):

ρ◦(ϕ) = (ϕ⊗ idV )δ , ϕ ∈ H◦;
ρG(γ) = (γ ⊗ idV )δ , γ ∈ G(H);

ρL(λ) = (λ⊗ idV )δ , λ ∈ L(H).

Let (G,P) denote an affine algebraic supergroup and assume V = P as
P -left supercomodule (P,∆). The corresponding representation ρL of the Lie
superalgebra L = L(P) is called the left regular representation of L.

Proposition. The left regular representation of the Lie superalgebra L =
L(P) of the affine algebraic supergroup (G,P) is an isomorphism of L onto the
Lie superalgebra Der(r)P of right invariant derivations on P : L(P) ∼= Der(r)P .

Let us start with an affine algebraic supergroup (G,P). If (Km,n, δ) is a P -
left supercomodule , and X denotes the corresponding multiplicative block matrix,
then we may get matrix representations of the group G and its Lie superalgebra
L = L(P) as well, in the following way:

ρG(γ) = γ(X ) =

(
γ(X) 0

0 γ(X ′)

)
;

ρL(λ) = Λ(X ) =

(
λ(X) λ(Y ′)
λ(Y ) Λ(X ′)

)
.

We may also get representations of the group GΛ = G(P; Λ) and of the Lie
algebra LΛ = L(P; Λ) by Λ matrices :

ρG(γΛ) = γΛ(X ) =

(
γΛ(X) γΛ(Y ′)
γΛ(Y ) γΛ(X ′)

)
;

ρL(λΛ) = λΛ(X ) =

(
λΛ(X) λΛ(Y ′)
λΛ(Y ) λΛ(X ′)

)
.
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