Seminar Sophus Lie 2 (1992) 3–9

Lie Superalgebras and Lie Supergroups, II

Helmut Boseck

6. The HOPF Dual.

Let $\mathcal{H} = \mathcal{H}_{\bar{0}} \oplus \mathcal{H}_{\bar{1}}$ denote an affine HOPF superalgebra, i.e. a \mathbb{Z}_2 -graded commutative, finitely generated HOPF algebra. The set $G(\mathcal{H}) = \hom_{alg}(\mathcal{H}; K)$ of algebra homomorphisms mapping the superalgebra \mathcal{H} onto the base field is a group with respect to convolution, called the *structure group* of \mathcal{H} .

The convolution is defined by $\gamma_1 * \gamma_2 = (\gamma_1 \otimes \gamma_2) \Delta$. It holds $\gamma_1 * \gamma_2 \in G(\mathcal{H})$ if $\gamma_1, \gamma_2 \in G(\mathcal{H})$, and $\gamma * \varepsilon = \gamma = \varepsilon * \gamma$, and $\gamma * (\gamma \sigma) = \varepsilon = (\gamma \sigma) * \gamma$.

By an easy calculation we have f.i. $\gamma * \varepsilon = (\gamma \otimes \varepsilon) \Delta = \gamma (id_{\mathcal{H}} \otimes \varepsilon) \Delta = \gamma id_{\mathcal{H}} = \gamma$, and $(\gamma \sigma) * \gamma = ((\gamma \sigma) \otimes \gamma) \Delta = (\gamma \otimes \gamma) (\sigma \otimes id_{\mathcal{H}}) \Delta = \gamma \mu (\sigma \otimes id_{\mathcal{H}}) \Delta = \gamma \iota \varepsilon = \varepsilon$.

Let $\mathcal{H}_{\circ} = \mathcal{H}/(\mathcal{H}_{\bar{1}})$ denote the quotient of \mathcal{H} by the homogeneous ideal generated by $\mathcal{H}_{\bar{1}}$, which is a coideal too: $\Delta(\mathcal{H}) \subseteq \mathcal{H}_{\bar{1}} \otimes \mathcal{H}_{\bar{0}} + \mathcal{H}_{\bar{0}} \otimes \mathcal{H}_{\bar{1}}, \varepsilon(\mathcal{H}_{\bar{1}}) = 0$, and $\sigma(\mathcal{H}_{\bar{1}}) \subseteq \mathcal{H}_{\bar{1}}$.

 \mathcal{H}_{\circ} is an affine HOPF algebra and there is a canonical isomorphism between the structure groups of \mathcal{H} and \mathcal{H}_{\circ}

$$G(\mathcal{H}) \cong G(\mathcal{H}_{\circ}).$$

Let Λ denote a GRASSMANN algebra and let $G(\mathcal{H}; \Lambda) = \hom_{alg}(\mathcal{H}; \Lambda)$ denote the set of algebra homomorphisms mapping \mathcal{H} into Λ , then $G(\mathcal{H}; \Lambda)$ is a group with respect to convolution. The equation $\pi_{\Lambda}(\gamma_{\Lambda}) = p_0 \gamma_{\Lambda}$ with $\gamma_{\Lambda} \in G(\mathcal{H}; \Lambda)$ defines an epimorphism π_{Λ} mapping $G(\mathcal{H}; \Lambda)$ onto $G(\mathcal{H})$. Moreover, by the inclusion $K \subseteq \Lambda$ we have a canonical embedding ι_{Λ} of $G(\mathcal{H})$ into $G(\mathcal{H}; \Lambda)$. The diagram

$$G(\mathcal{H}) \xrightarrow{\iota_{\Lambda}} G(\mathcal{H}; \Lambda) \xrightarrow{\pi_{\Lambda}} G(\mathcal{H})$$

implies a semidirect product structure of $G(\mathcal{H}; \Lambda)$

$$G(\mathcal{H};\Lambda) \cong G(\mathcal{H}) \odot K(\mathcal{H};\Lambda).$$

The normal subgroup $K(\mathcal{H}; \Lambda) = \ker \pi_{\Lambda}$ is a unipotent group. In the representation by block matrices from $\operatorname{Mat}(m, n; \Lambda)$ the group $K(\mathcal{H}; \Lambda)$ consists of matrices of the form

$$\left(\begin{array}{cc} E_m & B_1(\Lambda) \\ B_0(\Lambda) & E_n \end{array}\right).$$

A differentiation $\lambda : \mathcal{H} \longrightarrow K$ of \mathcal{H} is a linear mapping satisfying the equation

$$\lambda(XY) = \lambda(X)\varepsilon(Y) + \varepsilon(X)\lambda(Y), \ X, Y \in \mathcal{H}.$$

Let λ_1 and λ_2 denote homogeneous differentiations of \mathcal{H} . Then

$$[\lambda_1, \lambda_2] = \lambda_1 * \lambda_2 - (-1)^{|\lambda_1||\lambda_2|} \lambda_2 * \lambda_1$$

is a homogeneous differentiation of \mathcal{H} .

Let $L_{\bar{0}}(\mathcal{H})$ and $L_{\bar{1}}(\mathcal{H})$ denote the linear space of even and odd differentiations of \mathcal{H} respectively.

The linear space $L(\mathcal{H}) = L_{\bar{0}}(\mathcal{H}) \oplus L_{\bar{1}}(\mathcal{H})$ is a LIE superalgebra with respect to the brackets defined above.

 $L(\mathcal{H})$ is called the LIE*superalgebra of the* HOPF superalgebra \mathcal{H} .

Let $\lambda_{\Lambda} : \mathcal{H} \longrightarrow \Lambda$ denote an even linear mapping satisfying the equation $\lambda_{\Lambda}(XY) = \lambda_{\Lambda}(X)\varepsilon(Y) + \varepsilon(X)\lambda_{\Lambda}(Y), X, Y \in \mathcal{H}$. We shall call it a Λ -differentiation of \mathcal{H} . Then it holds

The linear space $L(\mathcal{H}; \Lambda)$ of Λ - differentiations of \mathcal{H} is a LIE algebra with respect to the brackets $[\lambda_{1\Lambda}, \lambda_{2\Lambda}] = \lambda_{1\Lambda} * \lambda_{2\Lambda} - \lambda_{2\Lambda} * \lambda_{1\Lambda}$. The LIE algebra $L(\mathcal{H}; \Lambda)$ is isomorphic to the GRASSMANN-hull of the LIE superalgebra $L(\mathcal{H})$.

The algebraic dual $\mathcal{H}' = \mathcal{H}'_{\bar{0}} \oplus \mathcal{H}'_{\bar{1}}$ of the HOPF superalgebra \mathcal{H} is an associative superalgebra with unit. The product of \mathcal{H}' is the convolution, i.e. the restriction of the dual mapping $\Delta' : (\mathcal{H} \otimes \mathcal{H})' \longrightarrow \mathcal{H}'$ of the coproduct Δ to the subspace $\mathcal{H}' \otimes \mathcal{H}'$ of $(\mathcal{H} \otimes \mathcal{H})'$.

Let \mathcal{H}° denote the subalgebra of \mathcal{H}' consisting of those linear functionals $\varphi \in \mathcal{H}'$ which vanish on a homogeneous ideal of finite codimension in \mathcal{H} . Then it is known, that the restriction of the dual mapping μ' of the product map

 μ of \mathcal{H} to \mathcal{H}° maps \mathcal{H}° into $\mathcal{H}^{\circ} \otimes \mathcal{H}^{\circ}$ and hence defines a coproduct Δ° in \mathcal{H}° . Moreover, the restriction of the dual map σ' of the antipode σ of \mathcal{H} to \mathcal{H}° is an antipode σ° of \mathcal{H}° . At last, the counit of \mathcal{H}° is the evaluation of the linear functionals at the unit of \mathcal{H} .

 $\mathcal{H}^{\circ} = \mathcal{H}^{\circ}_{\bar{0}} \oplus \mathcal{H}^{\circ}_{\bar{1}}$ is a cocommutative HOPF superalgebra. It is called the HOPF dual of \mathcal{H} .

The structure group $G(\mathcal{H})$ consists of the group-like elements of $\mathcal{H}^{\circ} : \gamma \in G(\mathcal{H})$ iff $\Delta^{\circ}(\gamma) = \gamma \otimes \gamma$.

The structure group of \mathcal{H} is the group of units in \mathcal{H}° .

The LIE superalgebra $L(\mathcal{H})$ consists of the *primitive* or LIE*algebra-like* elements of \mathcal{H}° : $\lambda \in L(\mathcal{H})$ iff $\Delta^{\circ}(\lambda) = \lambda \otimes \varepsilon + \varepsilon \otimes \lambda$.

It is easy to verify the following equations :

$$\begin{array}{rcl} <\Delta^{\circ}(\gamma), X\otimes Y> &=& <\gamma, XY> \\ =& <\gamma, X> <\gamma, Y> &=& <\gamma\otimes\gamma, X\otimes Y>, \\ \mathrm{and} <\Delta^{\circ}(\lambda), X\otimes Y> &=& <\lambda, XY> \\ =& <\lambda, X> <\varepsilon, Y> &+& <\varepsilon, X> <\lambda, Y> \\ &=& <\lambda\otimes\varepsilon &+& \varepsilon\otimes\lambda, X\otimes Y>, X, Y\in\mathcal{H} \end{array}$$

Structure Theorem of cocommutative HOPF superalgebras.

(SWEEDLER, KOSTANT) Let \mathcal{H} denote a cocommutative HOPF superalgebra, G its group of group-like elements and \mathcal{L} its LIE superalgebra of primitive elements. Let K(G) denote the group algebra of G and $U(\mathcal{L})$ the enveloping superalgebra of \mathcal{L} . Then \mathcal{H} is a smashed product of K(G) and $U(\mathcal{L})$.

BOSECK

As a corollary from this theorem we mention

The HOPF dual \mathcal{H}° of a HOPF superalgebra \mathcal{H} is generated by its structure group $G(\mathcal{H})$ and its LIE superalgebra $L(\mathcal{H})$.

7. Affine Algebraic Supergroups.

Let G denote a group. A representative function on G is a K-valued function f on G with the property that span{ $f_g; g \in G$ } (or span{ $_gf; g \in G$ }) is finite dimensional. It is $f_g(g') = f(g'g)$ and $_gf(g') = f(g^{-1}g')$.

Proposition.(HOCHSCHILD) The representative functions of G make up an affine HOPF algebra $\mathcal{R}_{\circ}(G)$. The coproduct Δ_{\circ} is defined by the equation $\tilde{f}(g_1, g_2) = f(g_1g_2)$ using the isomorphism of $\mathcal{R}_{\circ}(G \times G)$ with $\mathcal{R}_{\circ}(G) \otimes \mathcal{R}_{\circ}(G)$. The counit ε_{\circ} is the evaluation at the identity : $\varepsilon_{\circ}(f) = f(e)$ and the antipode σ_{\circ} is defined by $\sigma_{\circ}(f)(g) = f(g^{-1})$.

Definition.(HOCHSCHILD) The structure of an affine algebraic group is a pair (G, \mathcal{P}_{\circ}) consisting of a group G and a sub HOPF algebra \mathcal{P}_{\circ} of $\mathcal{R}_{\circ}(G)$ satisfying the following properties

- i.) \mathcal{P}_{\circ} separates the points of G;
- ii.) every algebra homomorphism $\gamma_{\circ} : \mathcal{P}_{\circ} \longrightarrow K$ is the evaluation at a group element.

The algebra \mathcal{P}_{\circ} is called the *algebra of polynomial functions* on G.

The properties i.) and ii.) imply a canonical isomorphism $G \cong G(\mathcal{P}_{\circ})$ and $\mathcal{L}_{\bar{0}} = L(\mathcal{P}_{\circ})$ is the LIE algebra of the affine algebraic group (G, \mathcal{P}_{\circ}) .

Proposition.(HOCHSCHILD) Let \mathcal{H}_{\circ} denote an affine HOPF algebra, then $(G(\mathcal{H}_{\circ}), \mathcal{H}_{\circ})$ is an affine algebraic group structure.

Definition. The structure of an affine algebraic supergroup is a pair (G, \mathcal{P}) consisting of a group G and an affine HOPF superalgebra \mathcal{P} satisfying the following property:.

There is a sub HOPF algebra \mathcal{P}_{\circ} of $\mathcal{R}_{\circ}(G)$ and a finite dimensional vector space W such that it holds

i.) $\mathcal{P} \cong \mathcal{P}_{\circ} \otimes \Lambda(W)$ is an isomorphism of associative superalgebras;

ii.) the canonical projection $p: \mathcal{P} \longrightarrow \mathcal{P}_{\circ}$ is a morphism of supercoalgebras compatible with the antipodes;

iii.) (G, \mathcal{P}_{\circ}) is the structure of an affine algebraic group.

Property ii.) is equivalent to the equations : $(p \otimes p)\Delta = \Delta_{\circ}p$, $\varepsilon = \varepsilon_{\circ}p$, and $p\sigma = \sigma_{\circ}p$. Property iii.) implies canonical isomorphisms $G(\mathcal{P}) \cong G(\mathcal{P}_{\circ}) \cong G$. Every algebra homomorphism $\gamma : \mathcal{P} \longrightarrow K$ is of the following type: projection by p and evaluation at a group element.

 $\mathcal{P} = \mathcal{P}_{\bar{0}} \oplus \mathcal{P}_{\bar{1}}$ is called the superalgebra of polynomial functions in commuting and anticommuting variables on G.

 $L(\mathcal{P}) = \mathcal{L} = \mathcal{L}_{\bar{0}} \oplus \mathcal{L}_{\bar{1}}$ is called the LIE superalgebra of the affine algebraic supergroup (G, \mathcal{P}) .

Evidently holds: $\dim \mathcal{L}_{\bar{0}} = \dim(G, \mathcal{P}_{\circ}) =$ degree of transcendency of $Q(\mathcal{P}_{\circ})/K$; $Q(\mathcal{P}_{\circ})$ denotes the quotient field of \mathcal{P}_{\circ} provided the algebraic group

structure (G, \mathcal{P}_{\circ}) is irreducible, i.e. \mathcal{P}_{\circ} is an integral domain; and dim $\mathcal{L}_{\bar{1}} = \dim W$.

Proposition. Let $\mathcal{H} = \mathcal{H}_{\bar{0}} \oplus \mathcal{H}_{\bar{1}}$ denote an affine HOPF superalgebra, then $(G(\mathcal{H}), \mathcal{H})$ is the structure of an affine algebraic supergroup.

If $\mathcal{H} \cong \mathcal{H}_{\circ} \otimes \Lambda(W)$, then it holds $G(\mathcal{H}) \cong G(\mathcal{H}_{\circ})$ canonically and $(G(\mathcal{H}), \mathcal{H}_{\circ})$ is the structure of an affine algebraic group, the *underlying algebraic* group of the algebraic supergroup $(G(\mathcal{H}), \mathcal{H})$.

Assume $\mathcal{L} = \mathcal{L}_{\bar{0}} \oplus \mathcal{L}_{\bar{1}}$ to be a finite dimensional Lie superalgebra. Denote by $U(\mathcal{L})$ its enveloping algebra, $U(\mathcal{L})$ is a cocommutative HOPF superalgebra: $\Delta(\lambda) = \lambda \otimes \varepsilon + \varepsilon \otimes \lambda$; $\lambda \in \mathcal{L}$, ε denotes the unit element of $U(\mathcal{L})$. Its HOPF dual $U^{\circ}(\mathcal{L})$ is a commutative HOPF superalgebra.

It holds the following isomorphism of associative, commutative superalgebras:

$$U^{\circ}(\mathcal{L}) \cong U^{\circ}(\mathcal{L}_{\bar{0}}) \otimes \Lambda(\mathcal{L}'_{\bar{1}}).$$

Proposition. The following statements are equivalent

(i) $U^{\circ}(\mathcal{L})$ is an affine HOPF superalgebra;

- (ii) $[\mathcal{L}_{\bar{0}}, \mathcal{L}_{\bar{0}}] = \mathcal{L}_{\bar{0}};$
- (iii) $L(U^{\circ}(\mathcal{L})) \cong \mathcal{L}.$

If one of the statements (i) - (iii) holds, then $\tilde{G} = G(U^{\circ}(\mathcal{L})) \cong G(U^{\circ}(\mathcal{L}_{\bar{0}}))$ is the connectend and simply connected algebraic LIE group associated to $\mathcal{L}_{\bar{0}}$ and $(\tilde{G}, U^{\circ}(\mathcal{L}))$ is the structure of an affine algebraic supergroup.

Corollary. Let \mathcal{L} denote a finite dimensional LIE superalgebra with semisimple even part $\mathcal{L}_{\bar{0}}$, and let \tilde{G} denote the connected, simply connected, semisimple LIE group corresponding to $\mathcal{L}_{\bar{0}}$, then $(\tilde{G}, U^{\circ}(\mathcal{L}_{\bar{0}}))$ is the structure of an affine algebraic supergroup.

8. Representations.

Let us start with a motivation.

Let $\mathcal{L} = \mathcal{L}_{\bar{0}} \oplus \mathcal{L}_{\bar{1}}$ denote a LIE superalgebra, and let $V = V_{\bar{0}} \oplus V_{\bar{1}}$ denote a finite dimensional linear superspace. Assume that $\rho : \mathcal{L} \longrightarrow L_L(V)$ is a representation of \mathcal{L} and $U(\rho) : U(\mathcal{L}) \longrightarrow L(V)$ its lift to the enveloping algebra $U(\mathcal{L})$. Put $\delta(v)(u) = (-1)^{|u||v|} U(\rho)(u)v$, with $u \in U(\mathcal{L}), v \in V$ and homogeneous. $\delta(v)$ is a V-valued representative function of $\mathcal{L} : \delta(v) \in U^{\circ}(\mathcal{L}) \otimes V$. The map $\delta : V \longrightarrow U^{\circ}(\mathcal{L})$ makes V an $U^{\circ}(\mathcal{L})$ -left supercomodule.

Every representation of the LIE superalgebra \mathcal{L} defines an $U^{\circ}(\mathcal{L})$ -left supercomodule structure on the representation superspace V.

Definition. Let $\mathcal{H} = \mathcal{H}_{\bar{0}} \oplus \mathcal{H}_{\bar{1}}$ denote a HOPF superalgebra. A \mathcal{H} -left supercomodule is a linear superspace $V = V_{\bar{0}} \oplus V_{\bar{1}}$ endowed with an

even linear mapping $\delta: V \longrightarrow \mathcal{H} \otimes V$

satisfying the following equations:

$$(\Delta \otimes id_V)\delta = (id_{\mathcal{H}} \otimes \delta)\delta ; \ (\varepsilon \otimes id_V)\delta = id_V.$$

Example 1 $^{\diamond}$. Let $\mathcal{H} = \mathcal{H}_{\bar{0}} \oplus \mathcal{H}_{\bar{1}}$ denote a HOPF superalgebra. Put $V = \mathcal{H}$ and $\delta = \Delta$.

Boseck

 \mathcal{H} is a \mathcal{H} -left (-right) supercomodul.

Example 2 \diamond . Assume $\mathcal{H} = \mathcal{SP}(m,n) \cong K[X,X']/(detX - detX') \otimes \Lambda(Y,Y')$

$$\mathcal{X} = \begin{pmatrix} X & Y' \\ Y & X' \end{pmatrix}$$
; $\mathcal{L} = \mathfrak{sl}(m, n)$.

Take $V = K^{m,n} = K^{m,0} \oplus K^{0,n}$, and let $e_1, ..., e_m$ and $f_1, ..., f_n$ denote the canonical basis of $K^{m,0}$ and $K^{0,n}$ respectively. Write

$$\mathcal{E} = \begin{pmatrix} e_1 \\ \vdots \\ e_m \\ f_1 \\ \vdots \\ f_n \end{pmatrix} \text{ and } \delta(\mathcal{E}) = \mathcal{X} \otimes \mathcal{E}.$$

In more detail

$$\delta(e_{\mu}) = \sum_{j=1}^{m} X_{\mu j} \otimes e_j + \sum_{k=1}^{n} Y'_{\mu k} \otimes f_k,$$

$$\delta(f_{\nu}) = \sum_{j=1}^{m} Y_{\nu j} \otimes e_j + \sum_{k=1}^{n} X'_{\nu k} \otimes f_k.$$

It holds $(\Delta \otimes id_V)\delta(\mathcal{E}) = (\Delta \otimes id_V)(\mathcal{X} \otimes \mathcal{E}) = \Delta \mathcal{X} \otimes \mathcal{E} = (\mathcal{X} \otimes \mathcal{X}) \otimes \mathcal{E} = \mathcal{X} \otimes (\mathcal{X} \otimes \mathcal{E}) = (id_{\mathcal{H}} \otimes \delta)\delta(\mathcal{E}); (\varepsilon \otimes id_V)\delta(\mathcal{E}) = (\varepsilon \otimes id_V)(\mathcal{X} \otimes \mathcal{E}) = \varepsilon(\mathcal{X}) \otimes \mathcal{E} = E\mathcal{E} \cdot K^{m,n}$ is a $\mathcal{SP}(m,n)$ -left supercomodule.

Let $\mathcal{H} = \mathcal{H}_{\bar{0}} \oplus \mathcal{H}_{\bar{1}}$ denote a HOPF superalgebra. A block matrix $\mathcal{X} \in Mat(m, n; \mathcal{H})$ is called *multiplicative*, if it holds

$$\Delta(\mathcal{X}) = \mathcal{X} \otimes \mathcal{X}.$$

Proposition.(MANIN) The \mathcal{H} -left supercomodules $(K^{m,n}, \delta)$ are in oneto-one correspondence to the multiplicative block matrices $\mathcal{X} \in Mat(m, n; \mathcal{H})$. Given $\delta : K^{m,n} \longrightarrow \mathcal{H} \otimes K^{m,n}$ we may compute \mathcal{X} from

$$\delta(\mathcal{E}) = \mathcal{X} \otimes \mathcal{E}.$$

and given a multiplicative $\mathcal{X} \in \operatorname{Mat}(m, n; \mathcal{H})$, δ is defined by the same equation. A linear mapping $f: K^{m,n} \longrightarrow K^{m',n'}$ is a morphism of the supercomodules $(K^{m,n}, \delta)$ and $(K^{m',n'}, \delta')$, if there is a block matrix \mathcal{F} interchanging the corre-

sponding multiplicative block matrices \mathcal{X} and $\mathcal{X}' : \mathcal{FX}' = \mathcal{XF}$ and $f(\mathcal{E}) = \mathcal{FE}'$. Let $\mathcal{H} = \mathcal{H}_{\bar{0}} \oplus \mathcal{H}_{\bar{1}}$ denote a HOPF superalgebra and let (V, δ) denote a \mathcal{H} -left supercomodule (not necessarily finite dimensional). If $\varphi \in \mathcal{H}' = \mathcal{H}'_{\bar{0}} \oplus \mathcal{H}'_{\bar{1}}$ then the equation

$$\rho'(\varphi) = (\varphi \otimes id_V)\delta$$

defines a representation ρ' of the associative superalgebra \mathcal{H}' over V.

BOSECK

By suitable restrictions of ρ' we get representations of the superalgebra \mathcal{H}° , of the structure group $G(\mathcal{H})$, and of the LIE superalgebra $L(\mathcal{H})$:

 $\rho^{\circ}(\varphi) = (\varphi \otimes id_V)\delta, \ \varphi \in \mathcal{H}^{\circ};$ $\rho_G(\gamma) = (\gamma \otimes id_V)\delta, \ \gamma \in G(\mathcal{H});$ $\rho_L(\lambda) = (\lambda \otimes id_V)\delta, \ \lambda \in L(\mathcal{H}).$

Let (G, \mathcal{P}) denote an affine algebraic supergroup and assume $V = \mathcal{P}$ as \mathcal{P} -left supercomodule (\mathcal{P}, Δ) . The corresponding representation ρ_L of the LIE superalgebra $\mathcal{L} = L(\mathcal{P})$ is called the *left regular representation* of \mathcal{L} .

Proposition. The left regular representation of the LIE superalgebra $\mathcal{L} = L(\mathcal{P})$ of the affine algebraic supergroup (G, \mathcal{P}) is an isomorphism of \mathcal{L} onto the LIE superalgebra $\text{Der}^{(r)}\mathcal{P}$ of right invariant derivations on $\mathcal{P}: L(\mathcal{P}) \cong \text{Der}^{(r)}\mathcal{P}$.

Let us start with an affine algebraic supergroup (G, \mathcal{P}) . If $(K^{m,n}, \delta)$ is a \mathcal{P} left supercomodule, and X denotes the corresponding multiplicative block matrix, then we may get matrix representations of the group G and its LIE superalgebra $\mathcal{L} = L(\mathcal{P})$ as well, in the following way:

$$\rho_G(\gamma) = \gamma(\mathcal{X}) = \begin{pmatrix} \gamma(X) & 0 \\ 0 & \gamma(X') \end{pmatrix};$$

$$\rho_L(\lambda) = \Lambda(\mathcal{X}) = \begin{pmatrix} \lambda(X) & \lambda(Y') \\ \lambda(Y) & \Lambda(X') \end{pmatrix}.$$

We may also get representations of the group $G_{\Lambda} = G(\mathcal{P}; \Lambda)$ and of the LIE algebra $\mathcal{L}_{\Lambda} = L(\mathcal{P}; \Lambda)$ by Λ matrices :

$$\rho_G(\gamma_{\Lambda}) = \gamma_{\Lambda}(\mathcal{X}) = \begin{pmatrix} \gamma_{\Lambda}(X) & \gamma_{\Lambda}(Y') \\ \gamma_{\Lambda}(Y) & \gamma_{\Lambda}(X') \end{pmatrix};$$

$$\rho_L(\lambda_{\Lambda}) = \lambda_{\Lambda}(\mathcal{X}) = \begin{pmatrix} \lambda_{\Lambda}(X) & \lambda_{\Lambda}(Y') \\ \lambda_{\Lambda}(Y) & \lambda_{\Lambda}(X') \end{pmatrix}.$$

References

- [1] Abe, E., "HOPF algebras," Cambridge University Press 1977.
- [2] Berezin, F. A., "Introduction to algebra and analysis with anticommuting variables," (Russian) Moscow University 1983.
- Boseck H., On representative functions of LIE superalgebras, Math.Nachr.
 123 (1985), 61–72; Correction to my paper: 'On representative functions...', Math. Nachr. 130 (1987), 137–138.
- [4] —, Affine LIE supergroups, Math. Nachr. **143** (1987), 303–327.
- [5] —, *Classical* LIE supergroups, Math. Nachr. **148** (1990), 81–115.
- [6] —, LIE superalgebras and LIE supergroups, I Seminar Sophus Lie (Heldermann Verlag Berlin), **2** (1992), 109–122.
- [7] Corwin, L., Y. Ne'eman, and S. Sternberg, Graded LIE algebras in Mathematics and Physics (BOSE-FERMI-symmetry), Rev. of Mod. Physics 47 (1975), 57–63.

Boseck

- [8] Heynemann, R. G., and M. E. Sweedler Affine HOPF algebras I, J. of Algebra **13** (1969), 192–241.
- [9] Hochschild, G., Algebraic groups and HOPFalgebras, Illinois J. Math. 14 (1970), 52–65.
- [10] —, "Introduction to Affine Algebraic Groups," Holden Day Inc., San Francisco etc., 1971.
- [11] —, "Basic Theory of Algebraic Groups and LIE Algebras," Graduate Texts in Math. **75**, Springer Verlag Berlin etc., 1981.
- [12] Kac, V. G., LIE superalgebras, Adv. in Math. 26 (1977), 8–96.
- [13] Kostant, B., Graded manifolds, graded LIE theory, and prequantization, Lect. Notes in Math. **570** (1977), 177–306.
- [14] Manin, Y., "Quantum Groups and Noncommutative Geometry," CRM Université de Montreal 1988.
- [15] Milnor J., and J. Moore, On the structure of HOPF algebras, Ann. of Math.
 81 (1965), 211–264.
- [16] Scheunert M., "The Theory of LIE Superalgebras," Lect. Notes in Math.716, Springer Verlag, Berlin etc., 1979.
- [17] Sweedler M. E. "HOPF Algebras", Benjamin Inc., New York, 1969.

Fachrichtungen Mathematik/Informatik Ernst Moritz Arndt Universität Greifswald Friedrich Ludwig Jahn-Straße 15a O-2200 Greifswald, Germany

Received March 31, 1992