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Convexity properties of Graßmannians

J. Hilgert∗

In this note we study the images of various moment maps Φu:Gp(Cn)→
u∗ , where Gp(Cn) is the Graßmann-manifold of p -planes in Cn and u∗ the
(real) dual of the Lie algebra u of a compact group U acting on Gp(Cn) in a
Hamiltonian way.

More precisely, if we let gC = gl(n, C) act on Cn via the identity
representation then the p -fold wedge product of this representation is a highest
weight module V = ∧pCn of G = Gl(n, C) with highest weight vector

v0 = e1 ∧ . . . ∧ ep

and highest weight

λ0

(
diag(a1, . . . , an)

)
=

p∑

j=1

aj,

where {e1, . . . , en} is the canonical basis for Cn and the set tC of diagonal
matrices in gl(n, C) is used as Cartan subalgebra. The ordering of the root
system ∆(gC , tC ) is chosen such that the corresponding Borel algebra consists of
the upper triangular matrices in gl(n, C). The stabilizer of the line [v0] ∈ IP(V )
generated by v0 is the maximal parabolic subgroup

PC = {
(
A B
0 D

)
∈ Gl(n, C):A ∈ Gl(p, C), D ∈ Gl(q, C)}

and the action of Gl(n, C) induces an embedding

Gp(Cn) ∼= GC /PC
∼= GC · [v0]→ IP(V ).

The choice of a Hermitean metric on V gives a Fubini-Study metric
on IP(V ) which in turn induces a Kähler metric on Gp(Cn). We choose the
metric in such a way that U(n) ⊆ Gl(n, C) acts unitarily on V . Then U(n)
also preserves the Kähler metric on Gp(Cn). This in particular means that the
action of U(n) preserves the symplectic structure of Gp(Cn), which is given by
the imaginary part of the Kähler metric. Let ϕ̇: u(n) → X

(
Gp(Cn)

)
be the

derived action which associates with a Lie algebra element X the vector field on
Gp(Cn) whose flow is given by exp tX . Moreover we consider the map

ψ:C∞
(
Gp(Cn)

)
→ X

(
Gp(Cn)

)
,
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which maps a function to the corresponding Hamiltonian vector field. Choose a
linear map

κ: g→ C∞
(
Gp(Cn)

)

such that ψ ◦ κ = ϕ̇ and define

Φ:Gp(Cn)→ u(n)∗

via
〈Φ(x), X〉 =

(
κ(X)

)
(x) X ∈ u(n).

Then Φ is called a moment map if it is U(n)-equivariant. Note at this point
that the construction of the moment map just given of course works for any
group action G×M →M preserving the symplectic structure and not only for

U(n)×Gp(Cn)→ Gp(Cn). Using the fact that moment maps are characterized
by ψ◦κ = ϕ̇ and the equivariance it is not hard to show that the moment map for
the action of U(n) on Gp(Cn) is just the restriction to Gp(Cn) of the moment
map for the action of U(n) on IP(V ) which is given by

〈Φ([v]), X〉 = i
(X · v | v)

(v | v)

or, when we introduce homogeneous coordinates with respect to an orthonormal
basis, by

Φ
(
(z0 : . . . : zN )

)
=

i
∑N
k=0 |zk|2

(zjzk)j,k=0,...,N ,

where dimV = N + 1. Moreover, when we restrict the action to a subgroup U
of U(n), then the corresponding moment map Φu is Φ followed by the canonical
projection u(n)∗ → u∗ , where u = L(U) ⊆ u(n).

Thes moment maps and their images are closely related to subsemigroups
of G = Gl(n, IR) which have been studied in the context of control theory and
harmonic analysis. The common feature of the examples to be described below
is the following:

Let Gp(IR
n) be the real Graßmannian of p -planes in IRn which may be

constructed as the set of real points of Gp(Cn) and H be a closed subgroup of
Gl(n, IR). Further let U be a compact form of H , i.e., the complexifications hC

and uC with h = L(H) agree. Note that Gl(n, IR) acts transitively on Gp(IR
n).

We assume that H has at least two open orbits in Gp(IR
n). Then our examples

will satisfy the following conditions

(i) Φu(G/P ) is convex, where P = PC ∩Gl(n, IR).

(ii) Φu(HP/P ) is open in the linear span of Φu(G/P ) and dense in Φu(G/P ).

(iii) Φu|HP/P is a diffeomorphism onto its image.

The semigroups alluded to earlier are given by

S = {g ∈ G: gHP/P ⊆ HP/P}.

We note in passing that the complex conjugation interchanges the Kähler
metric with its complex conjugate, so it is antisymplectic, i.e., it interchanges the
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symplectic form with its negative. Moreover the moment map Φ anti-commutes
with complex conjugation, i.e., it satisfies

Φ(x) = −Φ(x).

In particular, the image of G/P is contained in ig∗ .

Example 1. We let H be the subgroup of diagonal matrices and p = 1, then
Gp(Cn) = IP(Cn). In this case the open H -orbits on Gp(IR

n) = IP(IRn) are
given by the sets

{(z0 : . . . : zn−1) ∈ IP(IRn): εjzj > 0 j = 0, . . . , n− 1},
where the εj are fixed and equal to 1 or −1. All together we have 2n open H -
orbits and the statements (i) and (ii) are special cases of Duistermaat’s extension
of the Atiyah-Guillemin-Sternberg convexity theorem which deals with fixed
point sets of antisymplectic involutions. It is of course not necessary to appeal
to this theorem here, since here u = ih and the moment map is given by

Φ
(
(z0 : . . . : zn−1)

)
=

i
∑N
k=0 |zk|2

(|z0|2, . . . , |zn−1|2)

so that it is elementary to check that Φu

(
IP(IRn)

)
= Φu

(
IP(Cn)

)
is an n -

dimensional simplex satisfying (i) and (ii).

The semigroup S in this case consists of all elements in Gl(n, IR) with
non-negative entries (cf. [9] for more information).

Example 2. Let H = O(p, q), where n = p+ q . We write elements of G and
g = gl(n, IR) as block matrices of the form

(
A B
C D

)

with A of size p×p and D of size q×q . The usual Cartan involutions g 7→ (g>)−1

and X 7→ −X> are both denoted by θ . Let τ be given by

g 7→ Jθ(g)J, X 7→ Jθ(X)J

on G and g respectively, where

J =

(
1p 0
0 −1q

)
.

Then H = Gτ = O(p, q) and G/H is a pseudo-Riemannian symmetric space.
Let g = h + q = k + p be the eigenspace decompositions of g with respect to τ
and θ for the eigenvalues 1 and −1. Then

q ∩ p = {
(
A 0
0 D

)
:A,D symmetric },

h ∩ k = {
(
A 0
0 D

)
:A,D skew − symmetric },

h ∩ p = {
(

0 B
B> 0

)
}
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and

a = {
(
A 0
0 D

)
:A,D diagonal }

is maximal abelian in p ∩ q, p and q .

Note that u := (h ∩ k) + i(h ∩ p) is a compact form of h and the image
of G/P under the corresponding moment map Φu has to be contained in the
dual of u ∩ ig = i(h ∩ p). The key idea to prove the convexity of this image is
to find a suitable maximal abelian subspace of i(h ∩ p), study the image of the
moment map for the corresponding torus and then use equivariance properties
to describe Φu(G/P ).

Consider the elements

Xi =

(
0 Bi
B>i 0

)
,

where all entries of Bi are zero except for the entry at the i -th row and the i -th
column which is 1. Then

b :=

min(p,q)∑

i=1

IRXi

is maximal abelian in h∩p . But h = (k∩h)+(p∩h) is the Cartan decomposition
associated with θ|h so there belongs a Weyl group to the data (h, b). This Weyl
group which we denote by Wb is isomorphic to the symmetric group on min(p, q)
elements, extended by the multiplications with −1 in each coordinate with the
obvious action by permutation of the entries.

If p ≤ q we write the elements of g as block matrices with nine entries,
where the diagonal entries are of size p× p, p× p and (q− p)× (q− p) (the case
p > q can be treated analogously and we will not mention that case explicitly).
Then conjugation by

1√
2



−1p 1p 0
1p 1p 0
0 0 1(qp)




is an automorphism of gC which maps aC onto a Cartan algebra t]C containing
b via 


A 0 0
0 B 0
0 0 C


 7→ 1

2



B + A B −A 0
B − A B +A 0

0 0 2C


 .

There is another Weyl group, denoted by W ] , associated to the pair
(gC , t

]
C ). This Weyl group is of course isomorphic to the Weyl group for the pair

(gC , tC ) which is simply the permutation group on n letters. Each element of

Wb can be obtained from an element of W ] by restriction to b . Let t] = u(n)∩t]C
and

p: u(n)∗ → ib∗

then the crucial property of our Weyl groups is

(∗) p
(
conv(W ] · µ)

)
= conv

(
Wb · p(µ)

)
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for all µ ∈ i(t])∗ .

Let T ] and Tb be the tori in U(n) with Lie algebras t] and ib . Note
the following inclusions:

t] ←− ib
↓ ↓

u(n) ←− u.

We collect the corresponding moment maps in a commutative diagramm

(t])∗

↗ ↑ Φ] ↘
u(n)∗

Φ←− Gp(C
n)

Φb−→ ib∗

↘ ↓ Φu ↗
u∗

.

As in the case of Example 1

Φ](GC /PC ) = Φ](G/P )

is a simplex and hence Φb(G/P ), being a projection of Φ](G/P ) is also a convex
polytop. In fact, we may again apply Duistermaat’s results and this time [2],
Proposition 4.2, implies

Φb(G/P ) = Φb(B · [v0]),

where B is the analytic subgroup of G with Lie algebra b . Moreover the general
theory says that Φ](G/P ) is the convex hull of the Weyl group orbit W ] ·λ] for

any extremal weight λ] of the module V with respect to t]C . But such a weight
is given by

λ]:



A B 0
B A 0
0 0 C


 7→

p∑

i=1

(bi − ai) +

q∑

k=1

ck,

where A = diag(a1, . . . , ap), B = diag(b1, . . . , bp) and C = diag(c1, ..., cq). Ap-
plying the projection p and (∗) we find

(∗∗) Φb(G/P ) = conv
(
Wb · p(λ])

)
.

But the projection p(λ]) = µ0 corresponds to the element

(
0 B0

B>0 0

)
∈ b

with B0 =
∑min(p,q)
i=1 Bi . Thus the image of Φb is the cube which one obtains

from

(
0 B0

B>0 0

)
upon the action of the Weyl group Wb .

Now we are ready to use equivariance: Let KH = O(p) × O(q) be the
maximal compact subgroup of H contained in U(n) and consider the Cartan
decomposition

H = KHBKH .
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Note that KH ⊆ P so that the U -equivariance of Φ implies

Φ(H · [v0]) = Φ(KHB · [v0]) = Ad∗(KH)Φ(B · [v0]).

Analogously, we have

Φu(H · [v0]) = Ad∗(KH)Φb(B · [v0]) = Ad∗(KH)Φb(B · ·[v0]).

We set
D := Ad∗(KH)Φb(G/P ) = Φu(H · [vo]) ⊆ i(h ∩ p)∗.

Let µ ∈ D . Then

(†) conv
(

Ad∗(KH)µ
)
⊆ D.

In fact, let µ′ ∈ conv
(

Ad∗(KH)µ
)
. Then µ′ corresponds to an element of

i(h ∩ p)∗ so that there exists an element k ∈ KH such that Ad∗(k)µ′ ∈ ib∗. Let
[v] ∈ G/P be such that µ = Φ([v]) then

p(conv
(

Ad∗(KH)µ
)

= conv
(
p(Φ(KH · [v]))

)

⊆ conv
(
Φb(KH · [v])

)

⊆ conv
(
Φb(G/P )

)

= Φb(G/P ) ⊆ D
and hence

Ad∗(k)µ′ = p(Ad∗(k)µ′) ∈ D.
Thus we have

µ′ ∈ Ad∗(KH)D = D

which proves (†). Now let µ ∈ Φb(G/P ) ⊆ i(h ∩ p)∗ , and k ∈ KH be such that
Ad∗(k)µ ∈ ib∗ . But then

Ad∗(k)µ ∈ ib∗ ∩ Φu(G/P ) ⊆ Φb(G/P ) ⊆ D

and hence µ ∈ Ad∗(k)D ⊆ D. Thus we have

Φb(G/P ) = Φb(H · [v0]) = D.

Using (†), (∗) and (∗∗) we calculate

D = Ad∗(KH)Φb(G/P )

= Ad∗(KH)conv(Wb · µ0)

⊆ conv(Ad∗(KH) · µ0)

⊆ D,

since the action of Wb is induced by NKH (b). Thus, in particular D is convex
and we have shown (i) and the density part of (ii) for this example. We can even
say more:

Φb(G/P ) = {
(

0 gBh
h−1B>g−1 0

)
: g ∈ O(p), h ∈ O(q), B ∈ Φb(G/P )}
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which is linearly isomorphic to the set of linear contractive mappings from Cq to
Cp with the usual norm. This can be seen by mapping the image of the linear
operator gBh isometrically to Cq and then considering the polar decomposition.

In order to show (iii) we study Φu|B·[v0] in more detail. Consider the
elements

vi := e1 ∧ . . . ∧ ei−1 ∧ ep+i ∧ ei+1 ∧ . . . ∧ ep
then

(exp tXi) · vi = (cosh t)vi + (sinh t)v0.

The map

(t1, . . . , tmin(p,q)) 7→
min(p,q)∏

i=1

exp tiXi · [v0]

is a diffeomorphism IRmin(p,q) → B·[v0] . If we use it as coordinate chart for B·[v0]

and further identify ib∗ with IRmin(p,q) via the dual basis of {X1, . . . , Xmin(p,q)} ,
then Φu|B·[v0] is given by

(t1, . . . , ts) 7→ (tanh
t1
2
, . . . , tanh

ts
2

),

where s = min(p, q). In order to prove (iii) it now suffices to consider the
mappings

ϕ1 =
(
(k, b) 7→ khP

)
:KH × B → HP/P

and
ϕ2 =

(
(k, f) 7→ Ad∗(k)f

)
:KH × ib∗ → i(h ∩ p)∗.

In fact,
ϕ2

(
k, ph ◦ Φ(b · [v0])

)
= Φh ◦ ϕ1(k, b · [v0])

and the claim follows since the fibers of ϕ1 and of ϕ2 are both given by the Weyl
group Wb .

The semigroup S in this case is given by

H exp cmaxH

with
cmax = {diag(a1, . . . , an): (∀j ≤ p < k) aj ≥ ak}

(cf. [6, §5.7).

Example 3. We conclude this report with an example which indicates that
the simultaneous occurence of the properties (i)-(iii) and semigroups as shown in
Examples 1 and 2 is not purely accidental. Let H = Gl(n, IR), and G = Gl(n, C)
embedded as the diagonal in GC = Gl(n, C)×Gl(n, C), where C indicates that
on this copy of C we have the opposite complex structure. As maximal parabolic
in g we choose

P = {
(
a v>

0 D

)
∈ sl(n, C): a ∈ C, v ∈ Cn}.
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Then G/P = IP(Cn), GC /PC = IP(Cn)× IP(C
n
), and a compact form of H is

U(n). The moment map Φu:GC /PC → u(n)∗ associated with this action is

Φh

(
z0 : . . . : zn−1), (w0 : . . . : wn−1)

)
=
i

2

( zjzk∑n−1
k=0 |zk|2

+
wjwk∑n−1
k=0 |wk|2

)
j,k=0,...,n−1

and, when restricted to G/P ,

Φh

(
(z0 : . . . : zn−1)

)
=

i
∑n−1
k=0 |zk|2

(Re zjzk).

Whereas the image is a disk for n = 2 it is non-convex for n = 3. This can
be seen from a somewhat tedious comutation using affine coordinates on the
projective plane. Note that for n ≥ 3 no proper subsemigroup S of Gl(n, C) is
known which has non-empty interior and satisfies Gl(n, IR) ⊆ S .
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