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Compact elements in solvable real Lie algebras

Karl H. Hofmann

1. Observations on solvable algebras

We consider a real solvable Lie algebra g .

The intersection of the descending central series will be called C∞(g)
or C∞ for short. If h is a Cartan subalgebra then g = h + C∞ . Since the
characteristic ideal C∞ is contained in the commutator algebra g′ , it is nilpotent.

All Cartan algebras in the solvable algebra g are conjugate.

1.1. Definition. Fixing a Cartan algebra h we shall write

(1) e
def
= h ∩ C∞.

1.2. Lemma. All roots vanish on e .

Proof. We assume the contrary and find an element X ∈ e = h∩C∞ such that

there is a root λ on hC with λ
def
= λ(X) 6= 0. By the definition of the root λ , there

is a smallest natural number n such that (adX − λ·1)n(gC) = {0} . Hence there

is a Y0 ∈ gλC such that Y
def
= (adX − λ·1)n−1Y0 6= 0. Hence (adX)Y = λ·Y and

(adX)nY = λn·Y 6= 0 for all m ∈ N . But X ∈ C∞ and thus adX is nilpotent,
i.e., there is a natural number m with (adX)m = 0. This contradiction proves
the claim.

1.3. Lemma. Under the circumstances of Lemma 1.2, h = h1 ⊕ e with a
suitable vector space complement h1 for e ∈ h . Every element X ∈ h then
decomposes uniquely as X = X1 + Y with X1 ∈ h1 and Y ∈ e . Also, X is
regular if and only if X1 is regular. In particular, the regular elements of h1 are
dense in h1 .

Proof. By Lemma 1.2 we have λ(X) = λ(X1) for every root λ . Since X ∈ h
is regular iff λ(X) 6= 0 for all roots λ , the assertion follows.

1.4. Lemma. (i) If X ∈ g is such that adX is nilpotent as well as semisimple,
then X is central.

(ii) If n is the nilradical of g and S ⊆ g is the set of all elements X
with adX semisimple, then S ∩ n = z , where z is the center of g .

Proof. (i) If adX is semisimple and nilpotent, then adX = 0 and thus X is
central.
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(ii) Since X ∈ n implies that adX is nilpotent, by (i) we conclude that
S ∩ n ⊆ z . Conversely, X ∈ z implies adX = 0. In particular, X ∈ S . But
z ⊆ n and thus z ⊆ S ∩ n .

Note C∞ ⊆ n .

2. Compact elements in solvable algebras

2.1. Definition. (i) Set

(2) comp(g) = {X ∈ g : Spec(adX) ⊆ iR and adX is semisimple}.

If no confusion is possible we shall briefly write comp for this set.

(ii) We fix a Cartan subalgebra and set

(3) t = h ∩ comp .

The elements of comp are precisely the elements X ∈ g for which eR· adX

is relatively compact in Aut(g) ⊆ Gl(|g|). If g is solvable and G is the simply
connected Lie group associated with g then expR·X is isomorphic to R for all
X ∈ g , in particular for those in comp. The adjoint group Ad(G) agrees with
Inn(g) ⊆ Aut(g). Our arguments will remain entirely within g and its group
Inn(g) of inner automorphisms.

Let Γ = 〈ead C∞〉 = ead C∞ ⊆ Inn(g).

2.2. Lemma. (i) t is a central subalgebra of h .

(ii) t contains the center z of g .

(iii) comp = Γ·t .

Proof. (i) Every compact element X in h generates a semisimple adX with
purely imaginary spectrum. In particular, adX|h is nilpotent and semisimple
and thus X is central in h by 1.4(i). It follows that the set t is central in
h . Clearly t is closed under scalar multiplication. In order to show that t is
closed under addition, take Xj ∈ t , j = 1, 2. Then [X1, X2] = 0 and thus
[adX1, adX2] = ad[X1, X2] = 0. Hence

eR· ad(X1+X2) ⊆ eR· adX1 ·eR· adX2

is compact. Thus X1 +X2 ∈ comp∩h = t .

(ii) If X ∈ z , then adX = 0 whence X ∈ comp. Also, z ⊆ h since the
center is contained in every Cartan algebra. Thus z ⊆ t .

(iii) The Cartan algebras of g are conjugate under Γ. Every compact
element element X of g is semisimple, and thus is contained in a Cartan algebra
of g (namely, in each Cartan algebra of its centralizer z(X, g)). Thus there is a
γ ∈ Γ such that γ−1X ∈ h . Then X ∈ γ·h ∩ comp = γ(h ∩ comp) = γ·t . Thus
comp ⊆ Γ·t . The converse is clear.
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The linear span of comp g is invariant under automorphisms and is
therefore a fully characteristic ideal of g (i.e, it is invariant under all derivations).
We want to investigate the structure of this ideal and shall therefore assume until
further notice that

(4) g = span(comp g).

Let A denote the set of nonzero weights of gC with respect to tC and
gαC , α ∈ A the respective weight spaces of gC . Now set t+ = g∩⊕α∈A gαC . This
definition yields immediately the following remark:

2.3. Remark. The vector space t+ is the same as the Fitting one component
of adX for any regular X ∈ t . For the action of the torus Ω = ead t on g , the
vector space t+ is precisely the span of all simple nonzero nontrivial modules.

Write z(t, g) for the centralizer of t in g .

2.4. Lemma. (i) g = t + C∞(g) and C∞ = g′ .

(ii) z(t, g) = h = t + e.

(iii) g = h⊕ t+ .

(iv) C∞ = e⊕ t+ .

(v) 〈t+〉 is an ideal of g .

Proof. (i) By Lemma 2.2(iii) we have comp(g) = Γ·t , and Γ·t = ead C∞ t ⊆
t + C∞ since every summand except the first of the exponential series contains
a factor from C∞ , and since C∞ is an ideal. Thus g = span comp ⊆ t + C∞ ⊆ g
and the first assertion follows. In order to see the second we recall that C∞ ⊆ g′

always and that g/C∞ is isomorphic to a subalgebra of t by what we just saw.
Thus g/C∞ is abelian and hence C∞ ⊇ g′ .

(ii) By Lemma 1.3 there is a regular element X of g contained in t .
Thus h is the nilspace of adX . But adX is semisimple, thus h = ker adX =
z(X, g) ⊇ z(t, g). Now h ⊆ z(t, g) by Lemma 2.2(i). This proves the first equality.
By (i) We have g = t + C∞ and thus h = h ∩ (t + C∞) = t + (h∩ C∞) = t + e by
the modular law and the definition of e in (1).

(iii) is the Fitting decomposition of adX for a regular X inside t .

(iv) By (iii) we have g = h + t+ . If X is regular and contained in
t , then adX|t+ is an automorphism. Thus t+ is contained in every term of
the descending central series and thus in C∞ . Hence C∞ = (h + t+) ∩ C∞ =
(h ∩ C∞) + t+ = e + t+ by the modular law and the definition of e again.

(v) We note that [h, t+] ⊆ t+ . Therefore [h, 〈t+〉] ⊆ 〈t+〉 . Hence 〈t+〉 is
an h + t+ -module and thus a g -module in view of (iii). Hence 〈t+〉 is an ideal.

We shall set L[Γ]
def
= {X ∈ g : eR· adX ⊆ Γ} .
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2.5. Lemma. (i) If A is a subgroup of a Lie group B , then A = 〈exp a〉 holds
for a Lie algebra a ⊆ b = L(B) if and only if A is analytic and a = L(A) .

(ii) If v ⊆ b is a vector space then A = 〈exp v〉 if an only if 〈v〉 = a .

(iii) Γ = 〈ead t+〉 .
(iv) C∞ = 〈t+〉 .
(v) L[Γ] = z + 〈t+〉 .

Proof. (i) The “if” portion is clear. Suppose now that A = 〈exp a〉 . Then A
is pathwise connected and hence is analytic by the Theorem of Yamabe and Gôto.
Hence there is a unique intrinsic Lie group topology on A making A into a Lie
group A` with exponential function exp |L(A):L(A)→ A` . Here X ∈ L(A) iff
expR·X ⊆ A . This implies a ⊆ L(A). Assume for the moment that a 6= L(A).
Then the analytic subgroup generated by a in the Lie group A` is proper in
A` , since proper subalgebras generate proper analytic subgroups. On the other
hand this subgroup is 〈exp a〉 = A . This is a contradiction since A = A` as sets.
Hence a = L(A) follows and the claim is proved.

(ii) Firstly, suppose A = 〈exp v〉 . Then X ∈ v implies expR·X ⊆
〈exp v〉 = A and this implies X ∈ L(A) = a . It follows that 〈v〉 ⊆ a . Then
A = 〈exp v〉 ⊆ 〈exp〈v〉〉 ⊆ 〈exp a〉 = A . Thus A = 〈exp〈v〉〉 and hence, by (i) we
conclude 〈v〉 = a as asserted.

Secondly suppose that 〈v〉 = a . Then 〈exp v〉 ⊆ 〈exp〈v〉〉 = 〈exp a〉 = A .
On the other hand, v ⊆ L(〈exp v〉) by the definition of the right hand side, and
thus a = 〈v〉 ⊆ L(〈exp v〉) and therefore A = 〈exp a〉 ⊆ 〈expL〈exp v〉)〉 = 〈exp v〉
by (i).

(iii) Clearly Γ1
def
= 〈ead t+〉 is contained in Γ and is normal by 2.4(v). If

X ∈ t , then the centralizer of X contains e as [t, e] = {0} by 2.2(i). Thus for
the isotropy group ΓX at X we have e ⊆ L[ΓX ] . Hence Γ = Γ1ΓX . If γ ∈ Γ,
then Γ = γΓγ−1 = Γ1ΓγX . Thus Γ = Γ1ΓX for all X ∈ comp by 2.2(iii). Hence

Γ·X = Γ1.X for all X ∈ comp. But ead〈t+〉X ⊆ X + 〈t+〉 by 2.4(v). Thus
comp ⊆ t+ 〈t+〉 and hence g = span comp ⊆ t+ 〈t+〉 . Thus g/〈t+〉 is an abelian
algebra isomorphic to a subalgebra of t and thus C∞ = g′ ⊆ 〈t+〉 in view of

2.4(i). We conclude C∞ = 〈t+〉 and thus Γ = ead〈t+〉 . The Lie algebra generated

by ad t+ in Der g is ad〈t+〉 . By (ii) we obtain Γ1 = 〈ead t+〉 = exp〈ad t+〉 = Γ.

(iv) was proved in the process of proving (iii).

(v) The analytic subgroup Γ of Aut g has the Lie algebra ad〈t+〉 by (iii)
and (i) above. Hence the Lie algebra L[Γ] is exactly 〈t+〉+ z .

2.6. Lemma. Let j denote the largest ideal of g contained in e . Then

(5) j = z ∩ e = z ∩ g′ = t ∩ e = t ∩ g′.

Proof. Firstly, as e = h ∩ g′ we have z ∩ e = z ∩ h ∩ g′ = z ∩ g′ and
t ∩ e = t ∩ h ∩ g′ = t ∩ g′ .

Secondly, since j ⊆ e ⊆ h and t+ is an h -module, we have [j, t+] ⊆
j ∩ t+ ⊆ e ∩ t+ = {0} . It follows that [j, 〈t+〉] = [t, g′] = {0} . Since t is central
in h we also know [j, t] = {0} . Then [j, g] = [j, t + g′] = {0} , i.e., j ⊆ z . Thus
j ⊆ z∩g′ , and since z∩g′ is an ideal in g , the equality j = z∩g′ follows. Thirdly,
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z ⊆ t . Hence z ∩ g′ ⊆ t ∩ g′ . On the other hand, X ∈ t ∩ g′ implies that adX
is both nilpotent and semisimple. Hence X ∈ z by Lemma 1.4. Thus t ∩ g′ ⊆ z .
Hence z ∩ g′ = t ∩ e .

We also need the following lemmas for the purpose of induction with
respect to dimension.

2.7. Lemma. Let a denote an ideal of g and write g1 = g/a . Then g1 is
spanned by comp(g1) .

Proof. We know that h1 is a Cartan algebra of g1 . Furthermore, all elements
of (t + a)/a are semisimple and have purely imaginary spectrum, hence are
contained in t1 = comp h1 . Since g is spanned by comp = Γ·t and then g1 is
spanned by comp(g1) = Γ1·t1 .

2.8. Lemma. Let a be a nonzero minimal ideal (which exists as g is solvable).
(i) Then there are two mutually exclusive cases:

(a) [t, a] = {0} . Then a is central and dim a = 1 .

(b) [t, a] 6= {0} . Then a ⊆ t+ and dim a = 2 .

in both cases, [g′, a] = {0} .

(ii) z∩ g′ = {0} if and only if all nonzero minimal ideals are of type (b).
In this case, h is abelian.

Proof. We prove (i): Case (a): We know a ⊆ z(t, g) = h . Also [a, t+] ⊆
a ∩ t+ ⊆ h ∩ t+ = {0} . Then also [a, g′] = [a, 〈t+〉] = {0} whence {0} =
[a, t + g′] = [a, g] , i.e., a ⊆ z .

Case (b): We briefly consider the compact connected abelian group

Ω
def
= ead t . Then g is an Ω-module. Its unique fixed point module is h = z(t, g).

Its unique effective submodule (spanned by all nontrivial simple submodules) is
t+ . Now a is an Ω-module. Hence a is of the form a = (a ∩ h) ⊕ (a ⊕ t+).
The assumption [t, a] 6= {0} implies a ⊕ t+ 6= {0} . Since Ω is connected, any
nonzero submodule of the effective module t+ is at least 2-dimensional. But a ,
as a minimal ideal of g , is at most two dimensional. Hence a ∩ t+ = a and thus
a ⊆ t+ ⊆ g′ . In this case, dim a = 2.

In order to show [g′, a] = {0} consider the representation π: g→ gl(a) ∼=
gl(2,R), π(X)(Y ) = [X,Y ] . It image π(g) contains π(t) ∼= so(2) ⊆ gl(2,R)

and is solvable. But R·E2 ⊕ so(2) = {
(
r s
−s r

)
: r, s ∈ R} , the unique Cartan

algebra containing so(2) is also a unique Borel subalgebra (i.e., maximal solvable
subalgebra) containing so(2). Thus π(g) is contained in an abelian algebra and
thus π(g′) = 0. This means [g′, a] = {0} .

(ii) If j = z∩ g′ 6= {0} then every one-dimensional vector subspace a of j
is a nonzero minimal ideal of type (a). Conversely, if those minimal ideals exist,
then j 6= {0} by (i).

Now we assume j = {0} and show [h, h] = {0} . We prove the claim by
induction. The situation is known through simple inspection up to dimension
3. We assume that the claim is proven for all dimensions below n > 3 and
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consider g with dim g = n . Let a denote a nonzero minimal ideal. Since
j = {0} then a is of type (b). In particular, a ⊆ t+ ⊆ g′ . From Lemma 2.7

we know that g1
def
= g/a satisfies our general hypothesis to be spanned by its

compact elements. Suppose that j1 is the maximal ideal of g1 contained in

h1 ∩ g′1 = h+a
a
∩ g′

a
= (h+a)∩g′

a
= (h∩g′)+a

a
= j⊕a

a
(by the modular law). Now j

was assumed to be {0} . Hence j1 = {0} . Thus the induction hypothesis applies
to g/a and shows that the Cartan algebra h+a

a
is abelian. Thus [h, h] ⊆ a . But

then [h, h] ⊆ h ∩ a = {0} . The induction is complete.

2.9. Lemma. The Cartan algebra h satisfies [h, h] ⊆ z ∩ g′ . In particular, h
is nilpotent of class ≤ 2 .

Proof. Recall j = z ∩ g′ . Consider g1 = g/j . Let j∗ contain j and be such

that j∗/j = z(g1) ∩ g′1 ⊆ h1 ∩ g′1 = h
j
∩ g′

j
= h∩g′

j
= e/j . Thus j∗ is an ideal

of g contained in e . Then j∗ ⊆ j by 2.6 and thus j∗ = j . Thus g1 satisfies the
hypotheses of 2.8(ii) and thus [h1, h1] = {0} . Hence [h, h] ⊆ j .

We collect some of the information which was accumulated so far:

2.10. Proposition. Let g be a real solvable Lie algebra which is spanned by
its compact elements. Fix a Cartan algebra h and set t = h∩ comp(g) . Then we
have

(i) [t, h] = {0} ,

(ii) g′ = C∞ ,

(iii) z ∩ g′ is the largest ideal contained in h ∩ g′ , and

(iii) [h, h] ⊆ z ∩ g′ . In particular, h is nilpotent of class ≤ 2 .

M. Wüstner has constructed a 13-dimensional solvable Lie algebra
spanned by its compact elements in which h ∼= R2 ⊕ H3 with the three-
dimensional Heisenberg algebra H3 so that Part (iii) of Lemma 2.9 cannot be
improved in that h need not be abelian.

The structure of a solvable algebra g spanned by comp therefore may
be roughly summarized in the following diagram:

g

g′ = C∞ = 〈t+〉
h t+

e = h ∩ g′

t

z

j = z ∩ g′

t1 t2 j e1 t+

The following remarks will be used for purposes of induction:
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2.11. Lemma. Let a denote an ideal of g . Set

Γ1 = 〈ead g′1〉 with g′1 = (g′ + a)/a.

(i) There is a surjective homomorphism ϕ: Γ→ Γ1 with ϕ(γ)(X + a) =
γ(X) + a . and kerϕ = {γ ∈ Γ: (∀X ∈ g)γ(X) − X ∈ a} . In particular,

kerϕ ⊇ 〈ead a〉 with the closure taken in Γ .

(ii) The orbit Γ1·(X + a) equals (Γ·X + a)/a .

Proof. (i) The assignment γ 7→ (X+a 7→ γ(X)+a): Inn(g)→ Inn(g1) is a well
defined homomorphism whose kernel consists of all those γ with γ(X)−X ∈ a
for all X ∈ g .

Now let γ = eadX with X ∈ g′ . Let γ1 = ead(X+a) ∈ Γ1 . Take Y ∈ g
and notice ϕ

(
γ(Y+a)

)
= γ(Y )+a = eadXY+a = Y+[X,Y ]+ 1

2
[X, [X,Y ]]+· · ·+a

on the one hand and γ1(Y + a) = ead(X+a)(Y + a) = Y + a + [X + a, Y + a] +
1
2
[X + a, [X + a, Y + a]] + · · · = Y + [X,Y ] + 1

2
[X, [X,Y ]] + · · ·+ a on the other.

Hence γ1 = ϕ(γ). Thus ϕ(Γ) ⊆ Γ1 . Since Γ1 is generated by ead g1 = ϕ(ead g′),
we have ϕ(Γ) = Γ1 .

If X ∈ a , then eadXY − Y = [X,Y ] + · · · ∈ a .

(ii) Finally, for γ1 ∈ Γ1 we find γ ∈ Γ with γ1 = ϕ(γ). Then γ1·(X +
a) = ϕ(γ)·(X + a) = γ·X + a . Hence Γ1·(X + a) = (Γ·X + a)/a .

We consider the semidirect product R2oD of a plane with a compact
connected group D acting irreducibly on R2 . Let g = R2od denote the Lie
algebra and X = (0, x) a vector acting nontrivially on R2 . Let Y = (v, 0). Then
in the subalgebra R2oR·x the subspaces R·X = {0} × R·x and R·(X − Y ) =

R.(−v, x) are Cartan subalgebras and hence are conjugate under eadR2×{0} . In
particular, there is a g ∈ R× {1} ⊆ G with Ad(g)R.(X − Y ) = R·X .

2.12. Lemma. Let X ∈ comp g be regular and a a minimal abelian ideal such
that [X, a] 6= {0} . Then X − Y ∈ comp(g) for all Y ∈ a .

Proof. The element adX|a is semisimple and has nonzero purely imaginary
spectrum. Thus the subalgebra R·X ⊕ a is invariant under the action of the
group eR· adX which transitively permutes the the one-dimensional subspaces of
a . Hence it permutes transitively the one parameter subgroups of the analytic

subgroup A
def
= ead a under conjugation. This subgroup therefore is either closed

or relatively compact. In the second case, its closure would be a compact normal
abelian subgroup of Inn(g) and would therefore be central, which is not the case
on account of the nontrivial action of X on a . Thus A is closed in Inn g and

isomorphic to R2 . The group D
def
= eR· adX ⊆ int(g) is compact and contained

in the group M
def
= DA ⊆ 〈eR·X⊕a〉 ⊆ int(g). The product DA is semidirect.

Now let Y ∈ a . Consider the subgroup D1
def
= eR· ad(X−Y ) . Since R·(X − Y ) is

conjugate to R·X under the action of A by the remarks preceding this lemma,
we know that D1 is conjugate to D in Inn(g). Thus D1 is compact. Hence
X − Y ∈ comp(g) as asserted.
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3. On some group actions

We let g denote a real Lie algebra and consider a mixture of actions by
translation and inner automorphisms. If Γ is a closed subgroup of Inn(g), as
before, we let L[Γ] denote the unique Lie algebra within g such that X ∈ L[Γ]
means eR·X ⊆ Γ. Then L[Γ]/z ∼= L(Γ) is the Lie algebra of Γ. We identify the
Lie algebra of Γ with L[Γ]/z .

3.1. Lemma. Let Γ ⊆ Inn(g) be a subgroup and a a subalgebra invariant
under Γ . We let aoΓ denote the semidirect product Lie group with multiplication
(Z1, γ1)(Z2, γ2) = (Z1 + γ1(Z2), Z1 + Z2) and we set

(Z, γ)·X = Z + γ(X) for γ ∈ Γ, Z ∈ a, X ∈ g.

Then
(
(Z, γ)X

)
7→ (Z, γ)·X : (aoΓ)× g→ g is an action.

Proof. If (0, η) is the identity of aoΓ then (0, η)·X = 0 + η(X) = X
and (Z1, γ1)·

(
Z2, γ2)·X

)
= Z1 + γ1(Z2 + γ2(X)) = Z1 + γ1(Z2) + γ1γ2(X) =(

(Z1, γ1)(Z2, γ2)
)
·X .

3.2. Definition. We call the action described in the preceding lemma the
affine action of aoΓ.

3.3. Lemma. (i) Let A and B two subgroups of a group C . Then A×B acts
on C on the left via (a, b)·c = acb−1 .

The function a 7→ (a, c−1ac) : A ∩ cBc−1 → A × B implements an
isomorphism onto the isotropy group (A×B)c .

The function (a, b) 7→ acb:A×B → G induces a bijection

(A× B)/{(a, c−1ac): a ∈ A ∩ cBc−1} → AcB.

(ii) If A , B , and C are Lie groups, then AcB is a submersed subman-
ifold of dimension dimL(A) + dimL(B)− dim(L(A) ∩Ad(c)L(B))

(iii) If, under the hypotheses of (ii),

dim(L(A) ∩Ad(c)L(B)) = dimL(A) + dimL(B)− dimL(C) for all c ∈ C,

then all AcB , c ∈ C are open closed submanifolds of C . If C is connected, then
AcB = G for all c ∈ C .

(iv) Suppose that C is a connected Lie group acting differentiably on a
manifold M . Let B denote the isotropy subgroup of C at m . Then cBc−1 is
the isotropy subgroup at c·m . If A is a Lie subgroup such that

(†) dim(L(A) ∩ Ad(c)L(B)) = const for all c ∈ C,

then A·m = C·m .
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Proof. (i) The action is clear. We have (a, b) ∈ (A × B)c iff acb−1 = c
iff ac = cb iff b = c−1ac . If this is satisfied, then a = cbc−1 ∈ cBc−1 , and
conversely, if a satisfies this condition then (a, c−1ac) ∈ (A×B)c .

(ii) The dimension of the submersed manifold AcB equals the dimension
of the homogeneous space (A× B)/{(a, c−1ac): a ∈ A ∩ cBc−1} and its dimen-
sion is that of (L(A) × L(B))/{(X,Ad(c)−1X): X ∈ L(A) ∩ Ad(c)L(B)} . The
assertion follows.

(iii) Under the present hypotheses, by (ii) all sets AcB are open subman-
ifolds of C . Since they form the orbits decomposition of a group action, each of
the sets AcB is also closed. The remainder is then clear.

(iv) There are bijective immersions AB/B → A·m and C/B → C·m
and AB/B ⊆ C/B . The claim then follows if we establish AB/B = C/B . By
(iii) we have AcB = C for all c ∈ C , in particular AB = C . The assertion
follows.

For the following discussion it is useful to recall some general facts on
the smooth action of Lie groups on manifolds.

Let (g,m) 7→ g·m : G×M →M denote a smooth action of a Lie group

on a manifold M . Let X 7→ X̃: g → V (M) denote the map which associates

with an X ∈ g the G -invariant vector field X̃:M → T (M) on M which is given

by X̃(x) = d
dt

∣∣
t=0

(
exp(t·X)·x

)
for x ∈ M . Then the integral manifolds of X̃

are exactly the orbits of the action (r, x) 7→ (exp r·X)·x : R×M →M . Thus m

is a fixed point for this action iff X̃(m) = 0. As a consequence, we obtain

3.4. Lemma. Let H = Gm denote the isotropy group of G at m . Then
X ∈ h = L(H) if and only if d

dt

∣∣
t=0

(
exp(t·X)·m

)
= 0 .

3.5. Lemma. Suppose that Γ is an analytic subgroup of the group Inn(g) of
inner automorphisms of g and a a subalgebra invariant under Γ and let aoΓ
act on g by the affine action. (See Definition 3.2.)

(i) Let (aoΓ)X denote the isotropy group of the affine action at X . Then

L
(
(aoΓ)X

)
= {(Z, Y + z) ∈ aoL(Γ) = ao(L[Γ]/z) : [X,Y ] = Z}.

(ii) The orbit (aoΓ)·X is a submersed submanifold whose tangent space at X
is a+ [L[Γ], X] when the tangent space TX(g) of g at X is elementarily
identified with g .

Proof. (i) First we note that L(a) = a and L(aoΓ) = aoL(Γ) = ao(L[Γ]/z).
For Z ∈ a , Y ∈ L[Γ] , and sufficiently small t ∈ R we have (t·Z, 0)∗(0, t·Y +z) =

t·(Z, Y + z)+( t
2

2
·[Z, Y ], 0)+O(t3) and exp

(
(t·Z, 0)∗ (0, t·Z+ z)

)
= (t·Z, et· adY ).

Then
exp(t·(Z, Y + z))·X + O(t2) = exp(t·(Z, Y + z) + O(t2))·X

= t·Z + et· adYX = X + t·(Z + [Y,X]) + O(t2).

Hence the assertion is a consequence of Lemma 3.4.

(ii) We recall exp(Z, Y + z)·X − X = t·([Y,X] + Z) + O(t2) and this
implies the assertion.
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3.6. Lemma. Let n denote a subalgebra of the nilradical of a Lie algebra g
and suppose that n contains the center z . Set Γ = 〈ead n〉 and let and a be any
ideal of g . We consider the Lie group aoΓ , the isotropy group (aoΓ)X of the
affine action of aoΓ at an element X . Then

(i) L({0} × Γ) ∩ L
(
(Y, α)−1(aoΓ)X(Y, α)

) ∼= (z(X − Y, g) ∩ n)/z for all
(Y, α) ∈ aoΓ .

(ii) Suppose now that, in addition, n is an ideal, X a regular compact
element of g , and a a minimal ideal with [X, a] 6= {0} . Then for any Cartan
algebra h we have

L({0} × Γ) ∩ L
(
(Y, α)−1(aoΓ)X(Y, α)

) ∼= (h ∩ n)/z for all (Y, α) ∈ aoΓ.

Proof. (i) We identify the Lie algebra of Γ with L[n]/z .

For (Y, α) ∈ aoΓ we have (Y, α) = (Y,1)(0, α). Hence

L({0} × Γ) ∩ L
(
(Y, α)−1(aoΓ)X(Y, α)

)
=

L({0} × Γ) ∩ L
(
(0, α)−1(Y,1)−1(aoΓ)X(Y,1)(0, α)

)
=

L({0} × Γ) ∩Ad(0, α)−1L
(
(Y,1)−1(aoΓ)X(Y,1)

) ∼=
Ad(0, α)L({0} × Γ) ∩ L

(
(Y,1)−1(aoΓ)X(Y,1)

)
=

L
(
(0, α)({0} × Γ)(0, α−1) ∩ L

(
(−Y,1)(aoΓ)X(Y,1)

)
=

L({0} × Γ) ∩ L
(
(−Y,1)(aoΓ)X(Y,1)

)
.

In order to determine the right portion of the intersection, we note first
that (Z, γ) ∈ (aoΓ)X iff Z + γ(X) = X iff Z = X − γ(X) ∈ a . Further,
(−Y,1)(aoΓ)X(Y,1) = (aoΓ)(−Y,1)·X and (−Y, 1)·X = X − Y . Thus

(−Y,1)(aoΓ)(Y,1) = {
(
(X − Y )− γ(X − Y ), γ

)
: γ ∈ Γ and γ(X − Y ) ∈ X − Y + a}.

In order to compute the Lie algebra

b
def
= L

(
(−Y,1)(aoΓ)X(Y,1)

)
= L(aoΓ)X−Y

we want to apply Lemma 3.5 and recall that n is nilpotent and thus Γ = ead n

and L(Γ) = L[Γ]/z = n/z . Then

b = {(Z1, Z2 + z) ∈ aoL(Γ) : [X − Y, Z2] = Z1}
= {([X − Y, Z], Z + z) : Z ∈ n and [X − Y ], Z] ∈ a}.

Thus

L({0} × Γ) ∩ L
(
(−Y,1)(aoΓ)X(Y,1)

)

= {0} × L(Γ) ∩ {(ad(X − Y )(Z), Z + z): Z ∈ n, ad(X − Y )(Z) ∈ a}
= {(0, Z + z): Z ∈ n, ad(X − Y )(Z) = 0} = {0} × z(X − Y, n)/z

= {0} × (z(X − Y, g) ∩ n)/z ∼= (z(X − Y, g) ∩ n)/z.
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This proves (i).

(ii) Under the additional hypotheses, by Lemma 2.12 we know that
X − Y ∈ comp(g) for all Y ∈ a . Hence X − Y is semisimple. Now X is
regular and Y ∈ a and a as a minimal ideal is abelian hence contained in the
nilradical. Thus Y is in the nilradical. Therefore X − Y is regular. Therefore
z(X − Y, g) is the Cartan algebra h(X − Y ) generated by X − Y . Since g is
solvable there is an inner automorphism β with h(X − Y ) = β(h). As n is an
ideal, we have z(X − Y, g) + n = β(h) + β(n) = β(h + n). The assertion now
follows from (i).

3.7. Lemma. Let g denote a solvable Lie algebra which is spanned by comp
and let t = h ∩ comp as in (3) for a Cartan algebra h . Let X ∈ t be a
regular element and a a minimal ideal with [X, a] 6= {0} . If Γ = ead g′ , then
a + Γ·X = Γ·X .

Proof. We apply the preceding Lemma 3.6 with n = g′ + z . Thus

L({0} × Γ) ∩ Ad
(
(Y, α)

)
(a× Γ)X ∼=

(
h ∩ (z + g′)

)
/z for all (Y, α) ∈ a× Γ.

Now we apply Lemma 3.3 with C = aoΓ, A = {0} × Γ, M = g and m = X ,
the affine action of the group aoΓ, and B = (aoΓ)X . Condition (†) of Lemma
3.3(iv) is satisfied. We conclude a + Γ·X = C·m = A·m = Γ·X .

We are ready for the main result. From Γ = ead g′ we know that
Γ·X ⊆ X + g′ for all X . In the four-dimensional oscillator algebra, for regular
elements X ∈ t , the orbits ΓX are three dimensional quadratic hyperboloids.
The next theorem, however, shows that the such orbits are almost affine under
rather general circumstances; they need just the subalgebra e = h ∩ g′ as filling
material in order to fill X + g′ .

3.8. Theorem. Suppose that g is a solvable Lie algebra which is the span
of its compact elements. We set Γ = ead g′ . Let h be a Cartan algebra and set
t = h ∩ comp . Then h ∩ g′ is a nilpotent subalgebra of class at most two with
commutator algebra contained in z ∩ g′ , and for every regular X ∈ t we have

(†) (h ∩ g′) + Γ·X = X + g′.

Proof. The first assertions were summarized in Proposition 2.10. It remains
to show (†). We prove the claim by induction w.r.t. dim g .

The assertion is true for dim g = 0, 1, 2, 3 as a direct inspection shows.
Now suppose that g is a counterexample with smallest possible dimension.

Claim (i): z = j .

For the center z we know z ∈ t and we write z = j ⊕ z1 . Then
t = z1 ⊕ t1 and g = z1 ⊕ (t1 + g′). If we set g1 = t1 + g′ , then g′1 = g′

and e1
def
= h1 ∩ g′1 = (t1 + e) ∩ g′ = e . z(g1) = z ∩ g1 ⊆ g′ . If z1 6= 0, then

dim g1 < dim g and so g1 is not a counterexample. As X is a regular element
of t , we have X = Z + X1 with Z ∈ z1 and X1 ∈ t1 with X1 regular. Then
e+Γ·X = e+Γ(Z+X1) = e+Z+Γ·X1 = Z+e1 +Γ·X1 = Z+X1 +g′1 = X+g′ .
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So g cannot be a counterexample. Hence z1 = {0} and thus z ⊆ j . On the other
hand j ⊆ z by Lemma 2.6.

Step (ii): z = {0} and h is abelian. In particular, e is abelian. Suppose
not. By (i) above we know z ⊆ g′ . Then we consider g1 = g/z . By Lemma
2.7, g1 is spanned by its compact elements. We write z2 for the full inverse
image of z1 = z(g1) in g . Since h is the full inverse image of h1 = h/z we have
z2 ⊆ h . Then z2 ∩ g′ is an ideal in e = h ∩ g′ and is therefore contained in j = z

by Lemma 2.6. Then j1 = z1 ∩ g′1 = z2

z
∩ g′

z
= z2∩g′

z
⊆ z∩g′

z
= {0} . Further,

e1 = h1 ∩ g1 = h
z
∩ g′

z
= e

z
.

Let Γ1 = ead g′1 ⊆ Aut g1 . We have dim g1 < dim g by assumption.
Then g1 cannot be a counterexample to the theorem. For a regular X ∈ t also
X + z is regular in g1 and we obtain

e1 + Γ1·(X + z) = z1 + Γ1·X = X + g1.

In view of Lemma 2.11 we pass to inverse images and find

e + Γ·X = e + Γ·X + z = X + z + g′ = X + g′

as z is contained in g′ by (i). But this contradicts the fact that g is a counterex-
ample. Thus z = {0} . Then h is abelian by 2.8(ii).

Step (iii): Let a be a nonzero minimal ideal of g . By Lemma 2.6(b) we
know a ⊆ t+ ⊆ g′ . We consider the factor algebra g1 = g/a . It is spanned by
its compact elements in view of Lemma 2.7 and satisfies dim g1 < dim g . Hence
g1 not a counterexample. We let Γ1 = 〈ead(g′/a)〉 ⊆ Aut g1 . Then for X regular
in t , the element X + a ∈ t+a

a
is compact and regular. Thus we have

(∗) e1 + Γ1·(X + a) = (X + a) + g′1

with e1 = h1 ∩ g′1 .

Now we let e∗ denote the full inverse image of e1 in g . Since e1 = h1∩g′1
where h1 = h+a

a
we know e∗/a = e1 = h+a

a
∩ g′

a
= (h+a)∩g′

a
. Because of the

modular law this equals (h∩g′)+a
a

= e+a
a

. Hence we have e∗ = e+a . (Note that e
is abelian by Step (ii). By 2.8(i) we know [g′, a] = {0} . Thus [e, a] ⊆ [g′, a] = {0} .
Hence e + a abelian.)

In view of Lemma 2.11, passing to the inverse images in (∗) we obtain

(∗∗) e + a + Γ·X = (e + a) + (Γ·X + a) = X + a + g′ = X + g′.

Now the hypotheses of Lemma 3.7(iii) are satisfied whence we know that
a + Γ·X = Γ·X . Thus e + Γ·X = X + g′ and this again shows that g is not
a counterexample. Thus case (b) cannot occur either—a contradiction which
finishes the proof.

We shall identify the tangent space TX(Γ·X) at X of the orbit Γ·X ⊆ g
with a vector subspace of g via translation.
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3.9. Proposition. Under the hypotheses of Theorem 3.8, the tangent space of
the orbit Γ·X at the point X is TX(Γ·X) = t+ .

Proof. From Lemma 3.5(ii) we know that TX(Γ·X) = [L[Γ], X] . But L[Γ] =
L[ead g′ ] = z + g by Lemmas 2.4(i) and 2.5(iv,v). Now g′ = e ⊕ t+ by Lemma
2.4(i,iv). Thus [L[Γ], X] = [e ⊕ t+, X] = [e, X] + [t+, X] . But [e, X] = {0} by
Lemma 2.2(i), and [t+, X] = ad(X)(t+) = t+ by Remark 2.3. This proves the
proposition.

This proposition shows that we cannot expect to reduce the size of the
filling space e = h ∩ g′ in Theorem 3.8, because by the preceding proposition we
have exactly (h ∩ g′) + TX(Γ·X) = e + t+ = g′ .

We obtain the following result as an immediate consequence of Theorem
3.8:

3.10. Theorem. Let g be a solvable Lie algebra which is spanned by its
compact elements. Let e1 denote any vector space complement of z ∩ g′ in
e = h ∩ g′ . Then g = e1 + comp(g).

Proof. Let R denote the set of regular elements in t . Now, by Theorem 3.8
and Lemma 2.2(iii) we conclude R+g′ = e+Γ·R ⊆ e+comp(g) =

(
e1 +(z∩h)

)
+

comp(g) = e1+comp(g) since z+comp = comp. Hence R+g′ ⊆ e+comp(g) ⊆ g .
But R is dense in t and R + g′ is dense in g by Lemma 2.4(i). The assertion
follows.

In particular we note that e1 = {0} means t = h , i.e., h ⊆ comp, and,
equivalently, h ∩ g′ = z ∩ g′ , and that, in this case, the set comp of compact
elements is dense in g .

We now abandon the general hypothesis that g is spanned by comp and
summarize that which our results yield for real solvable Lie algebras in general.
Thus let g denote a solvable Lie algebra. Then span

(
comp(g)

)
is a characteristic

ideal gcomp . Let h be a Cartan algebra of g and set t = h ∩ comp(g). Define
t+ to be the Fitting one component of adX for a regular X ∈ t . Now hcomp =
z(t, gcomp) = h ∩ gcomp is a Cartan algebra of gcomp containing t . We set
e = hcomp ∩ C∞(gcomp) and let e1 denote any complement of z ∩ e in e .

3.11. Corollary. In a solvable Lie algebra g we have

gcomp = t + 〈t+〉 = t + (e⊕ t+)

The subalgebra e is nilpotent of class at most 2 and centralizes t . It
does not, in general, centralize t+ even though all roots of gcomp with respect to
hcomp vanish on e .

Further, e ⊕ t+ = 〈t+〉 = g′comp = C∞(gcomp) and z(gcomp) = t ∩ e =
t ∩ g′comp .

Finally,
gcomp = e1 + comp.

Proof. This is just a summary of what has been shown in the process.
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4. Examples

In order to see that the structural information on solvable Lie algebras
which are spanned by their compact elements cannot be much improved we
consider a convenient class of examples.

Let A denote a finite dimensional commutative algebra over R with
identity and an augmentation morphism α:A→ R whose kernel A0 is nilpotent.
If An0 = {0} and An−1

0 6= {0} , then n is called the nilpotent class of A0 . We
identify R with the multiples of 1 .

Let k = u⊕ v denote a Lie algebra such that u = R·U + R·[IX,X] and
v = R·X ⊕ R·IX with [U,X] = −IX and [U, IX] = X . Then dim k = 3 or 4
according as [IX,X] = or 6= 0. In other words, k is one of the standard low
dimensional test algebras so(3), sl(2,R), m3, o4 where m3 is the motion algebra
of the euclidean plane and o4 the oscillator algebra with compactly embedded
Cartan algebra u and real root space v .

4.1. Example. The Lie algebra A⊗k with bracket [a⊗Y, a′⊗Y ′] = aa′⊗[Y, Y ′]
is of mixed type with Levi complement 1⊗ k if k = so(3), sl(2,R) and is solvable
if k is solvable. The subalgebra

g = (R⊗ u)⊕ (A0 ⊗ k)

is a maximal solvable subalgebra. The following statements hold

(i) The nilradical n equals A0 ⊗ k . The nilpotent class of n is that of A0 ,
and dim n = (dimA0)(dim k). Further g′ = C∞ = (A2

0 ⊗ u)⊕ (A0 ⊗ v).

(ii) h
def
= A ⊗ u is a Cartan algebra of A⊗ k and of g . We have [h, h] = 0,

t
def
= comp(h) = 1⊗ u , e

def
= h ∩ C∞ = A0 ⊗ u , and t+ = A0 ⊗ v .

In particular,

dim h = (dimA)(dim u), dim t = dim u, dim t+ = 2(dimA0).

(iii) gcomp = t + 〈t+〉 = (1⊗ u)⊕ (A2
0 ⊗ u)⊕ (A0 ⊗ v). Accordingly we have

ecomp = A2
0 ⊗ u , and zcomp = B ⊗ u , where B = {a ∈ A : Aa = {0}} .

Further g′comp = g′ and ecomp = e .
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