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Compact elements in solvable real Lie algebras

Karl H. Hofmann

1. Observations on solvable algebras

We consider a real solvable Lie algebra g.

The intersection of the descending central series will be called C*(g)
or C* for short. If h is a Cartan subalgebra then g = h 4+ C°. Since the
characteristic ideal C* is contained in the commutator algebra g’, it is nilpotent.

All Cartan algebras in the solvable algebra g are conjugate.

1.1. Definition. Fixing a Cartan algebra h we shall write
(1) e ¥ pnee=.

1.2. Lemma. All roots vanish on ¢.

Proof. We assume the contrary and find an element X € ¢ = hNC> such that

there is aroot A on he with A e A(X) # 0. By the definition of the root A, there

is a smallest natural number n such that (ad X —\-1)"(gc) = {0}. Hence there
isa Yy € gp such that YV et (ad X — A\-1)""1Yy # 0. Hence (ad X)Y =AY and
(ad X)"Y = A™Y # 0 for all m € N. But X € C* and thus ad X is nilpotent,
i.e., there is a natural number m with (ad X)™ = 0. This contradiction proves
the claim. |

1.3. Lemma. Under the circumstances of Lemma 1.2, h = bh; & ¢ with a
suitable vector space complement b1 for ¢ € h. Fvery element X € b§ then
decomposes uniquely as X = X1 +Y with X1 € b1 and Y € e. Also, X is
regular if and only if X is reqular. In particular, the reqular elements of 1 are
dense in b .

Proof. By Lemma 1.2 we have A\(X) = A(X;) for every root A. Since X € b
is regular iff A\(X) # 0 for all roots A, the assertion follows. |

1.4. Lemma. (i) If X € g is such that ad X is nilpotent as well as semisimple,
then X s central.

(ii) If n is the nilradical of g and S C g is the set of all elements X
with ad X semisimple, then S Nn =3, where 3 is the center of g.

Proof. (i) If ad X is semisimple and nilpotent, then ad X = 0 and thus X is
central.
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(ii) Since X € n implies that ad X is nilpotent, by (i) we conclude that
SNn C 3. Conversely, X € 3 implies ad X = 0. In particular, X € S. But
3 Cn and thus 3 C SNn. [ |

Note C*° Cn.

2. Compact elements in solvable algebras

2.1. Definition. (i) Set
(2) comp(g) = {X € g: Spec(ad X) C iR and ad X is semisimple}.

If no confusion is possible we shall briefly write comp for this set.
(ii) We fix a Cartan subalgebra and set

(3) t=0HNcomp.

The elements of comp are precisely the elements X € g for which e® 24X

is relatively compact in Aut(g) C Gl(|g|). If g is solvable and G is the simply
connected Lie group associated with g then expR-X is isomorphic to R for all
X € g, in particular for those in comp. The adjoint group Ad(G) agrees with
Inn(g) € Aut(g). Our arguments will remain entirely within g and its group
Inn(g) of inner automorphisms.

Let T' = (e24¢7) = ¢2dC™ C Inn(g).

2.2. Lemma. (i) t is a central subalgebra of b.

(ii) t contains the center 3 of g.

(iii) comp = T'-t.
Proof. (i) Every compact element X in h generates a semisimple ad X with
purely imaginary spectrum. In particular, ad X|h is nilpotent and semisimple
and thus X is central in h by 1.4(i). It follows that the set t is central in
h. Clearly t is closed under scalar multiplication. In order to show that t is
closed under addition, take X; € t, j = 1,2. Then [X;, Xs] = 0 and thus
[ad X1, ad Xo] = ad[X1, X2] = 0. Hence

eR' ad(X1+X2) g eR' ad X1 _6R~ ad X2

is compact. Thus X; + X5 € compnh = t.

(ii) If X € 3, then ad X = 0 whence X € comp. Also, 3 C b since the
center is contained in every Cartan algebra. Thus 3 C t.

(iii) The Cartan algebras of g are conjugate under I'. Every compact
element element X of g is semisimple, and thus is contained in a Cartan algebra
of g (namely, in each Cartan algebra of its centralizer 3(X,g)). Thus there is a
v € T such that y71X € h. Then X € v-h Ncomp = v(h N comp) = v-t. Thus
comp C I'-t. The converse is clear. ]
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The linear span of compg is invariant under automorphisms and is
therefore a fully characteristic ideal of g (i.e, it is invariant under all derivations).
We want to investigate the structure of this ideal and shall therefore assume until
further notice that

(4) g = span(comp g).

Let A denote the set of nonzero weights of gc with respect to t¢ and
g%, a € A the respective weight spaces of gc. Now set t© =gn@, ., 98. This
definition yields immediately the following remark:

2.3. Remark. The vector space tT is the same as the Fitting one component
of ad X for any regular X € t. For the action of the torus Q = e2dt on g, the
vector space tT is precisely the span of all simple nonzero nontrivial modules. m

Write 3(t,g) for the centralizer of t in g.

2.4. Lemma. (i) g=t+C>®(g) and C>* =¢’.

(ii) 3(t,g) =b=t+e

(i) g=h@tr.

(iv) C® =edth.

(v) {(tt) is an ideal of g.
Proof. (i) By Lemma 2.2(iii) we have comp(g) = I':t, and I'-t = 21¢™ ¢ C
t + C™ since every summand except the first of the exponential series contains
a factor from C*°, and since C*° is an ideal. Thus g = spancomp C t+C>® C g
and the first assertion follows. In order to see the second we recall that C*> C ¢’

always and that g/C> is isomorphic to a subalgebra of t by what we just saw.
Thus g/C* is abelian and hence C>* D g¢’. [

(ii) By Lemma 1.3 there is a regular element X of g contained in t.
Thus b is the nilspace of ad X. But ad X is semisimple, thus h = kerad X =
3(X,9) D3(t,g). Now bh C 3(t,g) by Lemma 2.2(i). This proves the first equality.
By (i) We have g =t+C> and thus h =hN(t+C>®) =t+ (hNC>®) =t+¢e by
the modular law and the definition of ¢ in (1).

(iii) is the Fitting decomposition of ad X for a regular X inside t.

(iv) By (iii) we have g = h + tt. If X is regular and contained in
t, then ad X|tT is an automorphism. Thus t* is contained in every term of
the descending central series and thus in C*°. Hence C® = (h +tT) NC>® =
(hNC>®) +t" =e+t" by the modular law and the definition of ¢ again.

(v) We note that [h,tt] C tt. Therefore [h, (t7)] C (t*). Hence (tT) is
an b + tT-module and thus a g-module in view of (iii). Hence (t*) is an ideal.

u

We shall set L[I] % {X € g: eRadX C T},
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2.5. Lemma. (i) If A is a subgroup of a Lie group B, then A = (expa) holds
for a Lie algebra a C b = L(B) if and only if A is analytic and a = L(A).

(ii) If v C b is a vector space then A = (expv) if an only if (v) =a.
(iff) T = (exdt").
(iv) C>® = (t1).
(v) LI =5+ (t").
Proof. (i) The “if” portion is clear. Suppose now that A = (expa). Then A
is pathwise connected and hence is analytic by the Theorem of Yamabe and Goéto.
Hence there is a unique intrinsic Lie group topology on A making A into a Lie
group A, with exponential function exp|L(A): L(A) — Ay. Here X € L(A) iff
expR-X C A. This implies a C L(A). Assume for the moment that a # L(A).
Then the analytic subgroup generated by a in the Lie group A, is proper in
Ay, since proper subalgebras generate proper analytic subgroups. On the other
hand this subgroup is (expa) = A. This is a contradiction since A = A, as sets.
Hence a = L(A) follows and the claim is proved.

(ii) Firstly, suppose A = (expv). Then X € v implies expR-X C
(expv) = A and this implies X € L(A) = a. It follows that (v) C a. Then
A = (expv) C (exp(v)) C (expa) = A. Thus A = (exp(v)) and hence, by (i) we
conclude (v) = a as asserted.

Secondly suppose that (v) = a. Then (expv) C (exp(v)) = (expa) = A.
On the other hand, v C L((expv)) by the definition of the right hand side, and
thus a = (v) C L({expv)) and therefore A = (expa) C (exp L(expv))) = (expb)
by (i).

(ifi) Clearly T'; % (e2dt") is contained in T' and is normal by 2.4(v). If
X € t, then the centralizer of X contains e as [t,¢] = {0} by 2.2(i). Thus for
the isotropy group I'y at X we have ¢ C L[I'x]. Hence ' =T/ T'x. If y € T,
then I = 4Ty~ ! = I''I'yx. Thus I' =I'1I'x for all X € comp by 2.2(iii). Hence
I''X =TI.X for all X € comp. But VX C X + (t*) by 2.4(v). Thus
comp C t+ (tT) and hence g = spancomp C t+ (t*). Thus g/(t") is an abelian
algebra isomorphic to a subalgebra of t and thus C* = g’ C (t*) in view of
2.4(i). We conclude € = (t+) and thus I’ = ¢24t") | The Lic algebra generated
by adtt in Derg is ad(t"). By (ii) we obtain I'y = (e2dt") = exp(adt") =T,

(iv) was proved in the process of proving (iii).

(v) The analytic subgroup I' of Aut g has the Lie algebra ad(t*) by (iii)
and (i) above. Hence the Lie algebra L[] is exactly (t7) + 3. m

2.6. Lemma. Letj denote the largest ideal of g contained in ¢. Then

(5) i=3Ne=3Ng =tne=tnNg".

Proof. Firstly, as ¢ = hNg" we have 3Ne = 3NHhnNg = 3Ng and
tNne=tNnhng =tng’.

Secondly, since j C ¢ C h and t* is an h-module, we have [j,t7] C
jntt Centt = {0}. It follows that [j, (tT)] = [t,g’] = {0}. Since t is central
in h we also know [j,t] = {0}. Then [j,g] = [j,t+ ¢'] = {0}, i.e., j C 3. Thus
i € 3Ng’, and since 3Ng’ is an ideal in g, the equality j = 3Ng’ follows. Thirdly,
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3 Ct. Hence 3Ng CtNg'. On the other hand, X € tN g implies that ad X
is both nilpotent and semisimple. Hence X € 3 by Lemma 1.4. Thus tNg’ C 3.
Hence 3Ng =tNe. [

We also need the following lemmas for the purpose of induction with
respect to dimension.

2.7. Lemma. Let a denote an ideal of g and write g1 = g/a. Then gy is
spanned by comp(gy).

Proof. We know that h; is a Cartan algebra of g;. Furthermore, all elements
of (t+ a)/a are semisimple and have purely imaginary spectrum, hence are
contained in t; = comph;. Since g is spanned by comp = I'-t and then g; is
spanned by comp(gy) =T'1-t;. u

2.8. Lemma. Let a be a nonzero minimal ideal (which ezists as g 1is solvable).
(i) Then there are two mutually exclusive cases:
(a) [t,a] ={0}. Then a is central and dima = 1.
(b) [t,a] #{0}. Then a Ct* and dima = 2.
in both cases, [g',a] = {0}.
(ii) 3Ng’ = {0} if and only if all nonzero minimal ideals are of type (b).
In this case, b is abelian.
Proof. = We prove (i): Case (a): We know a C 3(t,
antt € pntt = {0}. Then also [a,¢'] = [a, (t1)]
[a,t+¢'] =[a,g], e, a C3j.
Case (b): We briefly consider the compact connected abelian group

g) = bh. Also [a,tT] C
= {0} whence {0} =

Q X eadt Then g is an Q-module. Its unique fixed point module is h = 3(t, g).
Its unique effective submodule (spanned by all nontrivial simple submodules) is
t". Now a is an Q-module. Hence a is of the form a = (aNh) ® (a B tT).
The assumption [t,a] # {0} implies a @ tT # {0}. Since Q) is connected, any
nonzero submodule of the effective module t* is at least 2-dimensional. But a,
as a minimal ideal of g, is at most two dimensional. Hence aNt" = a and thus
a Ctt Cg'. In this case, dima = 2.

In order to show [g’,a] = {0} consider the representation 7:g — gl(a) =
gl(2,R), n(X)(Y) = [X,Y]. It image 7(g) contains w(t) = so(2) C gl(2,R)

and is solvable. But R-F5 @& s0(2) = {(_TS i) : 7,5 € R}, the unique Cartan

algebra containing so(2) is also a unique Borel subalgebra (i.e., maximal solvable
subalgebra) containing s0(2). Thus 7(g) is contained in an abelian algebra and
thus m(g’) = 0. This means [g/,a] = {0}.

(ii) If j = 3N g’ # {0} then every one-dimensional vector subspace a of j
is a nonzero minimal ideal of type (a). Conversely, if those minimal ideals exist,
then j # {0} by (i).

Now we assume j = {0} and show [h, h] = {0}. We prove the claim by
induction. The situation is known through simple inspection up to dimension
3. We assume that the claim is proven for all dimensions below n > 3 and
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consider g with dimg = n. Let a denote a nonzero minimal ideal. Since
j = {0} then a is of type (b). In particular, a C t¥ C g’. From Lemma 2.7

we know that g o g/a satisfies our general hypothesis to be spanned by its
compact elements. Suppose that j; is the maximal ideal of g; contained in
hiNg) = h+u N 9 (Ha)mg (bmg Jte — e (hy the modular law). Now j
was assumed to be {0} Hence i1 = {0} Thus the induction hypothesis applies
to g/a and shows that the Cartan algebra 2 T is abelian. Thus [h, h] C a. But

then [h,h] C hNa = {0}. The induction is complete. [

2.9. Lemma. The Cartan algebra b satisfies [b,b] C 3Ng’. In particular, b
1s nilpotent of class < 2.

Proof. Recall j =3Ng . Consider gy = g/j. Let j* contain j and be such
that i*/j = 3(g1) Ngl C hiNgl = ?ﬂ%/ = hng/ = ¢/j. Thus j* is an ideal
of g contained in ¢. Then j* Cj by 2.6 and thus j* =j. Thus g; satisfies the
hypotheses of 2.8(ii) and thus [h1,h1] = {0}. Hence [h, 5] Cj. n

We collect some of the information which was accumulated so far:

2.10. Proposition. Let g be a real solvable Lie algebra which is spanned by
its compact elements. Fiz a Cartan algebra ) and set t = hNcomp(g). Then we
have

3N g’ s the largest ideal contained in hNg’', and
[h,h] C3Ng . In particular, b is nilpotent of class < 2. [

M. WUSTNER has constructed a 13-dimensional solvable Lie algebra
spanned by its compact elements in which h = R? @ Hz with the three-
dimensional Heisenberg algebra Hs so that Part (iii) of Lemma 2.9 cannot be
improved in that h need not be abelian.

The structure of a solvable algebra g spanned by comp therefore may
be roughly summarized in the following diagram:

t+

g
| g’ =C>*=(th)

b

4

IENERE e | ]

The following remarks will be used for purposes of induction:
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2.11. Lemma. Let a denote an ideal of g. Set
Iy = (*91)  with g}, = (¢ + a)/a.

(i) There is a surjective homomorphism ¢:T — T'y with p(y)(X + a) =
v(X)+a. and kerp = {y € I': (VX € g)y(X) - X € a}. In particular,
ker o D (eade) with the closure taken in T.

(ii) The orbit T1-(X + a) equals (X +a)/a.

Proof. (i) The assignment 7 — (X +a — v(X)+a): Inn(g) — Inn(g;) is a well
defined homomorphism whose kernel consists of all those v with v(X) — X € a
for all X € g.

Now let v = eadX Wlth Xeg. Let vy =X+ c ). Take Y € g

and notice ¢ (y(Y+a)) = y(Y)+a = e ¥V +a = Y +[X, V]+35[X, [X, Y]]+ - +a
on the one hand and 71(Y +a)=edXFNY La) =Y +a+[X +aY +a+
1 X4+a,[X+aY+a]+ - =Y +[X, Y]+ 1[X,[X,Y]]+ - +a on the other.

Hence 71 = ¢(7). Thus o(T') C T'y. Since Ty is generated by e?d 81 = p(eads’)
we have p(I') =T';.

If X €a,then XY Y =[X,Y]+---Ca.

(ii) Finally, for v; € 'y we find v € T' with 73 = (). Then ~1-(X +
a)=p()(X+a)=~X+a. Hence I'1-(X +a) = (T X 4+ a)/a. n

We consider the semidirect product R?xD of a plane with a compact
connected group D acting irreducibly on R?. Let g = R2xd denote the Lie
algebra and X = (0,z) a vector acting nontrivially on R?. Let Y = (v,0). Then
in the subalgebra R?xR-z the subspaces R-X = {0} x Rz and R-(X —Y) =
R.(—v,z) are Cartan subalgebras and hence are conjugate under e2d R*x{0} Tp
particular, there isa g € R x {1} C G with Ad(g)R.(X —-Y) =R-X.

2.12. Lemma. Let X € compg be reqular and a a minimal abelian ideal such
that [X,a] # {0}. Then X —Y € comp(g) for all Y € a.

Proof. The element ad X |a is semisimple and has nonzero purely imaginary
spectrum. Thus the subalgebra R-X @ a is invariant under the action of the
group e® 24X which transitively permutes the the one-dimensional subspaces of

a. Hence it permutes transitively the one parameter subgroups of the analytic

subgroup A def gada ynder conjugation. This subgroup therefore is either closed
or relatively compact. In the second case, its closure would be a compact normal
abelian subgroup of Inn(g) and would therefore be central, which is not the case
on account of the nontrivial action of X on a. Thus A is closed in Inng and

isomorphic to ]RQ The group D def R adX int(g) is compact and contained
in the group MY DA C (eR-X®a) C int(g). The product DA is semidirect.
Now let Y € a. Consider the subgroup D; % eFad(X—Y) _ Since R(X -Y) is
conjugate to R-X under the action of A by the remarks preceding this lemma,

we know that D; is conjugate to D in Inn(g). Thus D; is compact. Hence
X —Y € comp(g) as asserted. u
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3. On some group actions

We let g denote a real Lie algebra and consider a mixture of actions by
translation and inner automorphisms. If I' is a closed subgroup of Inn(g), as
before, we let L[I'] denote the unique Lie algebra within g such that X € L[]
means e X CT. Then L[I/; = L(T) is the Lie algebra of I'. We identify the
Lie algebra of I' with L[I']/3.

3.1. Lemma. Let I' C Inn(g) be a subgroup and a a subalgebra invariant
under I'. We let axI' denote the semidirect product Lie group with multiplication

(Z1,M1)(Z2,72) = (Z1 +71(Z2), Z1 + Z2) and we set
(Z,9) X =Z+~(X) foryel, Zea, X €g.

Then ((Z,7) X) — (Z,7)-X : (axT) x g — g is an action.

Proof. If (0,n) is the identity of axI' then (0,7)-X = 04+ n(X) = X
and (Z1,7)-(Z2,72)-X) = Z1 + 11(Z2 + 72(X)) = Z1 + 71(Z2) + 1172(X) =
((Z1,m)(Z2,72))-X . u

3.2. Definition. = We call the action described in the preceding lemma the
affine action of axI. [ |

3.3. Lemma. (i) Let A and B two subgroups of a group C'. Then Ax B acts
on C on the left via (a,b)-c = acb™*.

The function a — (a,clac) : ANcBe™! — A x B implements an
isomorphism onto the isotropy group (A x B)..

The function (a,b) — acb: A x B — G induces a bijection

(Ax B)/{(a,c tac): a € ANcBc '} — AcB.

(ii) If A, B, and C are Lie groups, then AcB is a submersed subman-
ifold of dimension dim L(A) + dim L(B) — dim(L(A) N Ad(c)L(B))
(iii) If, under the hypotheses of (ii),

dim(L(A) N Ad(c)L(B)) = dim L(A) + dim L(B) — dim L(C) for all ¢ € C,

then all AcB, ¢ € C are open closed submanifolds of C'. If C is connected, then
AcB =G forall ce C.

(iv) Suppose that C' is a connected Lie group acting differentiably on a
manifold M. Let B denote the isotropy subgroup of C at m. Then cBc™?! is
the isotropy subgroup at c-m. If A is a Lie subgroup such that

(1) dim(L(A) N Ad(c)L(B)) = const for all c € C,

then A-m =C-m.
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Proof. (i) The action is clear. We have (a,b) € (A x B). iff acb™! = ¢
iff ac = cb iff b = ¢ lac. If this is satisfied, then a = cbc™! € cBc™!, and
conversely, if a satisfies this condition then (a,c tac) € (4 x B)..

(ii) The dimension of the submersed manifold AcB equals the dimension
of the homogeneous space (A x B)/{(a,ctac): a € ANcBe™1} and its dimen-
sion is that of (L(A) x L(B))/{(X,Ad(c)™*X): X € L(A) N Ad(c)L(B)}. The
assertion follows.

(iii) Under the present hypotheses, by (ii) all sets AcB are open subman-
ifolds of C'. Since they form the orbits decomposition of a group action, each of
the sets AcB is also closed. The remainder is then clear.

(iv) There are bijective immersions AB/B — A-m and C/B — C-m
and AB/B C C/B. The claim then follows if we establish AB/B = C/B. By
(iii) we have AcB = C for all ¢ € C, in particular AB = C. The assertion
follows. n

For the following discussion it is useful to recall some general facts on
the smooth action of Lie groups on manifolds.

Let (g,m)— g-m: G x M — M denote a smooth action of a Lie group
on a manifold M. Let X — X:g — V(M) denote the map which associates
with an X € g the G-invariant vector field X: M — T(M) on M which is given
by )?(:1;) = %‘t:o (exp(t-X)-xz) for @ € M. Then the integral manifolds of X
are exactly the orbits of the action (r,z) — (expr-X)x :Rx M — M. Thus m

is a fixed point for this action iff X(m) = 0. As a consequence, we obtain

3.4. Lemma. Let H = G,, denote the isotropy group of G at m. Then
X € h=L(H) if and only if %‘t:o (exp(t-X)-m) =0. m

3.5. Lemma. Suppose that T is an analytic subgroup of the group Inn(g) of
inner automorphisms of g and a a subalgebra invariant under I' and let axT’
act on g by the affine action. (See Definition 3.2.)

(i) Let (axI')x denote the isotropy group of the affine action at X . Then
L((axT)x) = {(Z,Y +3) € axL(T) = ax(L[[]/3) : [X,Y] = Z}.

(ii) The orbit (axI')-X is a submersed submanifold whose tangent space at X
is a+[L[['], X| when the tangent space Tx(g) of g at X is elementarily
identified with g.

Proof. (i) First we note that L(a) = a and L(axI') = axL(I') = ax(L[I/3).
For Z € a, Y € L[I'], and sufficiently small ¢ € R we have (¢-Z,0)(0,t-Y +3) =
t~(Z,Y+3)—|—(%~[Z, Y1],0)+0(t*) and exp((t-Z,0)* (0,t-Z +3)) = (t-Z,e"24Y).
Then
exp(t-(Z,Y + )X + O(12) = exp(t-(Z,Y +3) + O(2))-X
=t-Z 4"V X = X 4+ t-(Z + [V, X]) + O(t?).

Hence the assertion is a consequence of Lemma 3.4.
(i) We recall exp(Z,Y +3)-X — X = t([Y, X] + Z) + O(t?) and this
implies the assertion. [ ]
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3.6. Lemma. Let n denote a subalgebra of the nilradical of a Lie algebra g
and suppose that n contains the center 3. Set I' = (™) and let and a be any
ideal of g. We consider the Lie group axI', the isotropy group (axI')x of the
affine action of axI' at an element X . Then

(i) LH{O} xT) N L((Y, a) HaxD)x (Y, a)) >~ (3(X =Y,g)Nn)/3 for all
(Y, ) € axT.

(ii) Suppose now that, in addition, n is an ideal, X a reqular compact
element of g, and a a minimal ideal with [X,a] # {0}. Then for any Cartan
algebra h we have

L0} xT)NL((Y,) M (axD)x (Y, ) 2 (hNn)/3 for all (Y,a) € axT.

Proof. (i) We identify the Lie algebra of T" with L[n]/3.
For (Y,a) € axI' we have (Y,«a) = (Y,1)(0,a). Hence

L0} xT)NL((Y, ) H(axD)x (Y, ) =

L({0} x T) N L((0,a) "1 (Y, 1) " (axT) x (Y, 1)(0,a)) =

L({0} x T) N Ad(0, ) "L((Y, 1) (axT) x (Y, 1))

Ad(0,a)L({0} x T) N L((Y, 1) H(axD)x (Y, 1)) =

L((0,a)({0} x T)(0,a ") N L((-Y,1)(axT) x (Y, 1)) =
L({0} xF)ﬂ (=Y, 1)(axT) x (Y, 1)).

In order to determine the right portion of the intersection, we note first
that (Z,7) € (axI)x iff Z4+~4(X) = X iff Z = X —v(X) € a. Further,
(=Y, 1)(axI") x(Y,1) = (axI')(_y,1).x and (—Y,1)-X = X — Y. Thus

(=Y, )(axD)(Y, 1) ={((X-Y)—~v(X -Y),y): y€Tland y(X -Y) e X - Y +a}.

In order to compute the Lie algebra

b % L((=Y,1)(axT)x (Y, 1)) = L(axT)x_y

we want to apply Lemma 3.5 and recall that n is nilpotent and thus I' = e*d"
and L(T") = L[T']/3 = n/3. Then

= {(Zl,ZQ +3> S amL(F) : [X -Y, ZQ] = Zl}
={([X-Y,Z],Z+3): Z€enand [X —Y],Z] € a}.

Thus

L{0} x T) N L((-Y,1)(axI)x(Y,1))

={0} x L) n{(ad(X =Y )(Z),Z+3): Z en,ad(X =Y )(Z) € a}
={(0,Z+4+3):Zenad(X -Y)(Z)=0} ={0} x3(X —=Y,n)/3

= {0} x (X —Y,g)Nn)/3= (3(X —Y,g)Nn)/3.
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This proves (i).

(ii) Under the additional hypotheses, by Lemma 2.12 we know that
X —Y € comp(g) for all Y € a. Hence X — Y is semisimple. Now X is
regular and Y € a and a as a minimal ideal is abelian hence contained in the
nilradical. Thus Y is in the nilradical. Therefore X — Y is regular. Therefore
3(X —Y,g) is the Cartan algebra h(X — Y) generated by X — Y. Since g is
solvable there is an inner automorphism g with h(X —Y) = G(h). As n is an
ideal, we have 3(X — Y,g) +n = 5(h) + B(n) = B(h + n). The assertion now
follows from (i). n

3.7. Lemma. Let g denote a solvable Lie algebra which is spanned by comp
and let t = h N comp as in (3) for a Cartan algebra . Let X € t be a
reqular element and a a minimal ideal with [X,a] # {0}. If T = €249 then
a+I"X =I"X.

Proof. We apply the preceding Lemma 3.6 with n = g’ + 3. Thus
L{0} xD)NAd((Y,))(axT)x = (hN(3+g))/3 for all (Y,a) € a x .

Now we apply Lemma 3.3 with C = axI', A ={0} xI', M =g and m = X,
the affine action of the group axI', and B = (axI')x. Condition () of Lemma
3.3(iv) is satisfied. We conclude a+T"X =C-m=Am =1"-X. n

We are ready for the main result. From ' = ¢*d%" we know that
"X C X +¢ for all X. In the four-dimensional oscillator algebra, for regular
elements X € t, the orbits I'’X are three dimensional quadratic hyperboloids.
The next theorem, however, shows that the such orbits are almost affine under
rather general circumstances; they need just the subalgebra ¢ = hN g’ as filling
material in order to fill X +¢’.

3.8. Theorem. Suppose that g is a solvable Lie algebra which is the span
of its compact elements. We set T’ = e2d o Let b be a Cartan algebra and set
t =HNcomp. Then hNg' is a nilpotent subalgebra of class at most two with
commutator algebra contained in 3N g, and for every reqular X € t we have

(1) (hng )+ X=X +¢"

Proof. The first assertions were summarized in Proposition 2.10. It remains
to show (). We prove the claim by induction w.r.t. dimg.

The assertion is true for dimg = 0,1, 2,3 as a direct inspection shows.
Now suppose that g is a counterexample with smallest possible dimension.

Claim (i): 3 =).

For the center 3 we know 3 € t and we write 3 = j & 31. Then

t=3 0t and g = 31 B (t1 +¢). If weset g1 = t; +¢’, then g) = ¢

and e, © i Ngp = (b +e)Ng =¢. () =30 C g If 50 # 0, then

dimg; < dimg and so g; is not a counterexample. As X is a regular element
of t, we have X = Z + X; with Z € 3; and X; € t; with X; regular. Then
e+ X =e+1(Z+X ) =e¢e+ 240Xy =241+ X1 =Z+ X149, = X +¢'.
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So g cannot be a counterexample. Hence 37 = {0} and thus 3 Cj. On the other
hand j C 3 by Lemma 2.6.

Step (ii): 3 = {0} and b is abelian. In particular, ¢ is abelian. Suppose
not. By (i) above we know 3 C g’. Then we consider g; = g/3. By Lemma
2.7, g1 is spanned by its compact elements. We write 35 for the full inverse
image of 31 = 3(g1) in g. Since b is the full inverse image of h; = h/3 we have
32 € h. Then 32N g’ is an ideal in e = hN g’ and is therefore contained in j = 3
by Lemma 2.6. Then j; =3 Ngy = 2 ﬂ%/ = Z’Z’Z’Lgl C "’2—”/ = {0}. Further,
€1=b1ﬂ91:gﬂ%=§-

Let I'; = ¢*81 C Autg;. We have dimg; < dimg by assumption.
Then g; cannot be a counterexample to the theorem. For a regular X € t also
X + 3 is regular in g; and we obtain

e+ (X +3)=n+I1-X=X+g.
In view of Lemma 2.11 we pass to inverse images and find
e+ X=e+ DX +3=X+3+g =X+¢

as 3 is contained in g’ by (i). But this contradicts the fact that g is a counterex-
ample. Thus 3 = {0}. Then b is abelian by 2.8(ii).

Step (iii): Let a be a nonzero minimal ideal of g. By Lemma 2.6(b) we
know a C t+ C g’. We consider the factor algebra g; = g/a. It is spanned by
its compact elements in view of Lemma 2.7 and satisfies dimg; < dimg. Hence
g1 not a counterexample. We let I'; = <ead(9'/ %)) C Autg;. Then for X regular
in t, the element X 4+ a € ““T“ is compact and regular. Thus we have

(*) e1 +T1(X +a) = (X +a)+g)

with ¢; = by Ng).
Now we let ¢* denote the full inverse image of ¢; in g. Since ¢; = h1Ng)

b+a _ (h+a)ng’

’
where h; = - we know e¢*/a = ¢y = h%‘a N % . . Because of the

modular law this equals W = H'T“ Hence we have ¢* = e+a. (Note that e
is abelian by Step (ii). By 2.8(i) we know [g’, a] = {0}. Thus [e,a] C [¢/,a] = {0}.
Hence ¢ + a abelian.)

In view of Lemma 2.11, passing to the inverse images in (%) we obtain

() eta+lX=(+a)+TX+a)=X+a+g =X+g¢".

Now the hypotheses of Lemma 3.7(iii) are satisfied whence we know that
a+I-X =T-X. Thus e+ I'"X = X + ¢’ and this again shows that g is not
a counterexample. Thus case (b) cannot occur either—a contradiction which
finishes the proof. [ ]

We shall identify the tangent space T'x (I X) at X of the orbit I''X C g
with a vector subspace of g via translation.
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3.9. Proposition. Under the hypotheses of Theorem 3.8, the tangent space of
the orbit T-X at the point X is Tx(T-X) = t*.

Proof. From Lemma 3.5(ii) we know that T'x (I'-X) = [L[['], X]. But L[I'] =
L[e*49'] = 5 + g by Lemmas 2.4(i) and 2.5(iv,v). Now ¢’ = ¢ @ tt by Lemma
2.4(i,iv). Thus [L[T],X] = [e® t", X] = [¢, X] + [t7, X]. But [¢, X] = {0} by
Lemma 2.2(i), and [t*, X] = ad(X)(tT) = t© by Remark 2.3. This proves the
proposition. [

This proposition shows that we cannot expect to reduce the size of the
filling space ¢ = hN g’ in Theorem 3.8, because by the preceding proposition we
have exactly (hNg)+Tx(I-X)=c¢+th =¢'.

We obtain the following result as an immediate consequence of Theorem
3.8:

3.10. Theorem. Let g be a solvable Lie algebra which is spanned by its
compact elements. Let ey denote any vector space complement of 3 N g’ in
e=hnNg . Then g = ¢, + comp(g).

Proof. Let R denote the set of regular elements in t. Now, by Theorem 3.8
and Lemma 2.2(iil) we conclude R+g’' = ¢e+I'R C e+comp(g) = (e1+(3Nh)) +
comp(g) = e +comp(g) since 34+comp = comp. Hence R+g’ C e+comp(g) C g.
But R is dense in t and R+ g’ is dense in g by Lemma 2.4(i). The assertion
follows. u

In particular we note that ¢; = {0} means t = b, i.e., h C comp, and,
equivalently, h Ng’ = 3N g¢g’, and that, in this case, the set comp of compact
elements is dense in g.

We now abandon the general hypothesis that g is spanned by comp and
summarize that which our results yield for real solvable Lie algebras in general.
Thus let g denote a solvable Lie algebra. Then span (Comp(g)) is a characteristic
ideal geomp. Let b be a Cartan algebra of g and set t = h N comp(g). Define
t* to be the Fitting one component of ad X for a regular X € t. Now BHeomp =
3(t, 8comp) = b N geomp is a Cartan algebra of geomp containing t. We set
¢ = Boomp N C™(Feomp) and let e; denote any complement of 3MNe in e.

3.11. Corollary. In a solvable Lie algebra g we have
Geomp = t+ (tT) = t+ (e @ t1)

The subalgebra e is nilpotent of class at most 2 and centralizes t. It
does not, in general, centralize t* even though all Toots of gecomp with Tespect to
Becomp vanish on e.

Further, ¢ ® t© = (t") = glomp = C®(@comp) and 3(geomp) = tNe =
tN g’comp )

Finally,

Ycomp = €1 + comp.

Proof. This is just a summary of what has been shown in the process. ]
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4. Examples

In order to see that the structural information on solvable Lie algebras
which are spanned by their compact elements cannot be much improved we
consider a convenient class of examples.

Let A denote a finite dimensional commutative algebra over R with
identity and an augmentation morphism a: A — R whose kernel A is nilpotent.
If A? = {0} and AJ~' # {0}, then n is called the nilpotent class of Ay. We
identify R with the multiples of 1.

Let £ = u® v denote a Lie algebra such that u = R-U + R-[IX, X] and
b =RX@®RIX with [U,X]| = —IX and [U,IX] = X. Then dimt =3 or 4
according as [IX,X] = or # 0. In other words, ¢ is one of the standard low
dimensional test algebras s0(3), s[(2,R), mg, 04 where ms is the motion algebra
of the euclidean plane and o4 the oscillator algebra with compactly embedded
Cartan algebra u and real root space v.

4.1. Example. The Lie algebra A®¢ with bracket [a®Y,a'®Y"] = ad'®[Y, Y]
is of mixed type with Levi complement 1®#¢ if ¢ = s0(3), s[(2,R) and is solvable
if £ is solvable. The subalgebra

g=Rou) o (4 ¢

is a maximal solvable subalgebra. The following statements hold

(i) The nilradical n equals Ay ® €. The nilpotent class of n is that of A,
and dimn = (dim Ap)(dim ¢). Further g/ =C>® = (A2 @ u) ® (4o ® v).

(ii) b def A ®u is a Cartan algebra of A ® ¢ and of g. We have [h,h] =0,
tdéfcomp(b)zlébu, ed:efbﬂCOOZA()@)uaand th=Ay®v.

In particular,

dimbh = (dim A)(dimu), dimt=dimu, dimt" = 2(dim A4g).

(iii) Geomp =t+ (t7) = (1@ u) ® (A3 @u) @ (Ao @ v). Accordingly we have
ecomp = A% ® u, and 3ecomp = B ®u, where B = {a € A: Aa = {0}}.
Further gi.,,, = ¢" and ecomp = ¢. u
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