Near-Cartan algebras and groups

Karl H. Hofmann

0. Preliminary results on nilpotent algebras

We let \mathfrak{h} denote a real or complex nilpotent Lie algebra and V a finite dimensional complex \mathfrak{h} -module. For $X \in \mathfrak{h}$ let $X_V = (v \mapsto X \cdot v) : V \to V$. We set $\mathfrak{h}_{\mathbb{C}} = \mathfrak{h}$ if the ground field K is \mathbb{C} and let $\mathfrak{h}_{\mathbb{C}}$ denote the complexification of \mathfrak{h} if $K = \mathbb{R}$. Recall that a linear form $\lambda : \mathfrak{h}_{\mathbb{C}} \to \mathbb{C}$ is a *weight* if there is a nonzero $v \in V$ such that for some natural number n we have $(X_V - \lambda(X) \cdot \mathbf{1}_V)^n v = 0$ for all $X \in \mathfrak{h}$. The element v is called a weight-vector for λ , and V^{λ} is the set of all weight vectors for λ . We let $V_{\lambda} = \{v \in V : (\forall X \in \mathfrak{h}) X \cdot v = \lambda(X) \cdot v\}$. Since $V_{\lambda} \neq \{0\}$ we have a $0 \neq v \in V_{\lambda}$ so that $\lambda([X, Y]) \cdot v = [X, Y] \cdot v =$ $X_V Y_V(v) - Y_V X_V(v) = \lambda(X)\lambda(Y)v - \lambda(Y)\lambda(X)v = 0$. Hence $\lambda([\mathfrak{h}, \mathfrak{h}]) = \{0\}$.

We let Λ denote the (finite!) set of nonzero weights and $V = V^0 \oplus \bigoplus_{\lambda \in \Lambda} V^{\lambda}$ the weight decomposition of V. We set $\Lambda^{\perp} = \{X \in \mathfrak{h} : (\forall \lambda \in \Lambda) \lambda(X) = 0\}.$

Lemma 0.1. $\Lambda^{\perp} = \{X \in \mathfrak{h} : (\exists n) X_V^n = 0\} = \{X \in \mathfrak{h} : \operatorname{Spec} X_V = \{0\}\} = \bigcap_{\lambda \in \Lambda} \ker \lambda | \mathfrak{h}.$ In particular, Λ^{\perp} contains $[\mathfrak{h}, \mathfrak{h}]$ and thus is an ideal of \mathfrak{h} .

Proof. We have $X \in \Lambda^{\perp}$ iff for all $\lambda \in \Lambda$ and all $v \in V^{\lambda}$ we have $X_V^n(v) = 0$ for some *n* iff $X_V^n = 0$ for some *n* since $V = \bigoplus_{\lambda \in \Lambda} V^{\lambda}$. This is the case iff Spec $X_V = \{0\}$. The remainder is immediate from the definition and the preceding remarks.

Suppose that α is an automorphism of $\mathfrak{h}_{\mathbb{C}}$ and $\varphi \in \operatorname{Hom}(V, V)$ is such that $\varphi(X \cdot v) = \alpha(X) \cdot \varphi(v)$. If λ is a weight, then for $v \in V^{\lambda}$ we have

$$0 = \varphi ((X_V - \lambda(X) \cdot \mathbf{1}_V)^n v) = (\alpha(X)_V - \lambda(X) \cdot \mathbf{1}_V)^n \varphi(v)$$

= $(\alpha(X)_V - (\lambda \circ \alpha^{-1})(\alpha(X)) \cdot \mathbf{1}_V)^n \varphi(v).$

Thus $\lambda \circ \alpha \in \Lambda$ and $\varphi(V^{\lambda}) = V^{\lambda \circ \alpha^{-1}}$. Every such α leaves Λ and thus Λ^{\perp} invariant and therefore induces an automorphism α_{Λ} of $\mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}$ via $\alpha_{\Lambda}(X + \Lambda^{\perp}) = \alpha(X) + \Lambda^{\perp}$.

Lemma 0.2. If α and φ are as in the preceding paragraph, then the following statements are equivalent:

- (1) $(\forall \lambda \in \Lambda) \lambda \circ \alpha = \lambda$.
- (2) $\alpha_{\Lambda} = \mathbf{1} \ (on \ \mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}).$

(3) $\alpha_{\Lambda} - \mathbf{1}$ is nilpotent (on $\mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}$).

(4) $\mathfrak{h}_{\mathbb{C}} = \mathfrak{h}_{\mathbb{C}}^{1}(\alpha) + \Lambda^{\perp}$.

Proof. (1) \Leftrightarrow (2): Let Γ denote the subgroup generated by α in Aut($\mathfrak{h}_{\mathbb{C}}$). The Γ -module $\mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}$ is dual to the Γ -module span_{$\mathbb{C}}\Lambda$ in $\mathfrak{h}_{\mathbb{C}}^*$. Now (1) means that span_{$\mathbb{C}}\Lambda$ is the trivial Γ -module which is the same as saying that $\mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}$ is the trivial module which is (2).</sub></sub>

 $(2) \Rightarrow (3)$ clear!

(3) \Rightarrow (2): We define the permutation α^* of Λ by $\alpha^*(\lambda) = \lambda \circ \alpha^{-1}$. It extends to $E = \operatorname{span}_{\mathbb{C}} \Lambda$. Since Γ^* is a finite subgroup of Aut(E), the automorphism α^* is semisimple on E. Since $\alpha_{\Lambda} - \mathbf{1}$ is nilpotent by (3), then $\alpha^* - \mathbf{1}$ is nilpotent on E. Since $\alpha^* - \mathbf{1}$ is also semisimple, we conclude $\alpha^* - \mathbf{1} = 0$. (3) \Leftrightarrow (4) is basic linear algebra.

Definition 0.3. A Cartan subalgebra \mathfrak{h} of a Lie algebra \mathfrak{g} is a nilpotent subalgebra which is its own normalizer.

Let \mathfrak{g} denote a Lie algebra and $\mathfrak{g}_{\mathbb{C}}$ its complexification if \mathfrak{g} is real. Otherwise let $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g}$. If \mathfrak{h} is a Cartan algebra of \mathfrak{g} , then we can apply the preceding with $V = \mathfrak{g}_{\mathbb{C}}$ and the adjoint action. In particular, Λ is now the set of all roots, including the zero-root. We observe that $X \in \mathfrak{h} \cap \Lambda^{\perp}$ iff ad X is nilpotent. If \mathfrak{n} is the nilradical of \mathfrak{g} , then $\frac{\mathfrak{h}+\mathfrak{n}}{\mathfrak{n}}$ is a Cartan algebra of the reductive algebra $\mathfrak{g}/\mathfrak{n}$, and since $\mathrm{ad}\,\xi$ for $\xi \in \mathfrak{g}/\mathfrak{n}$ is semisimple on $\mathfrak{g}/\mathfrak{n}$ we conclude $\mathfrak{h} \cap \Lambda^{\perp} \subseteq \mathfrak{n}$. Thus $\mathfrak{h} \cap \Lambda^{\perp} \subseteq \mathfrak{h} \cap \mathfrak{n}$. Since $X \in \mathfrak{n}$ implies that $\mathrm{ad}\,X$ is nilpotent we have

(1)
$$\mathfrak{h} \cap \Lambda^{\perp} = \mathfrak{h} \cap \mathfrak{n}.$$

Each automorphism α of \mathfrak{g} extends uniquely to an automorphism of $\mathfrak{g}_{\mathbb{C}}$ which we shall again denote by α . Thus we have $\operatorname{Aut} \mathfrak{g} \subseteq \operatorname{Aut} \mathfrak{g}_{\mathbb{C}}$.

Definition 0.4. We define

$$\operatorname{Aut}(\mathfrak{g},\mathfrak{h}) = \{ \alpha \in \operatorname{Aut} \mathfrak{g} : \alpha(\mathfrak{h}) = \mathfrak{h} \} \subseteq \operatorname{Aut} \mathfrak{g}_{\mathbb{C}}.$$

The function $\pi: \operatorname{Aut}(\mathfrak{g}, \mathfrak{h}) \to S(\Lambda)$ into the group of all permutations of Λ given by $\pi(\alpha)(\lambda) = \lambda \circ \alpha^{-1}$ is a representation. We set

$$\operatorname{CAut}(\mathfrak{g},\mathfrak{h}) = \ker \pi, \quad B\mathcal{W}(\mathfrak{g},\mathfrak{h}) = \operatorname{im} \pi.$$

We call $BW(\mathfrak{g},\mathfrak{h})$ the big Weyl group of \mathfrak{g} w. r. t. \mathfrak{h} .

If V if a complex vector space and α an automorphism then we set $V^{\lambda}(\alpha) = \{v \in V : (\exists n) (\alpha - \lambda \cdot \mathbf{1}_V)^n (v) = 0\}.$

Proposition 0.5. For an element $\alpha \in Aut(\mathfrak{g}, \mathfrak{h})$ the following statements are equivalent:

- (1) $\alpha \in CAut(\mathfrak{g}, \mathfrak{h}).$
- (2) $\alpha_{\Lambda} = \mathbf{1} \ (on \ \mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}).$

 $\mathbf{136}$

- (3) $\alpha_{\Lambda} \mathbf{1}$ is nilpotent (on $\mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}$).
- (4) $\mathfrak{h}_{\mathbb{C}} \subseteq \Lambda^{\perp} + \mathfrak{g}^{1}_{\mathbb{C}}(\alpha)$.
- (5) $\mathfrak{h} \subseteq \mathfrak{g}^1(\alpha) \mod \mathfrak{n}$ where \mathfrak{n} is the nilradical of \mathfrak{g} .
- **Proof.** The equivalence of (1)–(4) follows from Lemma 0.2.

 $(4) \Rightarrow (5)$: We know $\mathfrak{h} \cap \Lambda^{\perp} = \mathfrak{h} \cap \mathfrak{n}$. Thus $\Lambda^{\perp} \subseteq \mathfrak{n}_{\mathbb{C}}$. From this and $\mathfrak{g}^{1}_{\mathbb{C}}(\alpha) \cap \mathfrak{g} = \mathfrak{g}^{1}(\alpha)$ the assertion follows.

 $(5) \Rightarrow (3)$: If $\mathfrak{h}_{\mathbb{C}}$ is contained in $\mathfrak{g}^{1}_{\mathbb{C}}(\alpha) + \mathfrak{n}_{\mathbb{C}}$, then $\alpha - \mathbf{1}$ is nilpotent on $(\mathfrak{h}_{\mathbb{C}} + \mathfrak{n}_{\mathbb{C}})/\mathfrak{n}_{\mathbb{C}} \cong \mathfrak{h}_{\mathbb{C}}/(\mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}}) = \mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}$.

Lemma 0.6. The nilpotent group $e^{\operatorname{ad} \mathfrak{h}}$ is normal in $\operatorname{Aut}(\mathfrak{g}, \mathfrak{h})$ and is contained in $\operatorname{CAut}(\mathfrak{g}, \mathfrak{h})$.

Proof. Trivially $e^{\operatorname{ad} X}\mathfrak{h} = \mathfrak{h}$ for $X \in \mathfrak{h}$. If $\alpha \in \operatorname{Aut}(\mathfrak{g}, \mathfrak{h})$ then $X \in \mathfrak{h}$ implies $\alpha(X) \in \mathfrak{h}$, and thus $\alpha e^{\operatorname{ad} X} \alpha^{-1} = e^{\alpha \operatorname{ad} X \alpha^{-1}} = e^{\operatorname{ad} \alpha(X)}$ is in $e^{\operatorname{ad} \mathfrak{h}}$. Further, $e^{\operatorname{ad} X}|\mathfrak{h}$ is unipotent for $X \in \mathfrak{h}$. Hence $(e^{\operatorname{ad} X})_{\Lambda} - 1$ is nilpotent on \mathfrak{h}_C and thus (3) of 0.5 is satisfied. Thus $e^{\operatorname{ad} X} \in \operatorname{CAut}(\mathfrak{g}, \mathfrak{h})$.

Lemma 0.7. For $\beta \in CAut(\mathfrak{g}, \mathfrak{h})$ the following statements are equivalent:

- (a) $\beta | (\mathfrak{h} \cap \mathfrak{n})$ is unipotent.
- (b) $\mathfrak{h} \cap \mathfrak{n} \subseteq \mathfrak{g}^1(\beta)$.
- (c) $\mathfrak{h} \subseteq \mathfrak{g}^1(\beta)$.

Proof. The equivalence of (a) and (b) follows from the definitions also $\mathfrak{h} \subseteq \mathfrak{g}^1(\beta) + (\mathfrak{h} \cap \mathfrak{n})$. Thus (b) implies (c), and trivially, (c) \Rightarrow (b).

For the next lemma we need some preparation.

Lemma 0.8. (KARL-HERMANN NEEB) Let α be a unipotent automorphism of a finite dimensional vector space V and ν an endomorphism with its additive Jordan decomposition $\nu = \nu_s + \nu_n$. Let \mathfrak{a} denote a subalgebra of $\mathfrak{gl}(V)$ which is nilpotent on V. We assume the following hypotheses:

- (i) $\alpha \nu_s = \nu_s \alpha$.
- (ii) $\alpha \mathfrak{a} \alpha^{-1} = \mathfrak{a}$.
- (iii) $\nu_n \in \mathfrak{a}$. Write $\beta = \alpha e^{\nu}$ with its multiplicative Jordan decomposition $\beta = \beta_s \beta_u$.

Then $\beta_s = e^{\nu_s}$ and $\beta_u = \alpha e^{\nu_n}$.

Proof. From (i) we know that e_s^{ν} commutes with α , and since ν_s and ν_n commute anyhow. Hence e^{ν_s} commutes with αe^{ν_n} It therefore remains to show that αe^{ν_n} is unipotent. In the group $\operatorname{Gl}(V)$ we consider the subgroup $U = \langle e^{\mathfrak{a}}, \alpha \rangle$. The subgroups $e^{\mathfrak{a}}$ and $\langle \alpha \rangle$ are unipotent, and by (ii) the former is normal in U. Hence U is unipotent by [4], Proposition 2.2 on p. 64. Since $\alpha e_n^{\nu} \in U$ by (iii), the assertion follows.

Lemma 0.9. Suppose $\alpha \in CAut(\mathfrak{g}, \mathfrak{h})$ and let \mathfrak{n} denote the nilradical of \mathfrak{g} . Then there is a zero neighborhood U such that for any regular $X \in \mathfrak{h} \cap \mathfrak{g}^1(\alpha)$ we have

(2)
$$\mathfrak{h} = \mathfrak{g}^1(\alpha e^{\operatorname{ad} X}) + (\Lambda^{\perp} \cap \mathfrak{h}) = \mathfrak{g}^1(\alpha e^{\operatorname{ad} X}) + (\mathfrak{n} \cap \mathfrak{h}).$$

Proof. (KARL-HERMANN NEEB) The second equality in (2) is a consequence of (1). For any $X \in \mathfrak{h}$, we define the automorphism $\beta = \alpha e^{\operatorname{ad} X} \in \operatorname{CAut}(\mathfrak{g}, \mathfrak{h})$ and set $\mathfrak{m} = \Lambda^{\perp} \cap \mathfrak{h}_{\mathbb{C}} = \mathfrak{n}_{\mathbb{C}} \cap \mathfrak{h}_{\mathbb{C}}$. By 0.5(4) and 0.6 we have $\mathfrak{h}_{\mathbb{C}} \subseteq \mathfrak{g}_{\mathbb{C}}^{1}(\beta) + \mathfrak{m}$. In particular, taking X = 0 we have $\mathfrak{h}_{\mathbb{C}} = (\mathfrak{g}_{\mathbb{C}}^{1}(\alpha) \cap \mathfrak{h}_{\mathbb{C}}) + \mathfrak{m}$.

In order to obtain the reverse containment for a suitable X we must show $\mathfrak{g}^1_{\mathbb{C}}(\beta) \subseteq \mathfrak{h}_{\mathbb{C}}$.

We consider the generalized eigenspace decomposition

$$\mathfrak{g}_{\mathbb{C}} = \bigoplus_{\mu \in \operatorname{Spec}(\alpha)} \mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha).$$

Since $[\mathfrak{g}^1_{\mathbb{C}}(\alpha), \mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha)] \subseteq \mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha)$, all $\mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha)$ are $\mathfrak{g}^1_{\mathbb{C}}(\alpha)$ -modules. Thus, if we now take an arbitrary $X \in \mathfrak{g}^1_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}}$ and set $\beta = \alpha e^{\operatorname{ad} X}$, then

$$\beta(\mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha)) \subseteq \mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha).$$

Thus

$$\mathfrak{g}^1_{\mathbb{C}}(\beta) = \bigoplus_{\mu \in \operatorname{Spec} \alpha} \left(\mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha) \right)^1(\beta).$$

If $\mu \neq 1$ and if X is small enough, then 1 is not in the spectrum of $\beta | (\mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha))$ and thus $(\mathfrak{g}^{\mu}_{\mathbb{C}}(\alpha))^{1}(\beta) = \{0\}$. Hence there is a zero neighborhood U in \mathfrak{h} such that $X \in U \cap \mathfrak{g}^{1}_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}}$ implies $\mathfrak{g}^{1}_{\mathbb{C}}(\beta) \subseteq \mathfrak{g}^{1}_{\mathbb{C}}(\alpha)$.

Now we consider the vector space

$$\widetilde{\mathfrak{a}} = \mathbb{C} \cdot X + (\mathfrak{g}^1_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}}).$$

Since $X \in \mathfrak{g}^{1}_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}}$ and $\mathfrak{n}_{\mathbb{C}}$ is an ideal, $\tilde{\mathfrak{a}}$ is a subalgebra of $\mathfrak{h}_{\mathbb{C}}$. Note that $\operatorname{ad}(\mathfrak{g}^{1}_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}})$ is nilpotent since $\mathfrak{n}_{\mathbb{C}}$ is the nilradial. The nilpotent part

$$(\operatorname{ad}\widetilde{\mathfrak{a}})_n = \mathbb{C} \cdot (\operatorname{ad} X)_n + (\mathfrak{g}^1_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}})$$

acts nilpotently on $\mathfrak{g}_{\mathbb{C}}$. We define $V = \mathfrak{g}_{\mathbb{C}}^{1}(\alpha)$ and set $\mathfrak{a} = (\operatorname{ad} \widetilde{\mathfrak{a}})_{n} | V \subseteq \mathfrak{gl}(V)$. We claim that \mathfrak{a} is an algebra. Now for any derivation D of a Lie algebra and any of its elements x one has $[D, \operatorname{ad} x] = \operatorname{ad}(Dx)$. But $(\operatorname{ad} X)_{n}$ is a derivation since $\operatorname{Der}(\mathfrak{g}_{\mathbb{C}})$ is scindable in $\mathfrak{gl}(\mathfrak{g}_{\mathbb{C}})$ as the Lie algebra of the algebraic group $\operatorname{Aut}(\mathfrak{g}_{\mathbb{C}})$. Hence $[(\operatorname{ad} X)_{n}, \operatorname{ad}(\mathfrak{g}_{\mathbb{C}}^{1}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}})] = \operatorname{ad}((\operatorname{ad} X)_{n}(\operatorname{ad}(\mathfrak{g}_{\mathbb{C}}^{1}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}})))$. But $(\operatorname{ad} X)_{s}|\mathfrak{h}_{\mathbb{C}} = 0$ since $\mathfrak{h}_{\mathbb{C}}$ is nilpotent, and thus $(\operatorname{ad} X)_{n}|\mathfrak{h}_{\mathbb{C}} = (\operatorname{ad} X)|\mathfrak{h}_{\mathbb{C}}$. Thus $(\operatorname{ad} X)_{n}(\operatorname{ad}(\mathfrak{g}_{\mathbb{C}}^{1}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}}) \subseteq \operatorname{ad}(\mathfrak{g}_{\mathbb{C}}^{1}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}}) \subseteq \widetilde{\mathfrak{a}}$. This proves that \mathfrak{a} is an algebra.

We shall verify the hypotheses of Lemma 0.8 with $\alpha | V$ in place of α and $\operatorname{ad} X | V$ in place of ν . For this purpose we have to check hypotheses (i), (ii) and (iii). Since $X \in \tilde{\mathfrak{a}}$, condition (iii) is satisfied. The operator $(\operatorname{ad} X)_s$ acts by scalar multiplication on each root space $\mathfrak{g}_{\mathbb{C}}^{\lambda}$, and α leaves each of them invariant because of $\alpha \in \operatorname{CAut}(\mathfrak{g}, \mathfrak{h})$. Hence $[\alpha, (\operatorname{ad} X)_s] = 0$ and thus (i) follows. It remains to verify that $Y = r \cdot X + Z$ with $Z \in \mathfrak{g}_{\mathbb{C}}^1(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}}$ implies

(*)
$$(\alpha|V)(\operatorname{ad} Y)_n|V(\alpha|V)^{-1} \in \mathfrak{a}.$$

 $\mathbf{138}$

Now $\alpha(\operatorname{ad} Y)_n \alpha^{-1} = (\alpha(\operatorname{ad} Y)\alpha^{-1})_n = (\operatorname{ad} \alpha(Y))_n$. The element $\alpha(X) - X$ is contained in $\mathfrak{g}^1_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}}$ since $\mathfrak{g}^1_{\mathbb{C}}(\alpha)$ and $\mathfrak{h}_{\mathbb{C}}$ are invariant under α . Further, α - id induces on $\mathfrak{h}_{\mathbb{C}}/(\mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}})$ the zero map by Proposition 0.5(2). Thus $\alpha(X) - X \in \mathfrak{n}_{\mathbb{C}}$. Thus

$$\alpha(X) - X \in \mathfrak{g}^1_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}},$$

whence

$$\left(\operatorname{ad} \alpha(X)\right)_n \in \left(\operatorname{ad} X + \mathfrak{g}^1_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}}\right)_n$$

and thus

$$(\alpha|V) (\operatorname{ad}(r \cdot X))_n |V(\alpha|V)^{-1} \in \mathfrak{a}$$

Also $\alpha(Z) \in \mathfrak{g}^{1}_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \cap \mathfrak{n}_{\mathbb{C}}$ since $\mathfrak{g}^{1}_{\mathbb{C}}(\alpha)$, $\mathfrak{h}_{\mathbb{C}}$ and $\mathfrak{n}_{\mathbb{C}}$ are all invariant under α . Hence

$$(\alpha|V)(\operatorname{ad} Z)_n|V(\alpha|V)^{-1} = \operatorname{ad} (\alpha(Z))|V \in \mathfrak{a},$$

too. Thus (*) is proven and condition (iii) of Lemma 0.8 is satisfied. Lemma 0.8 then applies and shows that on $V = \mathfrak{g}^1_{\mathbb{C}}(\alpha)$ the unipotent factor β_u of β is $\alpha e^{(\operatorname{ad} X)_n}$ and the semisimple factor is $e^{(\operatorname{ad} X)_s}$. Thus the generalized eigenspace decomposition of $\beta | V$ is the eigenspace decomposition of $e^{(\operatorname{ad} X)_s} | V$.

If we finally assume that X is regular, then

$$\mathfrak{g}^1_{\mathbb{C}}(\beta) = \mathfrak{g}^1_{\mathbb{C}}(\alpha) \cap (\mathfrak{g}_{\mathbb{C}})_1(e^{(\operatorname{ad} X)_s}) = \mathfrak{g}^1_{\mathbb{C}}(\alpha) \cap \mathfrak{h}_{\mathbb{C}} \subseteq \mathfrak{h}_{\mathbb{C}}$$

which is what we had to show.

1. Definitions

We let $\mathcal{H}(\mathfrak{g})$ denote the set of all Cartan algebras.

The group $\operatorname{Aut}(\mathfrak{g})$ acts on $\mathcal{H}(\mathfrak{g})$. Let $\operatorname{Inn}(\mathfrak{g}) = \langle e^{\operatorname{ad} X} \rangle$ denote the subgroup of inner automorphisms. If the ground field is algebraically closed, then all Cartan algebras are conjugate, i.e., $\operatorname{Inn}(\mathfrak{g})$ is transitive on $\mathcal{H}(\mathfrak{g})$. Over the reals, $\mathcal{H}(\mathfrak{g})$ decomposes into finitely many $\operatorname{Inn}(\mathfrak{g})$ -orbits. The Cartan algebras have the same dimension, called the *rank* rank \mathfrak{g} of \mathfrak{g} .

An element $X \in \mathfrak{g}$ is called *regular* if the nilspace $\mathfrak{g}^0(\operatorname{ad} X)$ has the smallest possible dimension. If this is the case then $\mathfrak{g}^0(\operatorname{ad} X)$ is a Cartan algebra, and every Cartan algebra is so obtained. The set $\operatorname{reg} \mathfrak{g}$ of regular elements is open dense in \mathfrak{g} , and from what we set it follows that

$$\operatorname{reg}(\mathfrak{g}) \subseteq \bigcup \mathcal{H}(\mathfrak{g})$$

Cartan subgroups of a connected real or complex Lie group G are harder to define than Cartan algebras [8]. A necessary condition is that $\mathfrak{h} = L(H)$ is a Cartan algebra. Let $\Lambda \subseteq \mathfrak{h}^*_{\mathbb{C}}$ the set of nonzero roots on the complexification $\mathfrak{h}_{\mathbb{C}}$ of \mathfrak{h} . Let $N(\mathfrak{h}) = \{g \in G : \operatorname{Ad}(g)\mathfrak{h} = \mathfrak{h}\}$ denote the normalizer of H_0 or, equivalently, \mathfrak{h} in G. Then $N(\mathfrak{h})$ acts on Λ on the right via $(\lambda, g) \mapsto \lambda \circ \operatorname{Ad}(g)$.

Definition 1.1.a. We set

 $C(\mathfrak{h}) = \{ g \in N(\mathfrak{h}) : \lambda \circ \operatorname{Ad}(g) = \lambda \text{ for all } \lambda \in \Lambda \}.$

We say that a subgroup H of a connected real or complex Lie group G is a *Cartan group* if L(H) is a Cartan algebra and H = C(L(H)). We let $\mathcal{H}(G)$ denote the set of all Cartan groups.

One notes at once that $C(\mathfrak{h})$ is normal in $N(\mathfrak{h})$. Then $N(\mathfrak{h})/C(\mathfrak{h})$ is a well defined discrete group

Definition 1.1.b. We say that the (discrete) group $\mathcal{W}(G, \mathfrak{h}) \stackrel{\text{def}}{=} N(\mathfrak{h})/C(\mathfrak{h})$ is the Weyl group of G with respect to \mathfrak{h} .

We note that $\operatorname{Ad}: N(H) \to \operatorname{Aut}(\mathfrak{h}, \mathfrak{g})$ is a homomorphism with kernel $N(H) \cap Z(G)$. We observe that

$$C(\mathfrak{h}) = \mathrm{Ad}^{-1} (\mathrm{CAut}(\mathfrak{g}, \mathfrak{h})).$$

As a consequence we record:

Proposition 1.2. (i) Let G be any Lie group and \mathfrak{h} a Cartan algebra of \mathfrak{g} . For an element $g \in N(\mathfrak{h})$ the following statements are equivalent:

- (1) $g \in C(\mathfrak{h})$.
- (2) $\operatorname{Ad}(g)_{\Lambda} = \mathbf{1} \ (on \ \mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}).$
- (3) $\operatorname{Ad}(g)_{\Lambda} \mathbf{1}$ is nilpotent (on $\mathfrak{h}_{\mathbb{C}}/\Lambda^{\perp}$).
- (4) $\mathfrak{h}_{\mathbb{C}} \subseteq \Lambda^{\perp} + \mathfrak{g}^{1}_{\mathbb{C}}(\operatorname{Ad}(g)).$
- (5) h ⊆ g¹(Ad(g)) + (n ∩ h) where n is the nilradical of g.
 (ii) For each a ∈ G we have aC(h)a⁻¹ = C(Ad(a)h)).

Proof. (i) follows from the preceding remark and from Proposition 0.5.

(ii) If $\varphi, \psi \in \operatorname{Aut}(\mathfrak{g})$ then $\varphi(\mathfrak{g}^1(\psi)) = \mathfrak{g}^1(\varphi\psi\varphi^{-1})$. Now let $\varphi = \operatorname{Ad}(a)$ and $\psi = \operatorname{Ad}(g)$. Then $\operatorname{Ad}(a)\mathfrak{g}^1(\operatorname{Ad}(g)) = \mathfrak{g}^1(\operatorname{Ad}(aga^{-1}))$. Now (5) above is equivalent to $\operatorname{Ad}(a)\mathfrak{h} \subseteq \mathfrak{g}^1(\operatorname{Ad}(aga^{-1})) + (\mathfrak{n} \cap \operatorname{Ad}(a)\mathfrak{h})$ since \mathfrak{n} is an ideal. Thus the assertion $aC(\mathfrak{h})a^{-1} = C(\operatorname{Ad}(a)\mathfrak{h})$ follows from (i).

Lemma 1.3. For each $g \in G$ and each identity neighborhood W of G there is a neighborhood V of g such that for $v \in V$ there is a $w \in W$ such that $\mathfrak{g}^1(v) \subseteq \operatorname{Ad}(w)\mathfrak{g}^1(\operatorname{Ad} g) = \mathfrak{g}^1(\operatorname{Ad}(wgw^{-1})).$

Proof. [3], Ch. VII, §4, n^O 2, Prop.5.

In particular, dim $\mathfrak{g}^1(v) \leq \dim \mathfrak{g}^1(g)$. An element $g \in G$ is called *regular* if $v \mapsto \dim \mathfrak{g}^1(\operatorname{Ad} v): G \to \mathbb{N}_0$ is constant on a neighborhood of \mathfrak{g} . The set $\operatorname{Reg}(G)$ of all regular elements is open and dense in G (see [3], Ch. VII, §1, n^O 4, Prop.1).

Let reg exp denote the set of all $X \in \mathfrak{g}$ such that $d \exp(X)$ is invertible. We have observed the following fact:

Lemma 1.4. Suppose that G is a real Lie group and $X \in \mathfrak{g}$. Then $\exp X \in \operatorname{Reg}(G)$ if and only if $X \in \operatorname{reg} \mathfrak{g} \cap \operatorname{reg} \exp$. If this holds, then $\mathfrak{g}^1(\operatorname{Ad}(\exp X)) = \mathfrak{g}^0(\operatorname{ad} X)$.

Proof. See [6], Lemma 3.

In other words, we have

(3)
$$\exp^{-1}(\operatorname{Reg} G) = \operatorname{reg} \mathfrak{g} \cap \operatorname{reg} \exp,$$
$$\exp(\operatorname{reg} \mathfrak{g} \cap \operatorname{reg} \exp) = \operatorname{Reg} G \cap \exp \mathfrak{g}.$$

If G is connected, then for every regular g the set $\mathfrak{g}^1(\operatorname{Ad} g)$ is a Cartan algebra, and every Cartan algebra is so obtained (see [3], Ch. VII, §4, n^O 4, Prop.8). In particular, every regular element g is contained in $N(\mathfrak{g}^1(\operatorname{Ad}(g)))$. By 1.2(5) we have in fact $g \in C(\mathfrak{g}^1(\operatorname{Ad}(g)))$. Thus in an arbitrary Lie group G, if $g \in G_0 \cap \operatorname{Reg} G$, then $\mathfrak{h} = \mathfrak{g}^1(\operatorname{Ad}(g))$ is a Cartan algebra and by the preceding we conclude that $g \in C(\mathfrak{h})$. As a consequence, we record

Proposition 1.5. If G is a Lie group then

$$G_0 \cap \operatorname{Reg}(G) \subseteq \bigcup \mathcal{H}(G).$$

Proposition 1.6. (i) Let G a Lie group and \mathfrak{h} a Cartan algebra of \mathfrak{g} . Then arbitrarily close to any point $g \in C(\mathfrak{h})$ there is an element $g' \in C(\mathfrak{h})$ such that (with the nilradical \mathfrak{n} of \mathfrak{g})

$$\mathfrak{h} = \mathfrak{g}^1(\mathrm{Ad}(g')) + (\mathfrak{h} \cap \mathfrak{n}).$$

(ii) If $g \in G_0$, then arbitrarily close to g there are regular points $g' \in C(\mathfrak{h})$ such that

$$\mathfrak{h} = \mathfrak{g}^1 \big(\operatorname{Ad}(g') \big).$$

In particular, $\operatorname{Reg}(G) \cap G_0 \cap C(\mathfrak{h})$ is open and dense in $G_0 \cap C(\mathfrak{h})$.

Proof. (i) Let $g \in C(\mathfrak{h})$. Recall that $\operatorname{Ad}(g)e^{\operatorname{ad} X} = \operatorname{Ad}(g \exp X)$. By Lemma 0.9 there are arbitrarily small elements X in \mathfrak{h} such that $\mathfrak{h} = \mathfrak{g}^1(\operatorname{Ad}(g)e^{\operatorname{ad} X}) + (\Lambda^{\perp} \cap \mathfrak{h}) = \mathfrak{g}^1(\operatorname{Ad}(g \exp(X))) + (\mathfrak{h} \cap \mathfrak{n})$ with the nilradical \mathfrak{n} of \mathfrak{g} (see also 0.5(5)). Thus $\mathfrak{h} = \mathfrak{g}^1(\operatorname{Ad}(g')) + (\mathfrak{h} \cap \mathfrak{n})$ with $g' = g \exp X \in C(\mathfrak{h})$ as close to g as we wish. In particular, since G_0 is open in G, if $g \in G_0$ then we may also take $g' \in G_0$. Let us simplify notation by setting g = g' and assume that

(4)
$$\mathfrak{h} = \mathfrak{g}^{1}(\mathrm{Ad}(g)) + (\mathfrak{h} \cap \mathfrak{n}).$$

By 1.4, given an identity neighborhood W in G, there is a neighborhood V of g such that for $v \in V$ there is a $w \in W$ such that $\mathfrak{g}^1(wgw^{-1}) \supseteq \mathfrak{g}^1(v)$. Thus (4) implies

$$\mathrm{Ad}(w)\mathfrak{h} = \mathfrak{g}^{1}(wgw^{-1}) + (\mathrm{Ad}(w)(\mathfrak{h}) \cap \mathfrak{n}) \supseteq \mathfrak{g}^{1}(v) + (\mathrm{Ad}(w)(\mathfrak{h}) \cap \mathfrak{n})$$

In particular, $\dim \mathfrak{g}^1(v) \leq \operatorname{rank} \mathfrak{g}$.

(ii) If $g \in G_0$, then $\dim \mathfrak{g}^1(\operatorname{Ad}(v)) \geq \operatorname{rank} \mathfrak{g}$ (see [3], Ch. VII, §4, n^O 4, Prop.8(i)). Hence $v \mapsto \dim \mathfrak{g}^1(\operatorname{Ad}(v))$ is locally constant around g and thus $g \in \operatorname{Reg}(G)$. We have seen that $\mathfrak{h} = \mathfrak{g}^1(\operatorname{Ad}(g))$.

Example E1. (i) Let G = SO(3) and $\mathfrak{g} = \mathfrak{so}(3) = \operatorname{span}\{e_j : j \in \mathbb{Z}/3\mathbb{Z}\}\$ with $[e_j, e_{j+1}] = e_{j+2}$.

$$e_0 = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad e_1 = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad e_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}.$$

We consider $\mathfrak{h} = \mathbb{R} \cdot e_0$. Then

$$C(\mathfrak{h}) = \exp \mathfrak{h} = \left\{ \begin{pmatrix} \cos t & \sin t & 0\\ -\sin t & \cos t & 0\\ 0 & 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\}.$$
$$N(\mathfrak{h}) = C(\mathfrak{h}) \cup C(\mathfrak{h}) \begin{pmatrix} 1 & 0 & 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{pmatrix} = C(\mathfrak{h}) \cup C(\mathfrak{h}) \exp(\pi \cdot e_2).$$

Here $N(\mathfrak{h}) \subseteq \operatorname{Reg}(G) = G \setminus \{\mathbf{1}\}$. Note $\mathcal{W}(G, \mathfrak{h}) \cong \mathbb{Z}(2)$. Also, if $g = \exp(\pi \cdot e_2)$, then $\mathfrak{g}^1(\operatorname{Ad}(g)) = \mathbb{R} \cdot e_2$ and $\mathfrak{h} \cap \mathfrak{g}^1(\operatorname{Ad}(g)) = \{0\}$.

(ii) Let $G = \operatorname{Sl}(2, \mathbb{R})$ and $\mathfrak{g} = \mathfrak{sl}(2, \mathbb{R})$, spanned by

$$h = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad p = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad q = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Then [h, p] = 2p, [h, q] = -2q, [p, q] = h. Set $u = p - q = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and h' = p + q. Then $[\frac{1}{2} \cdot u, h] = h'$, $[\frac{1}{2} \cdot u, h'] = -h$. We take $\mathfrak{h} = \mathbb{R} \cdot h$. Then

$$C(\mathfrak{h}) = \exp \mathfrak{h} \cup -\exp \mathfrak{h} = \left\{ \pm \begin{pmatrix} e^t & 0\\ 0 & e^{-t} \end{pmatrix} : t \in \mathbb{R} \right\}.$$
$$N(\mathfrak{h}) = C(\mathfrak{h}) \cup C(\mathfrak{h}) \exp \frac{\pi}{2} \cdot u.$$

We have $N(\mathfrak{h}) \setminus \{\mathbf{1}\} \subseteq \operatorname{Reg} G \cap \exp \mathfrak{g}$ and $\mathcal{W}(G, \mathfrak{h}) \cong \mathbb{Z}(2)$. Also, if $g = \exp(\frac{\pi}{2} \cdot u)$, then $\mathfrak{g}^1(\operatorname{Ad}(g)) = \mathbb{R} \cdot u$ and $\mathfrak{h} \cap \mathfrak{g}^1(\operatorname{Ad}(g)) = \{0\}$.

We construct an example which illustrates that the situation we consider is rather general in the absence of connectivity.

Example E2. Let \mathfrak{h} be a nilpotent Lie algebra and $\psi: \mathfrak{h} \to \mathfrak{gl}(\mathfrak{v})$ a representation over \mathbb{C} . Then we construct on $\mathfrak{g} \stackrel{\text{def}}{=} \mathfrak{h} \oplus \mathfrak{v}$ a bracket

$$[(X_1, Y_1), (X_2, Y_2)] = ([X_1, X_2], \psi(X_1)(Y_2) - \psi(X_2)(Y_1)),$$

making \mathfrak{g} into a solvable Lie algebra with the abelian ideal \mathfrak{v} .

Let us assume that $\psi(\mathfrak{h})(Y) = \{0\}$ implies Y = 0. Then \mathfrak{h} is a Cartan subalgebra. We write

$$X \cdot Y = \psi(X)(Y), \quad X \in \mathfrak{h}, Y \in \mathfrak{v}.$$

Then for $X \in \mathfrak{h}$ we have $(\operatorname{ad} X)|\mathfrak{v} = (Y \mapsto X \cdot Y)$. In particular, if we set $X_{\psi}(Y) = X \cdot Y = \psi(X)(Y)$, then $\lambda \colon \mathfrak{h} \to \mathbb{C}$ is a root iff the nilspace \mathfrak{v}^{λ} of $X_{\psi} - \lambda(X) \cdot \mathbf{1}$ is nonzero, i.e., if λ is a weight of ψ .

Now any automorphism in Aut($\mathfrak{g}, \mathfrak{h}$) is of the form $\alpha \times \beta$ with $\alpha \in Aut(\mathfrak{h})$ and $\beta \in Gl(\mathfrak{v})$ such that $\psi(\alpha(X))(\beta(Y)) = \beta(\psi(X)Y)$, i.e.,

$$\operatorname{Aut}(\mathfrak{g},\mathfrak{h}) = \{(\alpha,\beta) \in \operatorname{Aut}(\mathfrak{h}) \times \operatorname{Gl}(\mathfrak{v}) : \psi \circ (\alpha \oplus \beta) = \beta \circ \psi\} \\ = \{(\alpha,\beta) \in \operatorname{Aut}(\mathfrak{h}) \times \operatorname{Gl}(\mathfrak{v}) : (\forall (X,Y) \in \mathfrak{h} \oplus \mathfrak{v}) \, \alpha(X) \cdot \beta(Y) = \beta(X \cdot Y)\}$$

We suppose now that an arbitrary nilpotent Lie algebra \mathfrak{h} is given and that Λ is any finite set of nonzero vectors in $(\mathfrak{h}')^{\perp} \subseteq \mathfrak{h}^*$. We set

$$\operatorname{Aut}(\Lambda) = \{\varphi \in \operatorname{Gl}(\operatorname{span}(\Lambda)) : \varphi(\Lambda) = \Lambda)\}$$

and consider the finite orbit space $J = \Lambda / \operatorname{Aut}(\Lambda)$ and the orbit map $\rho: \Lambda \to J$. For each $j \in J$ we fix an arbitrary nilpotent representation $\pi_j: \mathfrak{h} \to \mathfrak{gl}(\mathfrak{v}_j)$ of \mathfrak{h} (e.g., the zero representation!) and define $\mathfrak{v} = \bigoplus_{\lambda \in \Lambda} \mathfrak{v}_{\rho(\lambda)}$. We set

$$\psi(X)(Y) = X \cdot \left(\bigoplus_{\lambda \in \Lambda} Y_{\lambda}\right) = \left(\bigoplus_{\lambda \in \Lambda} (\lambda(X) \cdot \mathbf{1} + \pi_{\rho(\lambda)}(X))(Y_{\lambda})\right).$$

Let $\alpha \in \operatorname{Aut}(\mathfrak{h})$ with $\alpha^* | \Lambda \in \operatorname{Aut}(\Lambda)$. Notice that for an abelian \mathfrak{h} , every element of $\operatorname{Aut}(\Lambda)$ is so obtained by the definition of $\operatorname{Aut}(\Lambda)$, and if $\operatorname{span}(\Lambda) = \mathfrak{h}^*$, then this representation is unique. Now we define $\beta: \mathfrak{v} \to \mathfrak{v}$ by

$$\beta\left(\bigoplus_{\lambda\in\Lambda}Y_{\lambda}\right) = \bigoplus_{\lambda\in\Lambda}Y_{\alpha^{*}(\lambda)}.$$

Now

$$\alpha(X) \cdot \beta(Y) = \bigoplus_{\lambda \in \Lambda} \left(\lambda \left(\alpha(X) \right) \cdot \mathbf{1} + \pi_{\rho(\lambda)}(X) \right) (Y_{\alpha^*(\lambda)})$$

and

$$\beta(X \cdot Y) = \bigoplus_{\lambda \in \Lambda} \left((\alpha^*(\lambda)(X) \cdot \mathbf{1} + \pi_{\rho(\alpha^*(\lambda))}(X)) (Y_{\alpha^*(\lambda)}) \right)$$

We see that $\alpha \oplus \beta \in Aut(\mathfrak{g}, \mathfrak{h})$. In particular, if \mathfrak{h} is abelian, then

$$B\mathcal{W}(\mathfrak{g},\mathfrak{h}) = \operatorname{Aut}(\Lambda).$$

If Λ is any finite generating set of a real Hilbert space \mathfrak{h} with scalar product $(\cdot|\cdot)$, we can take \mathfrak{h} as an abelian Lie algebra with $\mathfrak{h}^* = \mathfrak{h}$ (writing $\lambda(X) = (\lambda|X)$) and for π_j the one dimensional zero representation. Then we see that

every finite group Γ which is isomorphic to a group $\operatorname{Aut}(\Lambda)$ for a finite set Λ of vectors spanning a real vector space, can occur as a big Weyl group of a Lie algebra \mathfrak{g} with respect to some Cartan subgroup \mathfrak{h} .

If G_0 is the simply connected Lie group with Lie algebra \mathfrak{g} , then we may construct the semidirect product $G_0 \rtimes_{\gamma} \operatorname{Aut}(\Lambda)$ with the action γ induced by the action of $\operatorname{Aut}(\Lambda)$ on $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{v}$. Thus $\operatorname{Aut}(\Lambda)$ is realized as the Weyl group of a Lie group G with respect to a Cartan algebra \mathfrak{h} of \mathfrak{g} .

Every family $(\beta_{\lambda})_{\lambda \in \Lambda}$ of intertwining operators $\beta_{\lambda} : \mathfrak{v}_{\rho(\lambda)} \to \mathfrak{v}_{\rho(\lambda)}$ for the representation $\pi_{\rho(\lambda)}$ yields an automorphism

$$(X,Y) \mapsto (X, \bigoplus_{\lambda \in \Lambda} \beta_{\lambda}(Y_{\lambda})) \quad \text{in} \quad \operatorname{CAut}(\mathfrak{g}, \mathfrak{h}).$$

In particular, if $\mathfrak{h} = \mathbb{C} = \mathfrak{h}^*$, $\Lambda = \{1\}$, $\pi: \mathfrak{h} \to \mathfrak{gl}(\mathfrak{v})$, $\pi(z)(v) = z \cdot v$, then \mathfrak{g} is almost abelian, $\operatorname{Aut}(\Lambda) = \{1\}$, and

$$\operatorname{CAut}(\mathfrak{g},\mathfrak{h}) = \{\mathbf{1}\} \times \operatorname{Gl}(\mathfrak{v}) \cong \operatorname{Gl}(\mathfrak{v}).$$

For the definitive information on this issue see NEEB [9].

The space of closed subgroups. In [6] we considered for a real Lie group G with Lie algebra \mathfrak{g} the compact Hausdorff spaces $\Sigma(G)$ of all closed subgroups of G and $\Sigma(\mathfrak{g})$ of all additive closed subgroups of \mathfrak{g} . We note $\mathcal{H}(\mathfrak{g}) \subseteq \Sigma(\mathfrak{g})$ and $\mathcal{H}(G) \subseteq \Sigma(G)$.

Definition 1.8. A subalgebra \mathfrak{h} of a real or complex Lie algebra \mathfrak{g} is said to be a near-Cartan algebra if $\mathfrak{h} \in \overline{\mathcal{H}}(\mathfrak{g})$. A subgroup H of a real or complex Lie group is called a near-Cartan group of G if $H \in \overline{\mathcal{H}}(G)$.

Proposition 1.9. Let \mathfrak{g} be a real or complex Lie algebra and \mathfrak{h} a near-Cartan subalgebra. Then

- (i) dim $\mathfrak{h} = \operatorname{rank}(\mathfrak{g})$
- (ii) h is nilpotent and its class of nilpotency is dominated by that of the Cartan algebras of g.

Proof. (i) The subspace in $\Sigma(\mathfrak{g})$ of all vector spaces of dimension dim(rank \mathfrak{g}) is a compact manifold containing $\mathcal{H}(\mathfrak{g})$. Then $\overline{\mathcal{H}(\mathfrak{g})}$ is contained in this manifold.

(ii) It was proved in [6], Prop. 24 that the space of closed nilpotent subgroups of class $\leq k$ in $\Sigma(G)$ is closed for all k.

Proposition 1.10. For each real or complex Lie algebra \mathfrak{g} and each real or complex Lie group G we have

$$\mathfrak{g} = \bigcup \overline{\mathcal{H}(\mathfrak{g})},$$
$$G = \bigcup \overline{\mathcal{H}(G)}.$$

Proof. Let $X \in \mathfrak{g}$. There is a sequence $X_n \in \operatorname{reg} \mathfrak{g}$ with $X = \lim X_n$. The sequence $\mathfrak{g}^0(\operatorname{ad} X_n) \in \mathcal{H}(\mathfrak{g})$ has a subsequence in the compact space $\overline{\mathcal{H}}(\mathfrak{g})$ converging to an element \mathfrak{h} . Then $X \in \mathfrak{h}$ by the definition of the topology of $\Sigma(\mathfrak{g})$. The proof of the second part is similar. **Proposition 1.11.** Each near-Cartan subgroup H of a Lie group G contains the center Z of G.

Proof. By definition, $H = \lim H_n$ in $\overline{\mathcal{H}(G)}$ with a sequence of Cartan subgroups H_n . Now $Z \subseteq C(\mathfrak{h}_n) = H_n$ for all $n \in \mathbb{N}$. The assertion $Z \subseteq \lim H_n = H$ follows.

It is very instructive to consider, in this context, the examples of the universal covering group of $Sl(2, \mathbb{R})$ and that of the group of motions of the euclidean plane. (For the latter example, see e.g. [6], Example 23.)

Lemma 1.12. Let $f: G \to G/Z$ the quotient homomorphism of a locally compact group G modulo a closed normal subgroup Z. Let Σ_Z denote the subspace in $\Sigma(G)$ of all closed subgroups H of G with $Z \subseteq H$. Then the function

 $H \mapsto H/Z : \Sigma_Z(G) \to \Sigma(G/Z)$

is a homeomorphism.

Proof. The function is clearly a bijection, and domain and range are compact Hausdorff spaces. It therefore suffices to establish its continuity. Let A_n be a net of closed subgroups of G converging to A. This means that for every compact subspace C of G and every identity neighborhood U in G eventually we have $A_n \cap C \subseteq A \cap CU$ and $A \cap C \subseteq A_n \cap CU$ (see [1], Chap. VIII, §5, n° 6, p. 188). Now let K be a compact subspace of G/Z and V an identity neighborhood in G/Z. Then there is a compact subspace C of G such that K = f(C). We claim that $f(A_n) \cap K = f(A_n) \cap f(C) = f(A_n \cap C)$: indeed the last term is contained in the preceding, and if $f(c) = f(a_n)$ with $c \in C$ and $a_n \in A_n$ then there is a $z \in Z$ with $c = a_n z$. But $Z \subseteq H$ implies $a_n z \in A_n$ and so $c \in A_n \cap C$. Let $U = f^{-1}(V)$. Then by the same argument, $f(A) \cap KV = f(A \cap CU)$. Hence $f(A_n) \cap K \subseteq f(A) \cap KV$ iff $f(A_n \cap C) \subseteq f(A \cap CU)$ and this is eventually the case by hypothesis on A_n . In the same vein we see that eventually $f(A) \cap K \subseteq f(A_n) \cap KV$. Thus $\lim f(A_n) = f(A)$ which we had to show.

If \mathfrak{g} is a Lie algebra, then the group $\operatorname{int}(\mathfrak{g}) = \langle e^{\operatorname{ad} \mathfrak{g}} \rangle$ of inner automorphisms is an analytic subgroup of $\operatorname{Aut}(\mathfrak{g})$ whose Lie algebra is $\operatorname{ad} \mathfrak{g} \subseteq \operatorname{Der}(\mathfrak{g})$. If one endows $\operatorname{int}(\mathfrak{g})$ with its intrinsic Lie group structure then it is isomorphic to G/Z where G is any of the connected Lie groups with $L(G) \cong \mathfrak{g}$ and Z is its center. In a sense, therefore, the following proposition says that the Cartan subgroups of a connected Lie group are determined by its Lie algebra \mathfrak{g} alone.

Proposition 1.13. The quotient homomorphism $f: G \to G/Z$ maps

- (i) $\mathcal{H}(G)$ bijectively onto $\mathcal{H}(G/Z)$, and
- (ii) $\overline{\mathcal{H}(G)}$ bijectively onto $\overline{\mathcal{H}(G/Z)}$.

Proof. Every Cartan algebra \mathfrak{h} in \mathfrak{g} contains the center \mathfrak{z} and $\mathfrak{h}/\mathfrak{z}$ is a Cartan algebra of $\mathfrak{g}/\mathfrak{z}$. Also, every Cartan algebra of $\mathfrak{g}/\mathfrak{z}$ is of this form (see [3], Chap. VII, §2, n° 2, p. 21). Let $H = C(\mathfrak{h})$ be a Cartan group of G. This means that $h \in H$ implies $\mathrm{Ad}(h) \in \mathrm{CAut}(\mathfrak{g},\mathfrak{h})$. Then $\mathrm{Ad}(f(h)) \in \mathrm{CAut}(\mathfrak{g}/\mathfrak{z},\mathfrak{h}/\mathfrak{z})$ as is readily verified. Conversely, if $g \in G$ is such that $\mathrm{Ad}(f(g)) \in \mathrm{CAut}(\mathfrak{g}/\mathfrak{z},\mathfrak{g}/\mathfrak{z})$

then also $\operatorname{Ad}(g) \in \operatorname{CAut}(\mathfrak{g}, \mathfrak{h})$, i.e., $g \in C(\mathfrak{h}) = H$. This proves the first part of the assertion concerning (i).

Now we turn to part (ii). The quotient map $f: G \to G/Z$ induces a homeomorphism $\varphi: \Sigma_Z(G) \to \Sigma(G/Z), \ \varphi(H) = H/Z$ by Lemma 1.12. Now $\overline{\mathcal{H}(G)} \subseteq \Sigma_Z$ by Proposition 1.11. By the first part of the proof, $\varphi \xrightarrow{} \mathcal{H}(G)$ bijectively onto $\mathcal{H}(G/Z)$. Then $\varphi \xrightarrow{} \mathcal{H}(G)$ homeomorphically onto $\overline{\mathcal{H}(G/Z)}$.

2. More on near-Cartan groups

Definition 2.1. Let \mathfrak{g} denote a real Lie algebra. A subalgebra \mathfrak{m} is said to be a *subalgebra of maximal rank* if every Cartan subalgebra of \mathfrak{m} is a Cartan algebra of \mathfrak{g} . The set of maximal rank subalgebras of \mathfrak{g} is denoted by $\mathcal{M}(\mathfrak{g}) \subseteq \Sigma(\mathfrak{g})$. A closed subgroup M of a Lie group with Lie algebra \mathfrak{g} is called *a subgroup of maximal rank* if $\mathfrak{m} = L(M)$ is a maximal rank subalgebra of \mathfrak{g} . The set of maximal rank subgroups of G is denoted by $\mathcal{M}(G) \subseteq \Sigma(G)$.

Every Cartan algebra is a maximal rank subalgebra of \mathfrak{g} and every Cartan subgroup of G is a maximal rank subgroup.

Lemma 2.2. Let B be any open neighborhood of 0 in the Lie algebra \mathfrak{g} of a Lie group G such that $\exp |B: B \to U$ is a diffeomorphism onto an open identity neighborhood of G. Let M be a maximal rank subgroup of G. Let $S \stackrel{\text{def}}{=} (\exp |B)^{-1}(U \cap M)$. Then $S = \mathfrak{m} \cap B$.

Proof. (i) If $X \in \mathfrak{m} \cap B$, then $\exp X \in M \cap U$ and thus $X \in S$ by the definition of S. Thus $\mathfrak{m} \cap B \subseteq S$.

(ii) In order to show that $S \subseteq B \cap \mathfrak{m}$ we must show that $S \subseteq \mathfrak{m}$. Since M is closed then S is closed in B. It therefore suffices to find a dense subset $T \subseteq S$ with $T \subseteq \mathfrak{m}$. We let $T = (\exp|B)^{-1}(\operatorname{Reg} M \cap U)$. Since $\operatorname{Reg}(M)$ is dense in M then T is dense in S. Now let $X \in T$. We must show $X \in \mathfrak{m}$. Now $m = \exp X \in \operatorname{Reg}(M)$ and $\mathfrak{m}^1(\operatorname{Ad}(m)|\mathfrak{m})$ is a Cartan algebra in \mathfrak{m} . Since M is a maximal rank subgroup, it is a Cartan algebra of \mathfrak{g} . Hence $\mathfrak{g}^1(\operatorname{Ad}(m)) \supseteq \mathfrak{m}^1(\operatorname{Ad}(m)|\mathfrak{m})$ is a Cartan algebra of \mathfrak{g} , equality holds, and m is regular in G. Now $\operatorname{Ad}(m) = \operatorname{Ad}(\exp X) = e^{\operatorname{ad} X}$. It follows that $(\operatorname{Ad}(m) - 1)(X) = (\sum_{j=1}^{\infty} \frac{1}{j!} (\operatorname{ad} X)^j)X = 0$. Thus $X \in \mathfrak{g}^1(\operatorname{Ad}(m)) = \mathfrak{g}^1(\operatorname{Ad}(m)|\mathfrak{m}) \subseteq \mathfrak{m}$.

Proposition 2.3. Let $H = \lim H_n$ in $\overline{\mathcal{M}(G)}$ and suppose that $H_n \in \mathcal{M}(G)$. Then $L(H) = \lim L(H_n)$.

Proof. Let *C* denote an open, relatively compact convex symmetric Campbell-Hausdorff-neighborhood in \mathfrak{g} contained in a neighborhood *B* as is Lemma 2.2. Then $S_n \stackrel{\text{def}}{=} (\exp |C)^{-1}(H_n \cap \exp C)$ converges to $S \stackrel{\text{def}}{=} (\exp |C)^{-1}(H \cap \exp C)$ in the space of closed subsets of *C*. If $H_n \in \mathcal{M}(G)$, then $S_n = C \cap L(H_n)$ by Lemma 2.2. Now dim $H_n = \dim L(H_n)$ and dim $H = \dim S$. If $(n(j))_{j \in \mathbb{N}}$ is any

subsequence such that $L(H_{N(j)})$ converges to E in the compact space $\Sigma_L(\mathfrak{g})$, then $C \cap L(H_{n(j)})$ converges to $C \cap E$ on one hand and to S on the other. Hence $S = C \cap E$. Thus $E = \mathbb{R} \cdot (C \cap E)$ does not depend on the choice of the subsequence and $E = \lim L(H_n)$. Now E is a vector subspace of \mathfrak{g} such that $C \cap E = (\exp |C)^{-1}(H \cap \exp C)$. If we recall that for a closed subgroup H of Gwe have $L(H) = \{X \in \mathfrak{g} : \exp \mathbb{R} \cdot X \subseteq H\}$ we may conclude E = L(H).

We set $\Sigma_m(G) = \{H \in \Sigma(G) : \dim H = m\}.$

Corollary 2.4. $\overline{\mathcal{M}(G) \cap \Sigma_m(G)} \subset \Sigma_m(G)$.

Proof. Consequence of Proposition 2.3.

Now we apply this with $m = \operatorname{rank} G$. Since $\mathcal{H}(G) \subseteq \mathcal{M}(G) \cap \Sigma_{\operatorname{rank} G}$, Corollary 2.4 yields at once

Corollary 2.5. Every near-Cartan group has dimension rank(G).

More precisely:

Theorem 2.6. The Lie algebra $\mathfrak{h} = L(H)$ of a near-Cartan group H is a near-Cartan algebra. The analytic subgroup $H = \exp \mathfrak{h}$ generated by a near-Cartan algebra \mathfrak{h} is the identity component of a near-Cartan group.

Proof. (i) Let $H \in \mathcal{H}(G)$. Then there is a sequence H_n of Cartan groups with $H = \lim H_n$. Then $L(H) = \lim L(H_n)$ by Proposition 2.3. Since $L(H_n) \in \mathcal{H}(\mathfrak{g})$ we conclude $L(H) \in \overline{\mathcal{H}(\mathfrak{g})}$.

(ii) Let $\mathfrak{h} \in \overline{\mathcal{H}}(\mathfrak{g})$. Then there is a sequence \mathfrak{h}_n of Cartan algebras with $\mathfrak{h} = \lim \mathfrak{h}_n$. The analytic groups $H_n \stackrel{\text{def}}{=} \exp \mathfrak{h}_n$ are closed (since \mathfrak{h}_n is an ideal in $L(\exp \mathfrak{h}_n)$ and a Cartan algebra is its own normalizer!). Each H_n is the identity component of the Cartan group $C(\mathfrak{h}_n)$ which is a maximal rank group. Because of the compactness of $\overline{\mathcal{H}}(G)$ there is a sequence $(n(j))_{j\in\mathbb{N}}$ such that $H^* = \lim C(\mathfrak{h}_{n(j)})$ exists. By definition, H^* is a near-Cartan group. The relation $L(H^*) = \lim L(C(\mathfrak{h}_{n(j)})) = \lim \mathfrak{h}_{n(j)} = \mathfrak{h}$ follows from Proposition 2.3. Then $H \stackrel{\text{def}}{=} (H^*)_0 = \exp \mathfrak{h}$ follows.

We have seen in [6] that there may be sequences \mathfrak{h}_n of Cartan algebras such that $(H, \mathfrak{h}) = \lim(\exp \mathfrak{h}_n, \mathfrak{h}_n)$ exists in $\overline{\mathcal{H}(G)} \times \overline{\mathcal{H}(\mathfrak{g})}$ such that H is not connected. In that example all Cartan groups were connected, but we have disconnected near-Cartan groups. In constrast with the situation of a Cartan group which is uniquely determined by its identity component, different near-Cartan groups may have the same identity component. This is the case in $\mathrm{Sl}(2,\mathbb{R})$. The algebra $\mathfrak{h} = \mathbb{R} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ is the Lie algebra of two different near-Cartan groups $H_1 = \exp \mathfrak{h} = \lim\exp \mathbb{R} \cdot \begin{pmatrix} 0 & 1 \\ \frac{1}{n} & 0 \end{pmatrix}$ and $H_2 = \{\mathbf{1}, -\mathbf{1}\}H_1 =$ $\lim\exp \mathbb{R} \cdot \begin{pmatrix} 0 & 1 \\ -\frac{1}{n} & 0 \end{pmatrix}$.

Further remarks. The function $L: \Sigma(G) \to \Sigma_L(\mathfrak{g})$ from the space of closed subgroups into the space of Lie subalgebras of \mathfrak{g} which associates with a closed

subgroup K of G its Lie algebra L(K) is not continuous as was observed in [6]. If $G = \mathbb{R}^2/\mathbb{Z}^2$ with $\mathfrak{g} = \mathbb{R}^2$ and the quotient map as exponential function, then $\mathfrak{h}_n = \mathbb{R} \cdot (\frac{1}{n}, 1)$ converges to $\mathfrak{h} = \mathbb{R} \times \{0\}$ in $\Sigma_L(\mathfrak{g})$. However, $H_n = \exp \mathfrak{h}_n$ converges to $G \neq \exp \mathfrak{h}$ in $\Sigma(G)$.

However, in [6] we proved:

Lemma 2.7. Let G denote a Lie group and set $D = \{(H, \mathfrak{h}) \in \Sigma(G) \times \Sigma_L(\mathfrak{g}) : \mathfrak{h} \subseteq L(H)\}$. Then D is closed in $\Sigma(G) \times \Sigma_L(\mathfrak{g})$.

Now we set $\mathbb{N}_G = \{0, 1, \dots, \dim L(G)\}$ and consider the function

dim: $\Sigma(G) \to \mathbb{N}_G$, $H \mapsto \dim H = \dim L(H)$.

Lemma 2.8. The function dim: $\Sigma(G) \to \mathbb{N}_G$ is upper semicontinuous.

Proof. We claim that the lower graph $\{(H,n) : n \leq \dim L(H), H \in \Sigma(G), n \in \mathbb{N}_G\}$ is closed in $\Sigma(G) \times \mathbb{N}_G$ by Lemma 2.3. Indeed, if $(H,n) = \lim(H_k, n_k)$, then for any subsequence $(k(j))_{j \in \mathbb{N}}$ with $\mathfrak{h} = \lim L(H_{k(j)})$ we have $\mathfrak{h} \subseteq L(H)$, i.e., $\lim \dim L(H_{k(j)}) \leq \dim H$. But $n_{k(j)} \leq \dim L(H_{k(j)})$. Hence $n \leq \lim \dim L(H_{k(j)}) \leq \dim H$.

Lemma 2.9. Suppose $H = \lim H_n$ in $\Sigma(G)$. If dim $H = \lim \dim H_n$, then $L(H) = \lim L(H_n)$.

Proof. This is Corollary 22 in [6].

Proposition 2.10. (i) *The restrictions*

$$L: \Sigma_m(G) \to \Sigma_L(\mathfrak{g}) \quad and \quad \dim: \Sigma_m(G) \to \mathbb{N}_G$$

are continuous.

(ii) The function

$$C: \mathcal{H}(\mathfrak{g}) \to \mathcal{H}(G)$$

is continuous.

Proof. (i) follows from Lemma 2.9 and 2.8.

(ii) If $\mathfrak{h} = \lim \mathfrak{h}_n$ in $\mathcal{H}(\mathfrak{g})$, then from [6] we know that there is a sequence $Y_n \to 0$ such that $\mathfrak{h}_n = e^{\operatorname{ad} Y_n}\mathfrak{h}$. If $a_n = \exp Y_n$ then $a_n \to \mathbf{1}$ and $C(\mathfrak{h}_n) = C(\operatorname{Ad}(a_n)\mathfrak{h}) = a_n C(\mathfrak{h}) a_n^{-1}$ by 1.2(ii). Thus $C(\mathfrak{h}) = \lim C(\mathfrak{h}_n)$ as asserted.

Proposition 2.11. (i) Let \mathfrak{h} be a near-Cartan algebra. Then the following are equivalent

- (1) \mathfrak{h} is a Cartan algebra
- (2) $\mathfrak{h} \cap \operatorname{reg} \mathfrak{g} \neq \emptyset$.
- (3) $\overline{\mathfrak{h} \cap \operatorname{reg} \mathfrak{g}} = \mathfrak{h}$.

(ii) Suppose that G is connected and let H be a near-Cartan group. Then the following are equivalent:

(1) H is a Cartan group.

(2)
$$H \cap \operatorname{Reg}(G) \neq \emptyset$$
.

(3) $H \subseteq \overline{H \cap \operatorname{Reg} G}$.

Proof. (i) If \mathfrak{h} is a Cartan algebra, then the set of regular elements of \mathfrak{g} is dense in \mathfrak{h} . So $(1) \Rightarrow (3)$. Next $(3) \Rightarrow (2)$ is trivial. Now we show $(2) \Rightarrow (1)$: For any $X \in \mathfrak{h}$ we have $\mathfrak{h} \subseteq \mathfrak{g}^0(\operatorname{ad} X)$ since \mathfrak{h} is nilpotent by 1.9(ii). If now X is regular, then $\dim \mathfrak{g}^1(\operatorname{ad} X) = \operatorname{rank} \mathfrak{g} = \dim \mathfrak{h}$ in view of 1.9(i). Thus $\mathfrak{h} = \mathfrak{g}^1(\operatorname{ad} X)$ follows and so \mathfrak{h} is a Cartan algebra.

(ii) If H is a Cartan group, then Proposition 1.6 proves $(1) \Rightarrow (3)$. But $(3) \Rightarrow (2)$ is trivial. Next we show that $(2) \Rightarrow (1)$. By the definition of a near-Cartan group we have $H = \lim H_n$ with $H_n = C(\mathfrak{h}_n)$. If $g \in H$ then $g = \lim g_n$ with $g_n \in C(\mathfrak{h}_n)$. We may assume that g_n is regular by 1.6. Then $\mathfrak{g}^1(\operatorname{Ad}(g_n)) = \mathfrak{h}_n$. By 1.3 there is a sequence $w_j \to \mathbf{1}$ such that we have $\mathfrak{g}^1(\operatorname{Ad}(g_{n_j})) \subseteq \mathfrak{g}^1(\operatorname{Ad}(w_j g w_j^{-1}))$ for a suitable sequence n_j of natural numbers going to infinity. Since the g_n are regular, $\mathfrak{g}^1(\operatorname{Ad}(g_{n_j})) = \mathfrak{h}_{n_j}$.

Now suppose that g is regular. Then $\dim \mathfrak{g}^1(\operatorname{Ad}(w_j g w_j^{-1})) = \operatorname{rank} \mathfrak{g} = \dim \mathfrak{h}_{n_j}$, and thus we have $\mathfrak{h}_{n_j} = \mathfrak{g}^1(\operatorname{Ad}(w_j g w_j^{-1})) = w_j \mathfrak{g}^1(\operatorname{Ad}(g)) w_j^{-1}$. Now $\mathfrak{h} = \lim \mathfrak{h}_{n_j}$ on the one hand and $\mathfrak{g}^1(\operatorname{Ad}(g)) = \lim w_j \mathfrak{g}^1(\operatorname{Ad}(g)) w_j^{-1}$ on the other. Thus $\mathfrak{h} = \mathfrak{g}^1(\operatorname{Ad}(g))$ is a Cartan algebra and $g \in C(\mathfrak{h})$ by 1.2(5). But now $C(\mathfrak{h}) = \lim C(\mathfrak{h}_n) = H$ by 2.10(ii). In particular, H is a Cartan group.

3. The exponential function and near-Cartan groups

Let exp: $\mathfrak{g} \to G$ denote the exponential function of a Lie group. For $X \in \mathfrak{g}$ we choose the abbreviation

$$\Omega(X) = \operatorname{Spec} \operatorname{ad} X \cap 2\pi i \mathbb{N} \subseteq \mathbb{C}.$$

We note that for $X \in \mathfrak{g}$ we have

$$\ker d \exp X = \bigoplus_{\lambda \in \Omega(X)} \ker \left((\operatorname{ad} X)^2 + |\lambda|^2 \right).$$

(See e.g. [5,6].) Then the set in which the exponential function is singular is

$$S(\mathfrak{g}) = \mathfrak{g} \setminus \operatorname{reg} \exp \{ \{ X \in \mathfrak{g} : \Omega(X) \neq \{ 0 \} \}.$$

This set is invariant under $Aut(\mathfrak{g})$. As an abbreviation we write $sing(\mathfrak{g}) = \mathfrak{g} \setminus reg \mathfrak{g}$.

Lemma 3.1. Let H be a near-Cartan group in a Lie group and assume $X \in$ reg exp, exp $X \in H$. Then $X \in \mathfrak{h}$.

Proof. By the definition of a near-Cartan group we find a sequence of Cartan groups H_n converging to H in $\overline{\mathcal{H}(G)}$. Since $H_n \cap \operatorname{Reg} G$ is dense in $G_0 \cap H_n$ by 2.11, and by the definition of the topology in $\Sigma(G)$, we find a sequence of regular elements $g_n \in G_0 \cap H_n$ converging to $\exp X$. Since the exponential

function is regular at X, there is an open neighborhood U of X in \mathfrak{g} and an open neighborhood V of $\exp X$ in G such that the restriction $\exp |U:U \to G$ corestricts to a diffeomorphism $\varepsilon: U \to V$. We may assume that $g_n \in V$. Set $X_n = \varepsilon^{-1}(g_n)$. Then $\lim X_n = \lim \varepsilon^{-1}(g_n) = \varepsilon^{-1}(\exp X) = \varepsilon^{-1}(\varepsilon(X)) = X$. Also, $\exp X_n = \varepsilon(X_n) = \varepsilon(\varepsilon^{-1}(g_n)) = g_n$. Since $g_n \in \operatorname{Reg} G$ we know that $X_n \in \operatorname{reg} \exp \mathfrak{g} \cap \operatorname{reg} \mathfrak{g}$ by 1.4. Then $\mathfrak{g}^0(\operatorname{ad} X_n) = \mathfrak{g}^1(\operatorname{Ad}(g_n)) = \mathfrak{h}_n$ by 1.4. Thus $X_n \in \mathfrak{h}_n$. From 2.10(i) we infer $\mathfrak{h} = \lim \mathfrak{h}_n$. But then $X = \lim X_n$ and $X_n \in \mathfrak{h}_n$ show $X \in \mathfrak{h}$.

It is interesting to observe that, in the preceding proof, the hypothesis "exp is regular at X" cannot be replaced by the weaker hypothesis "exp \mathfrak{g} is a neighborhood of exp X". Using this hypothesis we could still find elements $X_n \in \operatorname{reg} \exp \cap \operatorname{reg} \mathfrak{g} \cap \mathfrak{h}_n$ with $\exp X_n = g_n$. But we could not conclude that $X = \lim X_n$. The weaker conclusion that $X' = \lim X_{n(j)}$ for some sequence $n(j) \to \infty$ of natural numbers would suffice for the conclusion that we could find an $X' \in \mathfrak{h}$ with $\exp X = \exp X'$. Thus the modification of the proof of 3.1 which we have just suggested yields the following obervation:

Remark 3.2. Assume that H is a Cartan subgroup and $\exp X \in H$ and assume that there is a bounded subset B in \mathfrak{g} such that $\exp B$ is a neighborhood of $\exp X$. Then there is an $X' \in \mathfrak{h}$ with $\exp X = \exp X'$.

Lemma 3.3. Let G be a Lie group and H a near-Cartan group with Lie algebra \mathfrak{h} . If H is not a Cartan group, then $\exp^{-1} H \subseteq S(\mathfrak{g}) \cup \operatorname{sing}(\mathfrak{g})$.

Proof. Suppose that $\exp X \in H$. Since H is not a Cartan group, then $\exp X \in H$ cannot be regular by 2.11. Hence $X \notin \operatorname{reg}(\mathfrak{g}) \cap \operatorname{reg} \exp$ by 1.4.

Theorem 3.4. Let G be a Lie group and H a near-Cartan group with Lie algebra \mathfrak{h} . Then

$$\exp^{-1} H \subseteq \mathfrak{h} \cup S(\mathfrak{g}).$$

If H is not a Cartan subgroup then

 $\exp^{-1} H \subseteq (\mathfrak{h} \cup S(\mathfrak{g})) \cap (\operatorname{sing}(\mathfrak{g}) \cup S(\mathfrak{g})) = (\mathfrak{h} \cap \operatorname{sing}(\mathfrak{g})) \cup S(\mathfrak{g}).$

Proof. This follows at once from Lemmas 3.1 and 3.3.

References

- [1] Bourbaki, N., "Intégration", Chapitres 7 et 8, Hermann, Paris, 1963.
- [2] Bourbaki, N., "Groupes et algèbres de Lie", Chapitres 2 et 3, Hermann Paris, 1972.
- [3] Bourbaki, N., "Groupes et algèbres de Lie", Chapitres 7 et 8, Hermann Paris, 1975.
- [4] Hochschild, G. P., "Basic Theory of Algebraic Groups and Lie Algebras", Springer Verl. New York etc., 1981.

- [5] Hofmann, K. H., A memo on the singularities of the exponential function, Seminar Notes 1990.
- [6] —, A memo on the exponential function and regular points, Archiv der Mathematik **92** (1992), 24–37.
- [7] Hofmann, K. H., and A. Mukherjea, On the density of the image of the exponential function, Math. Ann. **234** (1978), 263–273.
- [8] Neeb, K.-H., A memo on Cartan subgroups and regular elements, Seminar Report Technische Hochschule Darmstadt 1992.
- [9] —, Weyl groups of disconnected Lie groups, Seminar Sophus Lie 2 (1992), 153–157.

Fachbereich Mathematik Technische Hochschule Darmstadt Schlossgartenstr. 7 W-6101 Darmstadt, Germany hofmann@mathematik.th-darmstadt.de

Received July 10, 1992 and in final form October 5, 1992