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Near-Cartan algebras and groups

Karl H. Hofmann

0. Preliminary results on nilpotent algebras

We let h denote a real or complex nilpotent Lie algebra and V a finite
dimensional complex h -module. For X ∈ h let XV = (v 7→ X·v):V → V . We
set hC = h if the ground field K is C and let hC denote the complexification of
h if K = R . Recall that a linear form λ: hC → C is a weight if there is a nonzero
v ∈ V such that for some natural number n we have (XV −λ(X)·1V )nv = 0 for
all X ∈ h . The element v is called a weight-vector for λ , and V λ is the set of
all weight vectors for λ . We let Vλ = {v ∈ V : (∀X ∈ h)X·v = λ(X)·v} .
Since Vλ 6= {0} we have a 0 6= v ∈ Vλ so that λ([X,Y ])·v = [X,Y ]·v =
XV YV (v)− YVXV (v) = λ(X)λ(Y )v − λ(Y )λ(X)v = 0. Hence λ([h, h]) = {0} .

We let Λ denote the (finite!) set of nonzero weights and V = V 0 ⊕⊕
λ∈Λ V

λ the weight decomposition of V . We set Λ⊥ = {X ∈ h : (∀λ ∈
Λ)λ(X) = 0} .

Lemma 0.1. Λ⊥ = {X ∈ h : (∃n)Xn
V = 0} = {X ∈ h : SpecXV = {0}} =⋂

λ∈Λ kerλ|h . In particular, Λ⊥ contains [h, h] and thus is an ideal of h .

Proof. We have X ∈ Λ⊥ iff for all λ ∈ Λ and all v ∈ V λ we have Xn
V (v) = 0

for some n iff Xn
V = 0 for some n since V =

⊕
λ∈Λ V

λ . This is the case
iff SpecXV = {0} . The remainder is immediate from the definition and the
preceding remarks.

Suppose that α is an automorphism of hC and ϕ ∈ Hom(V, V ) is such
that ϕ(X·v) = α(X)·ϕ(v). If λ is a weight, then for v ∈ V λ we have

0 = ϕ
(
(XV − λ(X)·1V )nv

)
= (α(X)V − λ(X)·1V )nϕ(v)

= (α(X)V − (λ ◦ α−1)
(
α(X)

)
·1V )nϕ(v).

Thus λ ◦ α ∈ Λ and ϕ(V λ) = V λ◦α
−1

. Every such α leaves Λ and thus Λ⊥

invariant and therefore induces an automorphism αΛ of hC/Λ⊥ via αΛ(X +
Λ⊥) = α(X) + Λ⊥ .

Lemma 0.2. If α and ϕ are as in the preceding paragraph, then the following
statements are equivalent:

(1) (∀λ ∈ Λ)λ ◦ α = λ .

(2) αΛ = 1 (on hC/Λ⊥ ).
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(3) αΛ − 1 is nilpotent (on hC/Λ⊥ ).

(4) hC = h1
C(α) + Λ⊥ .

Proof. (1)⇔(2): Let Γ denote the subgroup generated by α in Aut(hC).
The Γ-module hC/Λ⊥ is dual to the Γ-module spanCΛ in h∗C . Now (1) means
that spanCΛ is the trivial Γ-module which is the same as saying that hC/Λ⊥ is
the trivial module which is (2).

(2)⇒(3) clear!

(3)⇒(2): We define the permutation α∗ of Λ by α∗(λ) = λ ◦ α−1 .
It extends to E = spanCΛ. Since Γ∗ is a finite subgroup of Aut(E), the
automorphism α∗ is semisimple on E . Since αΛ − 1 is nilpotent by (3), then
α∗−1 is nilpotent on E . Since α∗−1 is also semisimple, we conclude α∗−1 = 0.

(3)⇔(4) is basic linear algebra.

Definition 0.3. A Cartan subalgebra h of a Lie algebra g is a nilpotent
subalgebra which is its own normalizer.

Let g denote a Lie algebra and gC its complexification if g is real.
Otherwise let gC = g . If h is a Cartan algebra of g , then we can apply the
preceding with V = gC and the adjoint action. In particular, Λ is now the
set of all roots, including the zero-root. We observe that X ∈ h ∩ Λ⊥ iff adX
is nilpotent. If n is the nilradical of g , then h+n

n
is a Cartan algebra of the

reductive algebra g/n , and since ad ξ for ξ ∈ g/n is semisimple on g/n we
conclude h ∩ Λ⊥ ⊆ n . Thus h ∩ Λ⊥ ⊆ h ∩ n . Since X ∈ n implies that adX is
nilpotent we have

(1) h ∩ Λ⊥ = h ∩ n.

Each automorphism α of g extends uniquely to an automorphism of gC
which we shall again denote by α . Thus we have Aut g ⊆ Aut gC .

Definition 0.4. We define

Aut(g, h) = {α ∈ Aut g : α(h) = h} ⊆ Aut gC.

The function π: Aut(g, h)→ S(Λ) into the group of all permutations of Λ given
by π(α)(λ) = λ ◦ α−1 is a representation. We set

CAut(g, h) = kerπ, BW(g, h) = imπ.

We call BW(g, h) the big Weyl group of g w. r. t. h .

If V if a complex vector space and α an automorphism then we set
V λ(α) = {v ∈ V : (∃n) (α− λ·1V )n(v) = 0} .

Proposition 0.5. For an element α ∈ Aut(g, h) the following statements are
equivalent:

(1) α ∈ CAut(g, h) .

(2) αΛ = 1 (on hC/Λ⊥ ).
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(3) αΛ − 1 is nilpotent (on hC/Λ⊥ ).

(4) hC ⊆ Λ⊥ + g1
C(α) .

(5) h ⊆ g1(α) mod n where n is the nilradical of g .

Proof. The equivalence of (1)–(4) follows from Lemma 0.2.

(4)⇒(5): We know h ∩ Λ⊥ = h ∩ n . Thus Λ⊥ ⊆ nC . From this and
g1
C(α) ∩ g = g1(α) the assertion follows.

(5)⇒(3): If hC is contained in g1
C(α) + nC , then α − 1 is nilpotent on

(hC + nC)/nC ∼= hC/(hC ∩ nC) = hC/Λ⊥ .

Lemma 0.6. The nilpotent group ead h is normal in Aut(g, h) and is contained
in CAut(g, h) .

Proof. Trivially eadXh = h for X ∈ h . If α ∈ Aut(g, h) then X ∈ h implies

α(X) ∈ h , and thus αeadXα−1 = eα adXα−1

= eadα(X) is in ead h . Further,
eadX |h is unipotent for X ∈ h . Hence (eadX)Λ− 1 is nilpotent on hC and thus
(3) of 0.5 is satisfied. Thus eadX ∈ CAut(g, h).

Lemma 0.7. For β ∈ CAut(g, h) the following statements are equivalent:

(a) β|(h ∩ n) is unipotent.

(b) h ∩ n ⊆ g1(β) .

(c) h ⊆ g1(β).

Proof. The equivalence of (a) and (b) follows from the definitions also h ⊆
g1(β) + (h ∩ n). Thus (b) implies (c), and trivially, (c)⇒(b).

For the next lemma we need some preparation.

Lemma 0.8. (Karl-Hermann Neeb) Let α be a unipotent automorphism of
a finite dimensional vector space V and ν an endomorphism with its additive
Jordan decomposition ν = νs + νn . Let a denote a subalgebra of gl(V ) which is
nilpotent on V . We assume the following hypotheses:

(i) ανs = νsα .

(ii) αaα−1 = a .

(iii) νn ∈ a . Write β = αeν with its multiplicative Jordan decomposition
β = βsβu .

Then βs = eνs and βu = αeνn .

Proof. From (i) we know that eνs commutes with α , and since νs and
νn commute anyhow. Hence eνs commutes with αeνn It therefore remains to
show that αeνn is unipotent. In the group Gl(V ) we consider the subgroup
U = 〈ea, α〉 . The subgroups ea and 〈α〉 are unipotent, and by (ii) the former
is normal in U . Hence U is unipotent by [4], Proposition 2.2 on p. 64. Since
αeνn ∈ U by (iii), the assertion follows.

Lemma 0.9. Suppose α ∈ CAut(g, h) and let n denote the nilradical of g .
Then there is a zero neighborhood U such that for any regular X ∈ h∩ g1(α) we
have

(2) h = g1(αeadX) + (Λ⊥ ∩ h) = g1(αeadX) + (n ∩ h).
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Proof. (Karl-Hermann Neeb) The second equality in (2) is a consequence
of (1). For any X ∈ h , we define the automorphism β = αeadX ∈ CAut(g, h)
and set m = Λ⊥ ∩ hC = nC ∩ hC . By 0.5(4) and 0.6 we have hC ⊆ g1

C(β) + m . In
particular, taking X = 0 we have hC = (g1

C(α) ∩ hC) + m .

In order to obtain the reverse containment for a suitable X we must
show g1

C(β) ⊆ hC .

We consider the generalized eigenspace decomposition

gC =
⊕

µ∈Spec(α)

gµC(α).

Since [g1
C(α), gµC(α)] ⊆ gµC(α), all gµC(α) are g1

C(α)-modules. Thus, if we now
take an arbitrary X ∈ g1

C(α) ∩ hC and set β = αeadX , then

β
(
gµC(α)

)
⊆ gµC(α).

Thus
g1
C(β) =

⊕

µ∈Specα

(
gµC(α)

)1
(β).

If µ 6= 1 and if X is small enough, then 1 is not in the spectrum of β|
(
gµC(α)

)

and thus
(
gµC(α)

)1
(β) = {0} . Hence there is a zero neighborhood U in h such

that X ∈ U ∩ g1
C(α) ∩ hC implies g1

C(β) ⊆ g1
C(α).

Now we consider the vector space

ã = C·X + (g1
C(α) ∩ hC ∩ nC).

Since X ∈ g1
C(α) ∩ hC and nC is an ideal, ã is a subalgebra of hC . Note that

ad(g1
C(α) ∩ hC ∩ nC) is nilpotent since nC is the nilradial. The nilpotent part

(ad ã)n = C·(adX)n + (g1
C(α) ∩ hC ∩ nC)

acts nilpotently on gC . We define V = g1
C(α) and set a = (ad ã)n|V ⊆ gl(V ).

We claim that a is an algebra. Now for any derivation D of a Lie algebra and any
of its elements x one has [D, adx] = ad(Dx). But (adX)n is a derivation since
Der(gC) is scindable in gl(gC) as the Lie algebra of the algebraic group Aut(gC).
Hence [(adX)n, ad(g1

C(α) ∩ hC ∩ nC)] = ad
(
(adX)n(ad(g1

C(α) ∩ hC ∩ nC))
)
. But

(adX)s|hC = 0 since hC is nilpotent, and thus (adX)n|hC = (adX)|hC . Thus
(adX)n(ad(g1

C(α) ∩ hC ∩ nC) ⊆ ad
(
g1
C(α) ∩ hC ∩ nC

)
⊆ ã . This proves that a is

an algebra.

We shall verify the hypotheses of Lemma 0.8 with α|V in place of α
and adX|V in place of ν . For this purpose we have to check hypotheses (i), (ii)
and (iii). Since X ∈ ã , condition (iii) is satisfied. The operator (adX)s acts by
scalar multiplication on each root space gλC , and α leaves each of them invariant
because of α ∈ CAut(g, h). Hence [α, (adX)s] = 0 and thus (i) follows. It
remains to verify that Y = r·X + Z with Z ∈ g1

C(α) ∩ hC ∩ nC implies

(∗) (α|V )(adY )n|V (α|V )−1 ∈ a.
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Now α(adY )nα
−1 = (α(adY )α−1)n =

(
adα(Y )

)
n

. The element α(X)−X is

contained in g1
C(α) ∩ hC since g1

C(α) and hC are invariant under α . Further,
α − id induces on hC/(hC ∩ nC) the zero map by Proposition 0.5(2). Thus
α(X)−X ∈ nC . Thus

α(X)−X ∈ g1
C(α) ∩ hC ∩ nC,

whence (
adα(X)

)
n
∈
(

adX + g1
C(α) ∩ hC ∩ nC

)
n
,

and thus
(α|V )

(
ad(r·X)

)
n
|V (α|V )−1 ∈ a.

Also α(Z) ∈ g1
C(α)∩ hC ∩ nC since g1

C(α), hC and nC are all invariant under α .
Hence

(α|V )(adZ)n|V (α|V )−1 = ad
(
α(Z)

)
|V ∈ a,

too. Thus (∗) is proven and condition (iii) of Lemma 0.8 is satisfied. Lemma
0.8 then applies and shows that on V = g1

C(α) the unipotent factor βu of β is
αe(adX)n and the semisimple factor is e(adX)s . Thus the generalized eigenspace
decomposition of β|V is the eigenspace decomposition of e(adX)s |V .

If we finally assume that X is regular, then

g1
C(β) = g1

C(α) ∩ (gC)1(e(adX)s) = g1
C(α) ∩ hC ⊆ hC

which is what we had to show.

1. Definitions

We let H(g) denote the set of all Cartan algebras.

The group Aut(g) acts on H(g). Let Inn(g) = 〈eadX〉 denote the
subgroup of inner automorphisms. If the ground field is algebraically closed, then
all Cartan algebras are conjugate, i.e., Inn(g) is transitive on H(g). Over the
reals, H(g) decomposes into finitely many Inn(g)-orbits. The Cartan algebras
have the same dimension, called the rank rank g of g .

An element X ∈ g is called regular if the nilspace g0(adX) has the
smallest possible dimension. If this is the case then g0(adX) is a Cartan algebra,
and every Cartan algebra is so obtained. The set reg g of regular elements is
open dense in g , and from what we set it follows that

reg(g) ⊆
⋃
H(g)

.

Cartan subgroups of a connected real or complex Lie group G are harder
to define than Cartan algebras [8]. A necessary condition is that h = L(H) is
a Cartan algebra. Let Λ ⊆ h∗C the set of nonzero roots on the complexification
hC of h . Let N(h) = {g ∈ G : Ad(g)h = h} denote the normalizer of H0 or,
equivalently, h in G . Then N(h) acts on Λ on the right via (λ, g) 7→ λ ◦Ad(g).
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Definition 1.1.a. We set

C(h) = {g ∈ N(h) : λ ◦Ad(g) = λ for all λ ∈ Λ}.

We say that a subgroup H of a connected real or complex Lie group G
is a Cartan group if L(H) is a Cartan algebra and H = C

(
L(H)

)
. We let H(G)

denote the set of all Cartan groups.

One notes at once that C(h) is normal in N(h). Then N(h)/C(h) is a
well defined discrete group

Definition 1.1.b. We say that the (discrete) group W(G, h)
def
= N(h)/C(h)

is the Weyl group of G with respect to h .

We note that Ad:N(H) → Aut(h, g) is a homomorphism with kernel
N(H) ∩ Z(G). We observe that

C(h) = Ad−1
(

CAut(g, h)
)
.

As a consequence we record:

Proposition 1.2. (i) Let G be any Lie group and h a Cartan algebra of g .
For an element g ∈ N(h) the following statments are equivalent:

(1) g ∈ C(h) .

(2) Ad(g)Λ = 1 (on hC/Λ⊥ ).

(3) Ad(g)Λ − 1 is nilpotent (on hC/Λ⊥ ).

(4) hC ⊆ Λ⊥ + g1
C
(

Ad(g)
)

.

(5) h ⊆ g1
(

Ad(g)
)

+ (n ∩ h) where n is the nilradical of g .

(ii) For each a ∈ G we have aC(h)a−1 = C
(

Ad(a)h)
)

.

Proof. (i) follows from the preceding remark and from Proposition 0.5.

(ii) If ϕ, ψ ∈ Aut(g) then ϕ
(
g1(ψ)

)
= g1(ϕψϕ−1). Now let ϕ = Ad(a)

and ψ = Ad(g). Then Ad(a)g1
(

Ad(g)
)

= g1
(

Ad(aga−1)
)

. Now (5) above is

equivalent to Ad(a)h ⊆ g1
(

Ad(aga−1)
)

+ (n∩Ad(a)h) since n is an ideal. Thus
the assertion aC(h)a−1 = C(Ad(a)h) follows from (i).

Lemma 1.3. For each g ∈ G and each identity neighborhood W of G there
is a neighborhood V of g such that for v ∈ V there is a w ∈ W such that
g1(v) ⊆ Ad(w)g1(Ad g) = g1

(
Ad(wgw−1)

)
.

Proof. [3], Ch. VII, §4, n
o

2, Prop.5.

In particular, dim g1(v) ≤ dim g1(g). An element g ∈ G is called regular
if v 7→ dim g1(Ad v):G → N0 is constant on a neighborhood of g . The set
Reg(G) of all regular elements is open and dense in G (see [3], Ch. VII, §1, n

o

4, Prop.1).

Let reg exp denote the set of all X ∈ g such that d exp(X) is invertible.
We have observed the following fact:
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Lemma 1.4. Suppose that G is a real Lie group and X ∈ g . Then expX ∈
Reg(G) if and only if X ∈ reg g ∩ reg exp . If this holds, then g1(Ad(expX)) =
g0(adX) .

Proof. See [6], Lemma 3.

In other words, we have

(3)
exp−1(RegG) = reg g ∩ reg exp,

exp(reg g ∩ reg exp) = RegG ∩ exp g.

If G is connected, then for every regular g the set g1(Ad g) is a Cartan algebra,
and every Cartan algebra is so obtained (see [3], Ch. VII, §4, n

o
4, Prop.8). In

particular, every regular element g is contained in N
(
g1(Ad(g))

)
. By 1.2(5)

we have in fact g ∈ C
(
g1(Ad(g))

)
. Thus in an arbitrary Lie group G , if

g ∈ G0 ∩ RegG , then h = g1
(

Ad(g)
)

is a Cartan algebra and by the preceding
we conclude that g ∈ C(h). As a consequence, we record

Proposition 1.5. If G is a Lie group then

G0 ∩ Reg(G) ⊆
⋃
H(G).

Proposition 1.6. (i) Let G a Lie group and h a Cartan algebra of g . Then
arbitrarily close to any point g ∈ C(h) there is an element g′ ∈ C(h) such that
(with the nilradical n of g)

h = g1(Ad(g′)) + (h ∩ n).

(ii) If g ∈ G0 , then arbitrarily close to g there are regular points g ′ ∈
C(h) such that

h = g1
(

Ad(g′)
)
.

In particular, Reg(G) ∩G0 ∩ C(h) is open and dense in G0 ∩ C(h) .

Proof. (i) Let g ∈ C(h). Recall that Ad(g)eadX = Ad(g expX). By Lemma
0.9 there are arbitrarily small elements X in h such that h = g1(Ad(g)eadX) +
(Λ⊥∩h) = g1

(
Ad(g exp(X))

)
+(h∩n) with the nilradical n of g (see also 0.5(5)).

Thus h = g1(Ad(g′)) + (h ∩ n) with g′ = g expX ∈ C(h) as close to g as we
wish. In particular, since G0 is open in G , if g ∈ G0 then we may also take
g′ ∈ G0 . Let us simplify notation by setting g = g′ and assume that

(4) h = g1(Ad(g)) + (h ∩ n).

By 1.4, given an identity neighborhood W in G , there is a neighorhood V of g
such that for v ∈ V there is a w ∈ W such that g1(wgw−1) ⊇ g1(v). Thus (4)
implies

Ad(w)h = g1(wgw−1) + (Ad(w)(h) ∩ n) ⊇ g1(v) + (Ad(w)(h) ∩ n)

In particular, dim g1(v) ≤ rank g .

(ii) If g ∈ G0 , then dim g1(Ad(v)) ≥ rank g (see [3], Ch. VII, §4, n
o

4,
Prop.8(i)). Hence v 7→ dim g1

(
Ad(v)

)
is locally constant around g and thus

g ∈ Reg(G). We have seen that h = g1
(

Ad(g)
)
.
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Example E1. (i) Let G = SO(3) and g = so(3) = span{ej : j ∈ Z/3Z} with
[ej , ej+1] = ej+2 .

e0 =




0 1 0
−1 0 0
0 0 0


 , e1 =




0 0 −1
0 0 0
1 0 0


 , e2 =




0 0 0
0 0 1
0 −1 0


 .

We consider h = R·e0 . Then

C(h) = exp h =








cos t sin t 0
− sin t cos t 0

0 0 1


 : t ∈ R



 .

N(h) = C(h) ∪ C(h)




1 0 0
0 −1 0
0 0 −1


 = C(h) ∪ C(h) exp(π·e2).

Here N(h) ⊆ Reg(G) = G \ {1} . Note W(G, h) ∼= Z(2). Also, if g = exp(π·e2),
then g1

(
Ad(g)

)
= R·e2 and h ∩ g1

(
Ad(g)

)
= {0} .

(ii) Let G = Sl(2,R) and g = sl(2,R), spanned by

h =

(
1 0
0 −1

)
, p =

(
0 1
0 0

)
, q =

(
0 0
1 0

)
.

Then [h, p] = 2p , [h, q] = −2q , [p, q] = h . Set u = p − q =

(
0 1
−1 0

)
and

h′ = p+ q . Then [ 1
2
·u, h] = h′ , [ 1

2
·u, h′] = −h . We take h = R·h . Then

C(h) = exp h ∪ − exp h =

{
±
(
et 0
0 e−t

)
: t ∈ R

}
.

N(h) = C(h) ∪ C(h) exp
π

2
·u.

We have N(h)\{1} ⊆ RegG∩exp g and W(G, h) ∼= Z(2). Also, if g = exp(π2 ·u),
then g1

(
Ad(g)

)
= R·u and h ∩ g1

(
Ad(g)

)
= {0} .

We construct an example which illustrates that the situation we consider
is rather general in the absence of connectivity.

Example E2. Let h be a nilpotent Lie algebra and ψ: h → gl(v) a represen-

tation over C . Then we construct on g
def
= h⊕ v a bracket

[(X1, Y1), (X2, Y2)] =
(
[X1, X2], ψ(X1)(Y2)− ψ(X2)(Y1)

)
,

making g into a solvable Lie algebra with the abelian ideal v .

Let us assume that ψ(h)(Y ) = {0} implies Y = 0. Then h is a Cartan
subalgebra. We write

X·Y = ψ(X)(Y ), X ∈ h, Y ∈ v.
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Then for X ∈ h we have (adX)|v = (Y 7→ X·Y ). In particular, if we set
Xψ(Y ) = X·Y = ψ(X)(Y ), then λ: h → C is a root iff the nilspace vλ of
Xψ − λ(X)·1 is nonzero, i.e., if λ is a weight of ψ .

Now any automorphism in Aut(g, h) is of the form α×β with α ∈ Aut(h)
and β ∈ Gl(v) such that ψ

(
α(X)

)(
β(Y )

)
= β(ψ(X)Y ), i.e.,

Aut(g, h) = {(α, β) ∈ Aut(h)×Gl(v) : ψ ◦ (α⊕ β) = β ◦ ψ}
= {(α, β) ∈ Aut(h)×Gl(v) : (∀(X,Y ) ∈ h⊕ v)α(X)·β(Y ) = β(X·Y )} .

We suppose now that an arbitrary nilpotent Lie algebra h is given and
that Λ is any finite set of nonzero vectors in (h′)⊥ ⊆ h∗ . We set

Aut(Λ) = {ϕ ∈ Gl
(
span(Λ)

)
: ϕ(Λ) = Λ)}

and consider the finite orbit space J = Λ/Aut(Λ) and the orbit map ρ: Λ→ J .
For each j ∈ J we fix an arbitrary nilpotent representation πj: h → gl(vj) of h
(e.g., the zero representation!) and define v =

⊕
λ∈Λ vρ(λ) . We set

ψ(X)(Y ) = X·
(⊕

λ∈Λ

Yλ

)
=

(⊕

λ∈Λ

(λ(X)·1 + πρ(λ)(X))(Yλ)

)
.

Let α ∈ Aut(h) with α∗|Λ ∈ Aut(Λ). Notice that for an abelian h ,
every element of Aut(Λ) is so obtained by the definition of Aut(Λ), and if
span(Λ) = h∗ , then this representation is unique. Now we define β: v → v
by

β

(⊕

λ∈Λ

Yλ

)
=
⊕

λ∈Λ

Yα∗(λ).

Now
α(X)·β(Y ) =

⊕

λ∈Λ

(
λ
(
α(X)

)
·1 + πρ(λ)(X)

)
(Yα∗(λ))

and
β(X·Y ) =

⊕

λ∈Λ

(
(α∗(λ)(X)·1 + πρ(α∗(λ))(X)

)
(Yα∗(λ)).

We see that α⊕ β ∈ Aut(g, h). In particular, if h is abelian, then

BW(g, h) = Aut(Λ).

If Λ is any finite generating set of a real Hilbert space h with scalar
product (·|·), we can take h as an abelian Lie algebra with h∗ = h (writing
λ(X) = (λ|X)) and for πj the one dimensional zero representation. Then we
see that

every finite group Γ which is isomorphic to a group Aut(Λ) for a finite
set Λ of vectors spanning a real vector space, can occur as a big Weyl group of
a Lie algebra g with respect to some Cartan subgroup h .
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If G0 is the simply connected Lie group with Lie algebra g , then we may
construct the semidirect product G0×γ Aut(Λ) with the action γ induced by
the action of Aut(Λ) on g = h⊕ v . Thus Aut(Λ) is realized as the Weyl group
of a Lie group G with respect to a Cartan algebra h of g .

Every family (βλ)λ∈Λ of intertwining operators βλ: vρ(λ) → vρ(λ) for the
representation πρ(λ) yields an automorphism

(X,Y ) 7→ (X,
⊕

λ∈Λ

βλ(Yλ)) in CAut(g, h).

In particular, if h = C = h∗ , Λ = {1} , π: h → gl(v), π(z)(v) = z·v ,
then g is almost abelian, Aut(Λ) = {1} , and

CAut(g, h) = {1} ×Gl(v) ∼= Gl(v).

For the definitive information on this issue see Neeb [9].

The space of closed subgroups. In [6] we considered for a real Lie group
G with Lie algebra g the compact Hausdorff spaces Σ(G) of all closed subgroups
of G and Σ(g) of all additive closed subgroups of g . We note H(g) ⊆ Σ(g) and
H(G) ⊆ Σ(G).

Definition 1.8. A subalgebra h of a real or complex Lie algebra g is said to
be a near-Cartan algebra if h ∈ H(g). A subgroup H of a real or complex Lie
group is called a near-Cartan group of G if H ∈ H(G).

Proposition 1.9. Let g be a a real or complex Lie algebra and h a near-
Cartan subalgebra. Then

(i) dim h = rank(g)

(ii) h is nilpotent and its class of nilpotency is dominated by that of the
Cartan algebras of g .

Proof. (i) The subspace in Σ(g) of all vector spaces of dimension dim(rank g)
is a compact manifold containing H(g). Then H(g) is contained in this manifold.

(ii) It was proved in [6], Prop. 24 that the space of closed nilpotent
subgroups of class ≤ k in Σ(G) is closed for all k .

Proposition 1.10. For each real or complex Lie algebra g and each real or
complex Lie group G we have

g =
⋃
H(g),

G =
⋃
H(G).

Proof. Let X ∈ g . There is a sequence Xn ∈ reg g with X = limXn .
The sequence g0(adXn) ∈ H(g) has a subsequence in the compact space H(g)
converging to an element h . Then X ∈ h by the definition of the topology of
Σ(g). The proof of the second part is similar.
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Proposition 1.11. Each near-Cartan subgroup H of a Lie group G contains
the center Z of G .

Proof. By definition, H = limHn in H(G) with a sequence of Cartan
subgroups Hn . Now Z ⊆ C(hn) = Hn for all n ∈ N . The assertion Z ⊆
limHn = H follows.

It is very instructive to consider, in this context, the examples of the
universal covering group of Sl(2,R) and that of the group of motions of the
euclidean plane. (For the latter example, see e.g. [6], Example 23.)

Lemma 1.12. Let f :G→ G/Z the quotient homomorphism of a locally com-
pact group G modulo a closed normal subgroup Z . Let ΣZ denote the subspace
in Σ(G) of all closed subgroups H of G with Z ⊆ H . Then the function

H 7→ H/Z : ΣZ(G)→ Σ(G/Z)

is a homeomorphism.

Proof. The function is clearly a bijection, and domain and range are compact
Hausdorff spaces. It therefore suffices to establish its continuity. Let An be a net
of closed subgroups of G converging to A . This means that for every compact
subspace C of G and every identity neighborhood U in G eventually we have
An ∩C ⊆ A∩CU and A∩C ⊆ An ∩CU (see [1], Chap. VIII, §5, no 6, p. 188).
Now let K be a compact subspace of G/Z and V an identity neighborhood in
G/Z . Then there is a compact subspace C of G such that K = f(C). We claim
that f(An)∩K = f(An)∩ f(C) = f(An ∩C): indeed the last term is contained
in the preceding, and if f(c) = f(an) with c ∈ C and an ∈ An then there is
a z ∈ Z with c = anz . But Z ⊆ H implies anz ∈ An and so c ∈ An ∩ C .
Let U = f−1(V ). Then by the same argument, f(A) ∩ KV = f(A ∩ CU).
Hence f(An) ∩ K ⊆ f(A) ∩ KV iff f(An ∩ C) ⊆ f(A ∩ CU) and this is
eventually the case by hypothesis on An . In the same vein we see that eventually
f(A) ∩K ⊆ f(An) ∩KV . Thus lim f(An) = f(A) which we had to show.

If g is a Lie algebra, then the group int(g) = 〈ead g〉 of inner automor-
phisms is an analytic subgroup of Aut(g) whose Lie algebra is ad g ⊆ Der(g).
If one endows int(g) with its intrinsic Lie group structure then it is isomorphic
to G/Z where G is any of the connected Lie groups with L(G) ∼= g and Z is
its center. In a sense, therefore, the following proposition says that the Cartan
subgroups of a connected Lie group are determined by its Lie algebra g alone.

Proposition 1.13. The quotient homomorphism f :G→ G/Z maps

(i) H(G) bijectively onto H(G/Z) , and

(ii) H(G) bijectively onto H(G/Z) .

Proof. Every Cartan algebra h in g contains the center z and h/z is a Cartan
algebra of g/z . Also, every Cartan algebra of g/z is of this form (see [3], Chap.
VII, §2, no 2, p. 21). Let H = C(h) be a Cartan group of G . This means
that h ∈ H implies Ad(h) ∈ CAut(g, h). Then Ad

(
f(h)

)
∈ CAut(g/z, h/z) as

is readily verified. Conversely, if g ∈ G is such that Ad
(
f(g)

)
∈ CAut(g/z, g/z)
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then also Ad(g) ∈ CAut(g, h), i.e., g ∈ C(h) = H . This proves the first part of
the assertion concerning (i).

Now we turn to part (ii). The quotient map f :G → G/Z induces a
homeomorphism ϕ: ΣZ(G) → Σ(G/Z), ϕ(H) = H/Z by Lemma 1.12. Now
H(G) ⊆ ΣZ by Proposition 1.11. By the first part of the proof, ϕ maps H(G)
bijectively onto H(G/Z). Then ϕ maps H(G) homeomorphically onto H(G/Z) .

2. More on near-Cartan groups

Definition 2.1. Let g denote a real Lie algebra. A subalgebra m is said to be
a subalgebra of maximal rank if every Cartan subalgebra of m is a Cartan algebra
of g . The set of maximal rank subalgebras of g is denoted by M(g) ⊆ Σ(g).
A closed subgroup M of a Lie group with Lie algebra g is called a subgroup
of maximal rank if m = L(M) is a maximal rank subalgebra of g . The set of
maximal rank subgroups of G is denoted by M(G) ⊆ Σ(G).

Every Cartan algebra is a maximal rank subalgebra of g and every
Cartan subgroup of G is a maximal rank subgroup.

Lemma 2.2. Let B be any open neighborhood of 0 in the Lie algebra g of
a Lie group G such that exp |B:B → U is a diffeomorphism onto an open
identity neighborhood of G . Let M be a maximal rank subgroup of G . Let

S
def
= (exp |B)−1(U ∩M) . Then S = m ∩ B .

Proof. (i) If X ∈ m ∩ B , then expX ∈ M ∩ U and thus X ∈ S by the
definition of S . Thus m ∩ B ⊆ S .

(ii) In order to show that S ⊆ B ∩ m we must show that S ⊆ m .
Since M is closed then S is closed in B . It therefore suffices to find a dense
subset T ⊆ S with T ⊆ m . We let T = (exp |B)−1(RegM ∩ U). Since
Reg(M) is dense in M then T is dense in S . Now let X ∈ T . We must
show X ∈ m . Now m = expX ∈ Reg(M) and m1(Ad(m)|m) is a Cartan
algebra in m . Since M is a maximal rank subgroup, it is a Cartan algebra
of g . Hence g1

(
Ad(m)

)
⊇ m1(Ad(m)|m) is a Cartan algebra of g , equality

holds, and m is regular in G . Now Ad(m) = Ad(expX) = eadX . It follows
that (Ad(m) − 1)(X) = (

∑∞
j=1

1
j! (adX)j)X = 0. Thus X ∈ g1(Ad(m)) =

g1(Ad(m)|m) ⊆ m .

Proposition 2.3. Let H = limHn in M(G) and suppose that Hn ∈ M(G) .
Then L(H) = limL(Hn) .

Proof. Let C denote an open, relatively compact convex symmetric Campbell-
Hausdorff-neighborhood in g contained in a neighborhood B as is Lemma 2.2.

Then Sn
def
= (exp |C)−1(Hn ∩ expC) converges to S

def
= (exp |C)−1(H ∩ expC)

in the space of closed subsets of C . If Hn ∈ M(G), then Sn = C ∩ L(Hn) by
Lemma 2.2. Now dimHn = dimL(Hn) and dimH = dimS . If (n(j))j∈N is any
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subsequence such that L(HN(j)) converges to E in the compact space ΣL(g),
then C ∩ L(Hn(j)) converges to C ∩ E on one hand and to S on the other.
Hence S = C ∩ E . Thus E = R·(C ∩ E) does not depend on the choice of the
subsequence and E = limL(Hn). Now E is a vector subspace of g such that
C ∩E = (exp |C)−1(H ∩ expC). If we recall that for a closed subgroup H of G
we have L(H) = {X ∈ g : expR·X ⊆ H} we may conclude E = L(H).

We set Σm(G) = {H ∈ Σ(G) : dimH = m} .

Corollary 2.4. M(G) ∩ Σm(G) ⊂ Σm(G) .

Proof. Consequence of Proposition 2.3.

Now we apply this with m = rankG . Since H(G) ⊆ M(G) ∩ ΣrankG ,
Corollary 2.4 yields at once

Corollary 2.5. Every near-Cartan group has dimension rank(G) .

More precisely:

Theorem 2.6. The Lie algebra h = L(H) of a near-Cartan group H is a
near-Cartan algebra. The analytic subgroup H = exp h generated by a near-
Cartan algebra h is the identity component of a near-Cartan group.

Proof. (i) Let H ∈ H(G). Then there is a sequence Hn of Cartan groups with
H = limHn . Then L(H) = limL(Hn) by Proposition 2.3. Since L(Hn) ∈ H(g)
we conclude L(H) ∈ H(g).

(ii) Let h ∈ H(g). Then there is a sequence hn of Cartan algebras

with h = lim hn . The analytic groups Hn
def
= exp hn are closed (since hn is

an ideal in L(exp hn) and a Cartan algebra is its own normalizer!). Each Hn

is the identity component of the Cartan group C(hn) which is a maximal rank
group. Because of the compactness of H(G) there is a sequence (n(j))j∈N such
that H∗ = limC(hn(j)) exists. By definition, H∗ is a near-Cartan group. The

relation L(H∗) = limL
(
C(hn(j))

)
= lim hn(j) = h follows from Proposition 2.3.

Then H
def
= (H∗)0 = exp h follows.

We have seen in [6] that there may be sequences hn of Cartan algebras
such that (H, h) = lim(exp hn, hn) exists in H(G) × H(g) such that H is not
connected. In that example all Cartan groups were connected, but we have
disconnected near-Cartan groups. In constrast with the situation of a Cartan
group which is uniquely determined by its identity component, different near-
Cartan groups may have the same identity component. This is the case in

Sl(2,R). The algebra h = R·
(

0 1
0 0

)
is the Lie algebra of two different near-

Cartan groups H1 = exp h = lim expR·
(

0 1
1
n 0

)
and H2 = {1,−1}H1 =

lim expR·
(

0 1
− 1
n 0

)
.

Further remarks. The function L: Σ(G) → ΣL(g) from the space of closed
subgroups into the space of Lie subalgebras of g which associates with a closed
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subgroup K of G its Lie algebra L(K) is not continuous as was observed in
[6]. If G = R2/Z2 with g = R2 and the quotient map as exponential function,
then hn = R·( 1

n , 1) converges to h = R× {0} in ΣL(g). However, Hn = exp hn
converges to G 6= exp h in Σ(G).

However, in [6] we proved:

Lemma 2.7. Let G denote a Lie group and set D = {(H, h) ∈ Σ(G)×ΣL(g) :
h ⊆ L(H)} . Then D is closed in Σ(G)× ΣL(g) .

Now we set NG = {0, 1, . . . , dimL(G)} and consider the function

dim: Σ(G)→ NG, H 7→ dimH = dimL(H).

Lemma 2.8. The function dim: Σ(G)→ NG is upper semicontinuous.

Proof. We claim that the lower graph {(H,n) : n ≤ dimL(H), H ∈
Σ(G), n ∈ NG} is closed in Σ(G) × NG by Lemma 2.3. Indeed, if (H,n) =
lim(Hk, nk), then for any subsequence (k(j))j∈N with h = limL(Hk(j)) we have
h ⊆ L(H), i.e., lim dimL(Hk(j)) ≤ dimH . But nk(j) ≤ dimL(Hk(j)). Hence
n ≤ lim dimL(Hk(j)) ≤ dimH .

Lemma 2.9. Suppose H = limHn in Σ(G) . If dimH = lim dimHn , then
L(H) = limL(Hn) .

Proof. This is Corollary 22 in [6].

Proposition 2.10. (i) The restrictions

L: Σm(G)→ ΣL(g) and dim: Σm(G)→ NG

are continuous.

(ii) The function
C:H(g)→H(G)

is continuous.

Proof. (i) follows from Lemma 2.9 and 2.8.

(ii) If h = lim hn in H(g), then from [6] we know that there is a
sequence Yn → 0 such that hn = eadYnh . If an = expYn then an → 1
and C(hn) = C(Ad(an)h) = anC(h)a−1

n by 1.2(ii). Thus C(h) = limC(hn)
as asserted.

Proposition 2.11. (i) Let h be a near-Cartan algebra. Then the following
are equivalent

(1) h is a Cartan algebra

(2) h ∩ reg g 6= Ø .

(3) h ∩ reg g = h .

(ii) Suppose that G is connected and let H be a near-Cartan group. Then
the following are equivalent:

(1) H is a Cartan group.
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(2) H ∩ Reg(G) 6= Ø .

(3) H ⊆ H ∩ RegG .

Proof. (i) If h is a Cartan algebra, then the set of regular elements of g
is dense in h . So (1)⇒(3). Next (3)⇒(2) is trivial. Now we show (2)⇒(1):
For any X ∈ h we have h ⊆ g0(adX) since h is nilpotent by 1.9(ii). If now
X is regular, then dim g1(adX) = rank g = dim h in view of 1.9(i). Thus
h = g1(adX) follows and so h is a Cartan algebra.

(ii) If H is a Cartan group, then Proposition 1.6 proves (1)⇒(3). But
(3)⇒(2) is trivial. Next we show that (2)⇒(1). By the definition of a near-
Cartan group we have H = limHn with Hn = C(hn). If g ∈ H then g =
lim gn with gn ∈ C(hn). We may assume that gn is regular by 1.6. Then
g1
(

Ad(gn)
)

= hn . By 1.3 there is a sequence wj → 1 such that we have

g1
(

Ad(gnj )
)
⊆ g1

(
Ad(wjgw

−1
j )
)

for a suitable sequence nj of natural numbers

going to infinity. Since the gn are regular, g1
(

Ad(gnj )
)

= hnj .

Now suppose that g is regular. Then dim g1
(

Ad(wjgw
−1
j )
)

= rank g =

dim hnj , and thus we have hnj = g1
(

Ad(wjgw
−1
j )
)

= wjg
1
(

Ad(g)
)
w−1
j . Now

h = lim hnj on the one hand and g1
(

Ad(g)
)

= limwjg
1
(

Ad(g)
)
w−1
j on the

other. Thus h = g1(Ad(g)
)

is a Cartan algebra and g ∈ C(h) by 1.2(5). But
now C(h) = limC(hn) = H by 2.10(ii). In particular, H is a Cartan group.

3. The exponential function and near-Cartan groups

Let exp: g → G denote the exponential function of a Lie group. For
X ∈ g we choose the abbreviation

Ω(X) = Spec adX ∩ 2πiN ⊆ C.

We note that for X ∈ g we have

ker d expX =
⊕

λ∈Ω(X)

ker
(
(adX)2 + |λ|2

)
.

(See e.g. [5,6].) Then the set in which the exponential function is singular is

S(g) = g \ reg exp = {X ∈ g : Ω(X) 6= {0}}.

This set is invariant under Aut(g). As an abbreviation we write
sing(g) = g \ reg g .

Lemma 3.1. Let H be a near-Cartan group in a Lie group and assume X ∈
reg exp , expX ∈ H . Then X ∈ h .

Proof. By the definition of a near-Cartan group we find a sequence of Cartan
groups Hn converging to H in H(G). Since Hn ∩ RegG is dense in G0 ∩ Hn

by 2.11, and by the definition of the topology in Σ(G), we find a sequence of
regular elements gn ∈ G0 ∩ Hn converging to expX . Since the exponential
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function is regular at X , there is an open neighborhood U of X in g and an
open neighborhood V of expX in G such that the restriction exp |U :U → G
corestricts to a diffeomorphism ε:U → V . We may assume that gn ∈ V . Set
Xn = ε−1(gn). Then limXn = lim ε−1(gn) = ε−1(expX) = ε−1

(
ε(X)

)
= X .

Also, expXn = ε(Xn) = ε
(
ε−1(gn)

)
= gn . Since gn ∈ RegG we know that

Xn ∈ reg exp g ∩ reg g by 1.4. Then g0(adXn) = g1(Ad(gn)) = hn by 1.4. Thus
Xn ∈ hn . From 2.10(i) we infer h = lim hn . But then X = limXn and Xn ∈ hn
show X ∈ h .

It is interesting to observe that, in the preceding proof, the hypothesis
“exp is regular at X ” cannot be replaced by the weaker hypothesis “exp g is
a neighborhood of expX ”. Using this hypothesis we could still find elements
Xn ∈ reg exp∩ reg g ∩ hn with expXn = gn . But we could not conclude that
X = limXn . The weaker conclusion that X ′ = limXn(j) for some sequence
n(j)→∞ of natural numbers would suffice for the conclusion that we could find
an X ′ ∈ h with expX = expX ′ . Thus the modification of the proof of 3.1 which
we have just suggested yields the following obervation:

Remark 3.2. Assume that H is a Cartan subgroup and expX ∈ H and
assume that there is a bounded subset B in g such that expB is a neighborhood
of expX . Then there is an X ′ ∈ h with expX = expX ′ .

Lemma 3.3. Let G be a Lie group and H a near-Cartan group with Lie algebra
h . If H is not a Cartan group, then exp−1H ⊆ S(g) ∪ sing(g) .

Proof. Suppose that expX ∈ H . Since H is not a Cartan group, then
expX ∈ H cannot be regular by 2.11. Hence X /∈ reg(g) ∩ reg exp by 1.4.

Theorem 3.4. Let G be a Lie group and H a near-Cartan group with Lie
algebra h . Then

exp−1 H ⊆ h ∪ S(g).

If H is not a Cartan subgroup then

exp−1H ⊆
(
h ∪ S(g)

)
∩
(

sing(g) ∪ S(g)
)

=
(
h ∩ sing(g)

)
∪ S(g).

Proof. This follows at once from Lemmas 3.1 and 3.3.
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