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A globality theorem for Lie-wedges
that are bounded by a hyperplane-ideal

Dirk Mittenhuber

Abstract

We consider a Lie group G containing a normal subgroup N � G such
that G/N ∼= R , i.e the Lie algebra n is a hyperplane ideal in g . A natural
question that arises in this context is the following: Suppose we are given
a Lie-wedge W which is contained in a halfspace bounded by n . Under
which conditions is W global in G? We will prove globality for all pointed
wedges W such that there exists another wedge W ′ ⊆ n which is global
in N and satisfies (W ∩ n) ⊇ intn(W ′) ∪ {0} . Especially our result applies
to the groups and Lorentzian wedges considered by Levichev and Levicheva
in this volume. As another application, we solve the globality problem of
the Heisenberg-algebra, i.e. we give a complete characterization of all Lie-
wedges that are global in the Heisenberg-group.

1. The globality theorem

Theorem 1.1. Let G be a Lie group, N � G a normal subgroup such that
G/N ∼= R. Let W ⊆ n be a Lie wedge which is global in N and X ∈ g \ n such
that the edge H(W ) = W ∩ (−W ) is adX -invariant. We define the following set:

W =
{
W ′ ⊆ n | W ′ global in N and (∃ε > 0)(∀t ∈ [0, ε])et adXW ⊆ W ′

}
.

If
⋂W = W then the Lie wedge W + R+X is global in G.

Proof. The adX -invariance of H(W ) implies that et ad YX ∈ X + H(W ) for
all Y ∈ H(W ). Since W is a Lie wedge and H(W ) = H(W+R+X) it follows that
W+R+X is invariant under the adjoint action of its edge, hence a Lie wedge. Let us
denote with α(t) the inner automorphism of G induced by exp(tX), i.e. α(t)(g) =
exp(tX)g exp(−tX) and α(t)(expY ) = exp(Ad(exp(tX)Y ) = exp(et adXY ). We
use the notation

∏n
i=1 gi = g1g2 · · · gn and set for t ≥ 0

St =

{(
n∏

i=1

α(ti)(gi)

)
exp(tX) | ti ∈ [0, t], gi ∈ exp(W )

}
(1)

and S =
⋃
t≥0 St . We will prove the following:
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(i) S is a semigroup because for s, t ≥ 0 we have StSs ⊆ St+s . Indeed,
if g = (

∏n
i=1 α(ti)(gi)) exp(tX) ∈ St and h = (

∏m
j=1 α(sj)(hj)) exp(sX) ∈ Ss

then

gh =

(
n∏

i=1

α(ti)(gi)

)
exp(tX)




m∏

j=1

α(sj)(hj)


 exp(sX)

=

(
n∏

i=1

α(ti)(gi)

)
α(t)




m∏

j=1

α(sj)(hj)


 exp((s+ t)X)

=

(
n∏

i=1

α(ti)(gi)

)


m∏

j=1

α(t+ sj)(hj)


 exp((s+ t)X) ∈ St+s.

(ii) L(S) ⊇ W + R+X for obviously exp(W ) ∪ exp(R+X) ⊆ S .

(iii) L(S) ⊆ W + R+X . This is the non-trivial part of the proof. Let Y ∈ L(S)
then there exist sequences mj ∈ R+ and gj ∈ S such that limj gj = 1 and
Y = limjmj log gj . Now gj = aj exp(tjX) with tj ≥ 0, limj aj = 1 and
limj tj = 0 because G/N ∼= R. Let an arbitrary W ′ ∈ W be given, then
there is an ε > 0 such that es adXW ⊆ W ′ for all s ∈ [0, ε]. Since limj tj = 0
we have tj < ε for all sufficiently large j . For these j we have

aj =
∏

i

α(si) exp(wi) =
∏

i

exp(esi adXwi) ∈ 〈exp(W ′)〉 .

Applying the formula for the Campbell-Hausdorff-multiplication ∗ we obtain

mj log gj = mj log(aj exp(tjX)) = mj(log aj ∗ tjX)

= mj log(aj)︸ ︷︷ ︸
∈n

+mjtjX +mjrj (2)

with rj ∈ n and ‖rj‖ ≤ |tj| ‖log aj‖ for a suitable norm on g. Now the
existence of Y = limmj log gj implies that mjtj ≥ 0 converges, hence
is bounded. Thus ‖mjrj‖ ≤ |mjtj| ‖log aj‖ → 0 since aj → 1, and we
conclude that mj log aj also converges. Now the globality of W ′ in N yields
limjmj log aj ∈ W ′ which implies Y ∈ W ′ + R+X . Since W ′ ∈ W was
arbitrary, it follows that

L(S) ⊆
⋂

W ′∈W
(W ′ + R+X) = W + R+X, (3)

which proves (iii).

From (i)–(iii) we deduce the globality of W +R+X in G, because we have proved
the existence of a semigroup S with the prescribed tangent wedge.

Remark 1.2. The sets St defined in the previous proof are bigger than they
ought to be. Indeed, it would be sufficient to take

S̃t = {α(t1)(g1) · · ·α(tn)(gn) exp(tX) | 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ t, gi ∈ exp(W )}
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in order to obtain a semigroup via S̃ =
⋃
t≥0 S̃t . But this does not change the proof

of (iii). The main difference is that with our choice, the sets Tt = St exp(−tX) ⊆
N are subsemigroups of N whereas the corresponding sets T̃t = S̃t ⊆ N need not
be subsemigroups of N . If N is abelian then obviously St = S̃t because we may
rearrange the factors α(ti) exp(wi) such that ti ≤ ti+1 , but in the non-abelian case
St \ S̃t may be non-empty.
The assumption that

⋂W = W may not be weakened which will be shown by a
counter example.

2. A counterexample

The following counterexample shows, that we cannot weaken the assump-
tion that

⋂W = W . We take N to be the Heisenberg group and G = NoR the
four-dimensional oscillator group where R acts on N by rotations around the cen-
ter Z(N). So we may identify G with the set C×R×R where the multiplication
is given by

(v, s, r)(w, t, r′) =
(
v + eirw, s+ t +

1

2
=(veirw), r + r′

)
. (4)

We may identify g with the set C × R × R and let P = (1, 0, 0), Q = (i, 0, 0),
Z = (0, 1, 0), R = (0, 0, 1), then {P,Q, Z} is a standard base for the Heisenberg
algebra n, i.e. [P,Q] = Z , Z is central. Now we consider the following wedge:

W = R+(Z − P ) + R+(Z + P ). (5)

Then W is global in N because W+(−W ) is an abelian subalgebra of n, but every
wedge in W wedge has central elements in its interior, hence generates the whole
group N (see [1, V.4.10]), so W = {n} and

⋂W = n 6= W . The non-globality
of W + R+R in G follows from the following proposition:

Proposition 2.1. Let us denote with Sr the slice 〈exp(W + R+R)〉∩C×R×
{r}, then for every r > 0 the set Z(N)(0, 0, 2r) = {0}×R×{2r} is contained in
S2r , hence Z(N) ⊆ 〈expW + R+R〉.

Proof. Let r > 0 be given. Since Sr(0, 0, r
′− r) ⊆ Sr′ for r ≤ r′ we only have

to consider small r > 0, so we may assume w.l.o.g. that r < π/2, i.e. sin(2r) > 0.
With respect to the C-factor we will steer along the following path in order to
reach all points in {0} × R× {2r}:

r qqqq ��
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- ((((
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For s ≥ 0 and z ≥ 0 we compute:

S2r 3 (0, z, 0)(s, s, 0)(0, 0, r)(−2s cos r, 2s cos r, 0)(0, 0, r)(s, s, 0)

= (s, s+ z, 0)(0, 0, r)(−2s cos r, 2s cos r, 0)(seir, s, r)

= (s, s+ z, 0)(0, 0, r)
(
−2s cos r + seir, 2s cos r + s+ =(−s cos rseir), r

)

= (s, s+ z, 0)(0, 0, r)


−s cos r + is sin r︸ ︷︷ ︸

−se−ir
, s+ 2s cos r − s2

2
sin(2r), r




= (s, s+ z, 0)

(
−s, s + 2s cos r − s2

2
sin(2r), 2r

)

=

(
0, z + 2s+ 2s cos r − s2

2
sin(2r) +

1

2
=(−s2), 2r

)

=

(
0, z + 2s(1 + cos r)− s2 sin(2r)

2
, 2r

)
.

Now lims→∞ z+ 2s(1 + cos r)− s2 sin(2r)
2

= −∞ thus {0}×R×{2r} ⊆ S2r for any
0 < r < π/2 which proves our claim.

As an observation, we still prove that our example is in some sense as bad as
possible.

Proposition 2.2. For any r > 0 we have Sr = N × {r}.

Proof. First we will prove prC(S2r) = C: We have for 0 ≤ t ≤ r and s ≥ 0:

(0, 0, t)(s, s, 0)(0, 0, r− t) ∈ Sr and (0, 0, t)(−s, s, 0)(0, 0, r) ∈ Sr.

Hence prC(Sr) ⊇ C1
r ∪ C2

r with

C1
r = {v | arg(v) ∈ [0, r]} and C2

r = −C1
r = {v | arg(v) ∈ [π, π + r]} .

Thus prC(S2r) ⊇ (C1
r + eirC2

r ) ∪ (C2
r + eirC1

r ). Now

C2
r + eirC1

r = {arg(v) ∈ [π, π + r]}+ {arg(v) ∈ [r, 2r]} = {arg(v) ∈ [r, π + r]},

i.e. a halfspace E+ , and because of C2
r = −C1

r we have C1
r + eirC2

r = −E+ which
proves prC(S2r) ⊇ C. From the previous proposition we know that {0}×R×{r} ⊆
Sr so that we may deduce S3r = H×{r} by right-multiplication with appropriate
elements of {0} × R× {r}.

This counterexample is minimal with respect to the dimension of G, because
if the hyperplane ideal n has dimension ≤ 2 then it is either abelian or the two-
dimensional non-abelian algebra. In both cases every wedge W ⊆ n is global in N ,
(see [1, V.4.13] for the non-abelian case). So if we take a pointed wedge W , then⋂W = W and if the edge H(W ) 6= {0} then W must be a halfspace. Since H(W )
is adX -invariant and n \H(W ) is disconnected, W must be adX -invariant itself
which implies W ∈ W . Thus there is no counterexample of lower dimension. It
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is also possible to construct a nilpotent counterexample, just take noDR with n
the Heisenberg-algebra, W as in the former example and D ∈ Der(n) is

D =




0 0 0
1 0 0
0 0 0




with respect to the base {P,Q, Z}.

3. Applications of the globality Theorem

The following corollary ([1, VI.5.2]) enables us to prove the globality in
many cases:

Corollary 3.1. Suppose W2 ⊆ g is global in G and W1 ⊆ W2 satisfies

(i) W1 ∩H(W2) ⊆ H(W1).

(ii) The analytical subgroup 〈expH(W1)〉 is closed in G.

Then W1 is also global in G.

Remark 3.2. If W2 is pointed, then these conditions are trivially satisfied.

We will now give a sufficient condition for the equality
⋂W = W .

Definition 3.3. Let V be a vector space and W1,W ⊆ V two wedges. We
say that W1 is surrounding W (in V ), if W \H(W ) ⊆ intV (W1) or equivalently
W ⊆ intV (W1) ∪H(W ).

Proposition 3.4. Assume W ⊆ n is pointed and there exists a pointed, global
wedge W1 ⊆ n surrounding W in n. Then W =

⋂W .

Proof. If v ∈ n\W then there exists a wedge W2 surrounding W with v 6∈ W2 .
Therefore W ′ := W1 ∩W2 is global and since W ′ surrounds W , we can find an
ε > 0 such that e[0,ε]adX ⊆ W ′ no matter what the action of adX on n is. Thus
W ′ ∈ W and v 6∈ ⋂W which proves the assertion.

So we may state

Corollary 3.5. Let G be a Lie group containing a normal subgroup N such
that G/N ∼= R. Let W ⊆ n be a pointed wedge such that there exists a global wedge
W1 surrounding W in n. Then for every X ∈ g \ n the Lie wedge W + R+X is
global in G.

Proof. Since W is pointed, contained in W1 , it is global in N and its edge
H(W ) = {0} is trivially adX -invariant. Proposition 3.4 yields W =

⋂W , so we
may apply Theorem 1.1.

The next question which arises is: Suppose we are given a Lie wedge
bounded by the hyperplane ideal n, i.e. W ⊆ n + R+X for an X ∈ g \ n.
When are these wedges global? In view of corollary 3.1 one should try to find
a suitable wedge W ′ ⊆ n satisfying the assumptions of Theorem 1.1 such that
W ′ + R+X ⊇ W . If we assume that W is pointed then the intersection W ∩ n

will play an important role.
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4. A Lemma on pointed wedges

If (X, d) is a metric space, we may endow the set C(X) of compact subsets
with the so-called Vietoris topology which is defined through the metric

d(A,B) = max (max{d(a, B) | a ∈ A},max{d(b, A) | b ∈ B}) .
where d(a, B) = min{d(a, b) | b ∈ B} is the distance of a from B .

Proposition 4.1. Assume X is a metric space and (Kn)n∈N ⊆ X a decreasing
sequence of compact sets. Let K =

⋂
n∈NKn , then Kn → K in the Vietoris

topology.

Proposition 4.2. Suppose f :X → X is a continous function and Kn → K
in the Vietoris topology. Then f(Kn)→ f(K) in the Vietoris topology.

Lemma 4.3. Let V be a vector space, C ⊆ V a pointed, (closed, convex)
cone, H a supporting hyperplane of C and the cone C̃ ⊆ H is surrounding C ∩H
in H , i.e. intH(C̃) ⊇ (C ∩H) \ {0}. Then there exists an x ∈ V \H such that
C ⊆ C̃ + R+x.

Proof. Let α ∈ H⊥ ∩ C∗ and pick an arbitrary x0 with α(x0) = 1. Pick
ω ∈ int(C∗) and let K = C ∩ ω−1(1), i.e. K is compact and C = R+K . We will
construct an invertible linear map ψ : V → V with the following properties:

(i) ψ|H = idH ,

(ii) ψ(K) ⊆ C̃ + R+x0 .

Since R+K = C we may then conclude that ψ(C) = ψ(R+K) ⊆ C̃ +R+x0 , hence

C ⊆ ψ−1(C̃) + R+ψ−1(x0) = C̃ + R+x

with x = ψ−1(x0) because of (i).
Now we construct the map ψ : We denote the projection along x0 onto H with
prH , i.e. prH(v) = v − α(v)x0 since α(x0) = 1. Now K is compact and so is
prH(K). We denote with Kr the slices K ∩α−1([0, r]) which are also compact for
any r > 0. Since Kr → K0 = K ∩H ⊆ int(C̃) for r → 0 in the Vietoris topology,
there is an r0 > 0 such that prH(Kr0) ⊆ C̃ . Since intH(C̃) 6= Ø and prH(K) is
compact, we can find some w ∈ intH(C̃) such that

r0w + prH(K) ⊆ C̃.

Now let ψ(v) = prH(v) + α(v)w + α(v)x0 , then ψ|H = idH , ψ(x0 − w) =
−w + w + x0 = x0 , hence ψ is surjective and therefore invertible. If v ∈ K
then either α(v) ≤ r0 which implies

ψ(v) = prH(v)︸ ︷︷ ︸
∈C̃

+α(v)w︸ ︷︷ ︸
∈C̃

+α(v)x0 ∈ C̃ + R+x0

or α(v) ≥ r0 and therefore

ψ(v) = prH(v) + r0w︸ ︷︷ ︸
∈C̃

+ (α(v)− r0)w︸ ︷︷ ︸
∈C̃

+α(v)x0 ∈ C̃ + R+x0,

thus ψ(K) ⊆ C̃ + R+x0 .



Mittenhuber 219

5. Globality of wedges that are bounded by a hyperplane ideal

Now we have all the tools to prove

Theorem 5.1. Let G be a Lie group containing a normal subgroup N with
G/N ∼= R. Suppose W ⊆ g is a pointed wedge such that

(i) n is a supporting hyperplane of W ,

(ii) There exists a pointed wedge W1 ⊆ n such that W1 is surrounding W ∩ n
in n and W1 is global in N .

Then W is global in G.

Proof. Since W1 is surrounding W ∩ n in n, we may choose a wedge W2 such
that W1 is surounding W2 and W2 is surrounding W ∩ n in n. According to
Lemma 4.3 we can find an X0 ∈ g\n such that W ⊆ W2 +R+X0 , the latter being
global in G in view of Corollary 3.5. Now Corollary 3.1 yields the globality of W .

Remark 5.2. In view of the counterexample, it is clear that we cannot drop
the assumption that there is a global wedge W ′ surrounding W ∩ n. Nevertheless
this condition is not necessary for globality, because if we consider the invariant
wedge W in the oscillator-algebra, then this wedge is naturally global, but there is
no pointed global wedge W ′ surrounding W ∩ n = R+Z .

6. The globality problem of the Heisenberg-algebra

Let us consider the Heisenberg-algebra g with the standard base {P,Q, Z}
and brackets [P,Q] = Z , [P, Z] = [Q,Z] = 0. We identify it with the Heisenberg
group G via the Campbell-Hausdorff-multiplication. From [1] we know, that the
hyperplane-subalgebras of g play an important role. A half-space which is bounded
by a subalgebra is called a halfspace-semialgebra. The following is an immediate
consequence of [1, V.5.41]:

Corollary 6.1. If W is Lie generating and not contained in a halfspace-
semialgebra, then W is controllable.

The hyperplane subaglebras of g may be described as follows:

Proposition 6.2. A hyperplane h ⊆ g is a subalgebra iff z ⊆ h. Any proper
subalgebra is contained in a hyperplane subalgebra.

Now we are ready to solve the globality problem of the Heisenberg-algebra.

Theorem 6.3. Suppose W ⊆ g is a Lie-wedge, then the following are equiva-
lent:

(i) W is global in G.

(ii) W is contained in a halfspace-semialgebra.

(iii) W ∗ ∩ z⊥ 6= {0}.
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Proof. The equivalence of (ii) and (iii) follows from the classification of hyper-
plane subalgebras in g. For proving (i)⇒(ii), we consider a global wedge W . If
W is Lie generating then Corollary 6.1 proves (ii). If W is not Lie generating,
then it is contained in a proper subalgebra. Hence (ii) holds in view of Proposition
6.2. The crucial part of the proof is (iii)⇒(i).
We have to consider the different cases of dimH(W ) seperately:

1. dimH(W ) = 2. In this case W is either a hyperplane-subalgebra or a
halfspace-semialgebra, hence global.

2. dimH(W ) = 1. The invariance of W under eadH(W ) implies

[H(W ),W ] ⊆ H(W ) ∩ z,

thus either H(W ) = z or W ⊆ H(W ) + z. In the first case, W satisfies
the conditions of corollary 3.1, and in the second case W is contained in an
abelian subalgebra, so W is global in any case.

3. dimH(W ) = 0. Let ω ∈ W ∗ ∩ z⊥ , then n := kerω is an abelian subalgebra
and G/N ' R. Take an arbitrary pointed W ′ surrounding W in g, then
W ′ ∩ n is pointed, surrounds W ∩ n in n and is global, since n is abelian.
Therefore Theorem 5.1 applies, proving the globality of W .

Thus everything is proved.

7. Some remarks on Lorentzian Lie groups

In [2] Levichev and Levicheva consider the Lorentzian manifold structure
on a Lie group G obtained by choosing a Lorentzian wedge W ⊆ g. For a closed
semigroup S ⊆ G we may define the partial order ≤S on G by x ≤S y iff xS 3 y .
The notion of future-distinguishability is then equivalent to the condition that S
is pointed, i.e. S ∩ S−1 = {1}. Hence the Lorentzian manifold G is future-
distinguishing iff the Lie wedge W is global in G.

It may happen that the Lorentzian manifold G is not geodesically complete,
i.e. if we denote Exp the exponential function of the affine connection on G
induced by the choice of a bilinear form on g, then Exp1 is not defined on all of g.
Nevertheless the Lie semigroup generated by a Lorentzian cone is always well-
defined, so the future-distinguishability-property is independent of geodesically
completeness. Thus it may happen that the future of an event is well-behaved
although some geodesics are not infinitely extendable.

As a final remark, we mention that Theorem 5.1 applies to the cases con-
sidered in [2], because there the hyperplane ideal n is either abelian or almost-
abelian, and therefore every wedge W ′ ⊆ n is global in the corresponding group
(cf. [1, V.4.13]).
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