Seminar Sophus Lie 2 (1992) 213–221

A globality theorem for Lie-wedges that are bounded by a hyperplane-ideal

Dirk Mittenhuber

Abstract

We consider a Lie group G containing a normal subgroup $N \leq G$ such that $G/N \cong \mathbb{R}$, i.e the Lie algebra \mathfrak{n} is a hyperplane ideal in \mathfrak{g} . A natural question that arises in this context is the following: Suppose we are given a Lie-wedge W which is contained in a halfspace bounded by \mathfrak{n} . Under which conditions is W global in G? We will prove globality for all pointed wedges W such that there exists another wedge $W' \subseteq \mathfrak{n}$ which is global in N and satisfies $(W \cap \mathfrak{n}) \supseteq int_{\mathfrak{n}}(W') \cup \{0\}$. Especially our result applies to the groups and Lorentzian wedges considered by Levichev and Levicheva in this volume. As another application, we solve the globality problem of the Heisenberg-algebra, i.e. we give a complete characterization of all Liewedges that are global in the Heisenberg-group.

1. The globality theorem

Theorem 1.1. Let G be a Lie group, $N \leq G$ a normal subgroup such that $G/N \cong \mathbb{R}$. Let $W \subseteq \mathfrak{n}$ be a Lie wedge which is global in N and $X \in \mathfrak{g} \setminus \mathfrak{n}$ such that the edge $H(W) = W \cap (-W)$ is ad X-invariant. We define the following set:

$$\mathcal{W} = \left\{ W' \subseteq \mathfrak{n} \mid W' \text{ global in } N \text{ and } (\exists \varepsilon > 0) (\forall t \in [0, \varepsilon]) e^{t \operatorname{ad} X} W \subseteq W' \right\}.$$

If $\cap \mathcal{W} = W$ then the Lie wedge $W + \mathbb{R}^+ X$ is global in G.

Proof. The *ad* X-invariance of H(W) implies that $e^{t adY} X \in X + H(W)$ for all $Y \in H(W)$. Since W is a Lie wedge and $H(W) = H(W + \mathbb{R}^+X)$ it follows that $W + \mathbb{R}^+X$ is invariant under the adjoint action of its edge, hence a Lie wedge. Let us denote with $\alpha(t)$ the inner automorphism of G induced by $\exp(tX)$, i.e. $\alpha(t)(g) =$ $\exp(tX)g\exp(-tX)$ and $\alpha(t)(\exp Y) = \exp(Ad(\exp(tX)Y)) = \exp(e^{t adX}Y)$. We use the notation $\prod_{i=1}^n g_i = g_1g_2 \cdots g_n$ and set for $t \ge 0$

$$S_t = \left\{ \left(\prod_{i=1}^n \alpha(t_i)(g_i) \right) \exp(tX) \mid t_i \in [0, t], \ g_i \in \exp(W) \right\}$$
(1)

and $S = \bigcup_{t \ge 0} S_t$. We will prove the following:

MITTENHUBER

(i) S is a semigroup because for $s, t \ge 0$ we have $S_t S_s \subseteq S_{t+s}$. Indeed, if $g = (\prod_{i=1}^n \alpha(t_i)(g_i)) \exp(tX) \in S_t$ and $h = (\prod_{j=1}^m \alpha(s_j)(h_j)) \exp(sX) \in S_s$ then

$$gh = \left(\prod_{i=1}^{n} \alpha(t_i)(g_i)\right) \exp(tX) \left(\prod_{j=1}^{m} \alpha(s_j)(h_j)\right) \exp(sX)$$
$$= \left(\prod_{i=1}^{n} \alpha(t_i)(g_i)\right) \alpha(t) \left(\prod_{j=1}^{m} \alpha(s_j)(h_j)\right) \exp((s+t)X)$$
$$= \left(\prod_{i=1}^{n} \alpha(t_i)(g_i)\right) \left(\prod_{j=1}^{m} \alpha(t+s_j)(h_j)\right) \exp((s+t)X) \in S_{t+s}$$

(ii) $L(S) \supseteq W + \mathbb{R}^+ X$ for obviously $\exp(W) \cup \exp(\mathbb{R}^+ X) \subseteq S$.

(iii) $L(S) \subseteq W + \mathbb{R}^+ X$. This is the non-trivial part of the proof. Let $Y \in L(S)$ then there exist sequences $m_j \in \mathbb{R}^+$ and $g_j \in S$ such that $\lim_j g_j = 1$ and $Y = \lim_j m_j \log g_j$. Now $g_j = a_j \exp(t_j X)$ with $t_j \ge 0$, $\lim_j a_j = 1$ and $\lim_j t_j = 0$ because $G/N \cong \mathbb{R}$. Let an arbitrary $W' \in W$ be given, then there is an $\varepsilon > 0$ such that $e^{s \operatorname{ad} X} W \subseteq W'$ for all $s \in [0, \varepsilon]$. Since $\lim_j t_j = 0$ we have $t_j < \varepsilon$ for all sufficiently large j. For these j we have

$$a_j = \prod_i \alpha(s_i) \exp(w_i) = \prod_i \exp(e^{s_i \, ad \, X} w_i) \in \langle \exp(W') \rangle$$

Applying the formula for the Campbell-Hausdorff-multiplication * we obtain

$$m_j \log g_j = m_j \log(a_j \exp(t_j X)) = m_j (\log a_j * t_j X)$$
$$= \underbrace{m_j \log(a_j)}_{\in \mathfrak{n}} + m_j t_j X + m_j r_j \tag{2}$$

with $r_j \in \mathbf{n}$ and $||r_j|| \leq |t_j| ||\log a_j||$ for a suitable norm on \mathfrak{g} . Now the existence of $Y = \lim m_j \log g_j$ implies that $m_j t_j \geq 0$ converges, hence is bounded. Thus $||m_j r_j|| \leq |m_j t_j| ||\log a_j|| \to 0$ since $a_j \to 1$, and we conclude that $m_j \log a_j$ also converges. Now the globality of W' in N yields $\lim_j m_j \log a_j \in W'$ which implies $Y \in W' + \mathbb{R}^+ X$. Since $W' \in \mathcal{W}$ was arbitrary, it follows that

$$L(S) \subseteq \bigcap_{W' \in \mathcal{W}} (W' + \mathbb{R}^+ X) = W + \mathbb{R}^+ X,$$
(3)

which proves (iii).

From (i)–(iii) we deduce the globality of $W + \mathbb{R}^+ X$ in G, because we have proved the existence of a semigroup S with the prescribed tangent wedge.

Remark 1.2. The sets S_t defined in the previous proof are bigger than they ought to be. Indeed, it would be sufficient to take

$$S_t = \{ \alpha(t_1)(g_1) \cdots \alpha(t_n)(g_n) \exp(tX) \mid 0 \le t_1 \le t_2 \le \dots \le t_n \le t, \ g_i \in \exp(W) \}$$

MITTENHUBER

in order to obtain a semigroup via $\tilde{S} = \bigcup_{t \ge 0} \tilde{S}_t$. But this does not change the proof of (iii). The main difference is that with our choice, the sets $T_t = S_t \exp(-tX) \subseteq$ N are subsemigroups of N whereas the corresponding sets $\tilde{T}_t = \tilde{S}_t \subseteq N$ need not be subsemigroups of N. If N is abelian then obviously $S_t = \tilde{S}_t$ because we may rearrange the factors $\alpha(t_i) \exp(w_i)$ such that $t_i \le t_{i+1}$, but in the non-abelian case $S_t \setminus \tilde{S}_t$ may be non-empty.

The assumption that $\cap \mathcal{W} = W$ may not be weakened which will be shown by a counter example.

2. A counterexample

The following counterexample shows, that we cannot weaken the assumption that $\bigcap \mathcal{W} = W$. We take N to be the Heisenberg group and $G = N \rtimes \mathbb{R}$ the four-dimensional oscillator group where \mathbb{R} acts on N by rotations around the center Z(N). So we may identify G with the set $\mathbb{C} \times \mathbb{R} \times \mathbb{R}$ where the multiplication is given by

$$(v, s, r)(w, t, r') = \left(v + e^{ir}w, s + t + \frac{1}{2}\Im(\overline{v}e^{ir}w), r + r'\right).$$
 (4)

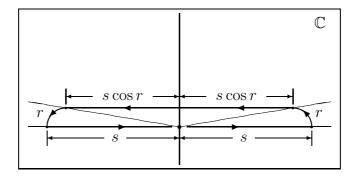
We may identify \mathfrak{g} with the set $\mathbb{C} \times \mathbb{R} \times \mathbb{R}$ and let P = (1,0,0), Q = (i,0,0), Z = (0,1,0), R = (0,0,1), then $\{P,Q,Z\}$ is a standard base for the Heisenberg algebra \mathfrak{n} , i.e. [P,Q] = Z, Z is central. Now we consider the following wedge:

$$W = \mathbb{R}^+(Z - P) + \mathbb{R}^+(Z + P).$$
(5)

Then W is global in N because W+(-W) is an abelian subalgebra of \mathfrak{n} , but every wedge in \mathcal{W} wedge has central elements in its interior, hence generates the whole group N (see [1, V.4.10]), so $\mathcal{W} = \{\mathfrak{n}\}$ and $\cap \mathcal{W} = \mathfrak{n} \neq W$. The non-globality of $W + \mathbb{R}^+ R$ in G follows from the following proposition:

Proposition 2.1. Let us denote with S_r the slice $\langle \exp(W + \mathbb{R}^+ R) \rangle \cap \mathbb{C} \times \mathbb{R} \times \{r\}$, then for every r > 0 the set $Z(N)(0, 0, 2r) = \{0\} \times \mathbb{R} \times \{2r\}$ is contained in S_{2r} , hence $Z(N) \subseteq \overline{\langle \exp W + \mathbb{R}^+ R \rangle}$.

Proof. Let r > 0 be given. Since $S_r(0, 0, r' - r) \subseteq S_{r'}$ for $r \leq r'$ we only have to consider small r > 0, so we may assume w.l.o.g. that $r < \pi/2$, i.e. $\sin(2r) > 0$. With respect to the \mathbb{C} -factor we will steer along the following path in order to reach all points in $\{0\} \times \mathbb{R} \times \{2r\}$:



For $s \ge 0$ and $z \ge 0$ we compute:

$$\begin{split} S_{2r} &\ni (0, z, 0)(s, s, 0)(0, 0, r)(-2s\cos r, 2s\cos r, 0)(0, 0, r)(s, s, 0) \\ &= (s, s+z, 0)(0, 0, r)(-2s\cos r, 2s\cos r, 0)(se^{ir}, s, r) \\ &= (s, s+z, 0)(0, 0, r)\left(-2s\cos r + se^{ir}, 2s\cos r + s + \Im(-s\cos rse^{ir}), r\right) \\ &= (s, s+z, 0)(0, 0, r)\left(\underbrace{-s\cos r + is\sin r}_{-se^{-ir}}, s + 2s\cos r - \frac{s^2}{2}\sin(2r), r\right) \\ &= (s, s+z, 0)\left(-s, s + 2s\cos r - \frac{s^2}{2}\sin(2r), 2r\right) \\ &= \left(0, z+2s+2s\cos r - \frac{s^2}{2}\sin(2r) + \frac{1}{2}\Im(-s^2), 2r\right) \\ &= \left(0, z+2s(1+\cos r) - s^2\frac{\sin(2r)}{2}, 2r\right). \end{split}$$

Now $\lim_{s\to\infty} z + 2s(1+\cos r) - s^2 \frac{\sin(2r)}{2} = -\infty$ thus $\{0\} \times \mathbb{R} \times \{2r\} \subseteq S_{2r}$ for any $0 < r < \pi/2$ which proves our claim.

As an observation, we still prove that our example is in some sense as bad as possible.

Proposition 2.2. For any r > 0 we have $S_r = N \times \{r\}$.

Proof. First we will prove $pr_{\mathbb{C}}(S_{2r}) = \mathbb{C}$: We have for $0 \le t \le r$ and $s \ge 0$:

 $(0,0,t)(s,s,0)(0,0,r-t) \in S_r$ and $(0,0,t)(-s,s,0)(0,0,r) \in S_r$.

Hence $\operatorname{pr}_{\mathbb{C}}(S_r) \supseteq C_r^1 \cup C_r^2$ with

$$C_r^1 = \{v \mid \arg(v) \in [0, r]\}$$
 and $C_r^2 = -C_r^1 = \{v \mid \arg(v) \in [\pi, \pi + r]\}.$

Thus $\operatorname{pr}_{\mathbb{C}}(S_{2r}) \supseteq (C_r^1 + e^{ir}C_r^2) \cup (C_r^2 + e^{ir}C_r^1)$. Now

$$C_r^2 + e^{ir}C_r^1 = \{\arg(v) \in [\pi, \pi + r]\} + \{\arg(v) \in [r, 2r]\} = \{\arg(v) \in [r, \pi + r]\},\$$

i.e. a halfspace E_+ , and because of $C_r^2 = -C_r^1$ we have $C_r^1 + e^{ir}C_r^2 = -E_+$ which proves $\operatorname{pr}_{\mathbb{C}}(S_{2r}) \supseteq \mathbb{C}$. From the previous proposition we know that $\{0\} \times \mathbb{R} \times \{r\} \subseteq$ S_r so that we may deduce $S_{3r} = H \times \{r\}$ by right-multiplication with appropriate elements of $\{0\} \times \mathbb{R} \times \{r\}$.

This counterexample is minimal with respect to the dimension of G, because if the hyperplane ideal \mathfrak{n} has dimension ≤ 2 then it is either abelian or the twodimensional non-abelian algebra. In both cases every wedge $W \subseteq \mathfrak{n}$ is global in N, (see [1, V.4.13] for the non-abelian case). So if we take a pointed wedge W, then $\cap \mathcal{W} = W$ and if the edge $H(W) \neq \{0\}$ then W must be a halfspace. Since H(W)is ad X-invariant and $\mathfrak{n} \setminus H(W)$ is disconnected, W must be ad X-invariant itself which implies $W \in \mathcal{W}$. Thus there is no counterexample of lower dimension. It is also possible to construct a nilpotent counterexample, just take $\mathfrak{n} \rtimes_D \mathbb{R}$ with \mathfrak{n} the Heisenberg-algebra, W as in the former example and $D \in Der(\mathfrak{n})$ is

$$D = \left(\begin{array}{rrr} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

with respect to the base $\{P, Q, Z\}$.

3. Applications of the globality Theorem

The following corollary ([1, VI.5.2]) enables us to prove the globality in many cases:

Corollary 3.1. Suppose $W_2 \subseteq \mathfrak{g}$ is global in G and $W_1 \subseteq W_2$ satisfies

- (i) $W_1 \cap H(W_2) \subseteq H(W_1)$.
- (ii) The analytical subgroup $\langle \exp H(W_1) \rangle$ is closed in G.

Then W_1 is also global in G.

Remark 3.2. If W_2 is pointed, then these conditions are trivially satisfied. We will now give a sufficient condition for the equality $\cap W = W$.

Definition 3.3. Let V be a vector space and $W_1, W \subseteq V$ two wedges. We say that W_1 is surrounding W (in V), if $W \setminus H(W) \subseteq int_V(W_1)$ or equivalently $W \subseteq int_V(W_1) \cup H(W)$.

Proposition 3.4. Assume $W \subseteq \mathfrak{n}$ is pointed and there exists a pointed, global wedge $W_1 \subseteq \mathfrak{n}$ surrounding W in \mathfrak{n} . Then $W = \bigcap W$.

Proof. If $v \in \mathfrak{n} \setminus W$ then there exists a wedge W_2 surrounding W with $v \notin W_2$. Therefore $W' := W_1 \cap W_2$ is global and since W' surrounds W, we can find an $\varepsilon > 0$ such that $e^{[0,\varepsilon] \operatorname{ad} X} \subseteq W'$ no matter what the action of $\operatorname{ad} X$ on \mathfrak{n} is. Thus $W' \in W$ and $v \notin \cap W$ which proves the assertion.

So we may state

Corollary 3.5. Let G be a Lie group containing a normal subgroup N such that $G/N \cong \mathbb{R}$. Let $W \subseteq \mathfrak{n}$ be a pointed wedge such that there exists a global wedge W_1 surrounding W in \mathfrak{n} . Then for every $X \in \mathfrak{g} \setminus \mathfrak{n}$ the Lie wedge $W + \mathbb{R}^+ X$ is global in G.

Proof. Since W is pointed, contained in W_1 , it is global in N and its edge $H(W) = \{0\}$ is trivially ad X-invariant. Proposition 3.4 yields $W = \bigcap W$, so we may apply Theorem 1.1.

The next question which arises is: Suppose we are given a Lie wedge bounded by the hyperplane ideal \mathfrak{n} , i.e. $W \subseteq \mathfrak{n} + \mathbb{R}^+ X$ for an $X \in \mathfrak{g} \setminus \mathfrak{n}$. When are these wedges global? In view of corollary 3.1 one should try to find a suitable wedge $W' \subseteq \mathfrak{n}$ satisfying the assumptions of Theorem 1.1 such that $W' + \mathbb{R}^+ X \supseteq W$. If we assume that W is pointed then the intersection $W \cap \mathfrak{n}$ will play an important role.

4. A Lemma on pointed wedges

If (X, d) is a metric space, we may endow the set $\mathcal{C}(X)$ of compact subsets with the so-called Vietoris topology which is defined through the metric

 $d(A, B) = \max(\max\{d(a, B) \mid a \in A\}, \max\{d(b, A) \mid b \in B\}).$

where $d(a, B) = \min\{d(a, b) \mid b \in B\}$ is the distance of a from B.

Proposition 4.1. Assume X is a metric space and $(K_n)_{n \in \mathbb{N}} \subseteq X$ a decreasing sequence of compact sets. Let $K = \bigcap_{n \in \mathbb{N}} K_n$, then $K_n \to K$ in the Vietoris topology.

Proposition 4.2. Suppose $f: X \to X$ is a continuum function and $K_n \to K$ in the Vietoris topology. Then $f(K_n) \to f(K)$ in the Vietoris topology.

Lemma 4.3. Let V be a vector space, $C \subseteq V$ a pointed, (closed, convex) cone, H a supporting hyperplane of C and the cone $\tilde{C} \subseteq H$ is surrounding $C \cap H$ in H, i.e. $int_H(\tilde{C}) \supseteq (C \cap H) \setminus \{0\}$. Then there exists an $x \in V \setminus H$ such that $C \subseteq \tilde{C} + \mathbb{R}^+ x$.

Proof. Let $\alpha \in H^{\perp} \cap C^*$ and pick an arbitrary x_0 with $\alpha(x_0) = 1$. Pick $\omega \in int(C^*)$ and let $K = C \cap \omega^{-1}(1)$, i.e. K is compact and $C = \mathbb{R}^+ K$. We will construct an invertible linear map $\psi : V \to V$ with the following properties:

- (i) $\psi|_H = id_H$,
- (ii) $\psi(K) \subseteq \tilde{C} + \mathbb{R}^+ x_0$.

Since $\mathbb{R}^+ K = C$ we may then conclude that $\psi(C) = \psi(\mathbb{R}^+ K) \subseteq \tilde{C} + \mathbb{R}^+ x_0$, hence $C \subseteq \psi^{-1}(\tilde{C}) + \mathbb{R}^+ \psi^{-1}(x_0) = \tilde{C} + \mathbb{R}^+ x$

with $x = \psi^{-1}(x_0)$ because of (i).

Now we construct the map ψ : We denote the projection along x_0 onto H with pr_H , i.e. $\operatorname{pr}_H(v) = v - \alpha(v)x_0$ since $\alpha(x_0) = 1$. Now K is compact and so is $\operatorname{pr}_H(K)$. We denote with K_r the slices $K \cap \alpha^{-1}([0,r])$ which are also compact for any r > 0. Since $K_r \to K_0 = K \cap H \subseteq int(\widetilde{C})$ for $r \to 0$ in the Vietoris topology, there is an $r_0 > 0$ such that $\operatorname{pr}_H(K_{r_0}) \subseteq \widetilde{C}$. Since $int_H(\widetilde{C}) \neq \emptyset$ and $\operatorname{pr}_H(K)$ is compact, we can find some $w \in int_H(\widetilde{C})$ such that

$$r_0w + \operatorname{pr}_H(K) \subseteq \widetilde{C}.$$

Now let $\psi(v) = \operatorname{pr}_{H}(v) + \alpha(v)w + \alpha(v)x_{0}$, then $\psi|_{H} = id_{H}, \ \psi(x_{0} - w) = -w + w + x_{0} = x_{0}$, hence ψ is surjective and therefore invertible. If $v \in K$ then either $\alpha(v) \leq r_{0}$ which implies

$$\psi(v) = \underbrace{\operatorname{pr}_{H}(v)}_{\in \widetilde{C}} + \underbrace{\alpha(v)w}_{\in \widetilde{C}} + \alpha(v)x_{0} \in \widetilde{C} + \mathbb{R}^{+}x_{0}$$

or $\alpha(v) \ge r_0$ and therefore

$$\psi(v) = \underbrace{\operatorname{pr}_{H}(v) + r_{0}w}_{\in \widetilde{C}} + \underbrace{(\alpha(v) - r_{0})w}_{\in \widetilde{C}} + \alpha(v)x_{0} \in \widetilde{C} + \mathbb{R}^{+}x_{0}$$

thus $\psi(K) \subseteq \tilde{C} + \mathbb{R}^+ x_0$.

5. Globality of wedges that are bounded by a hyperplane ideal

Now we have all the tools to prove

Theorem 5.1. Let G be a Lie group containing a normal subgroup N with $G/N \cong \mathbb{R}$. Suppose $W \subseteq \mathfrak{g}$ is a pointed wedge such that

- (i) \mathfrak{n} is a supporting hyperplane of W,
- (ii) There exists a pointed wedge $W_1 \subseteq \mathfrak{n}$ such that W_1 is surrounding $W \cap \mathfrak{n}$ in \mathfrak{n} and W_1 is global in N.

Then W is global in G.

Proof. Since W_1 is surrounding $W \cap \mathfrak{n}$ in \mathfrak{n} , we may choose a wedge W_2 such that W_1 is surrounding W_2 and W_2 is surrounding $W \cap \mathfrak{n}$ in \mathfrak{n} . According to Lemma 4.3 we can find an $X_0 \in \mathfrak{g} \setminus \mathfrak{n}$ such that $W \subseteq W_2 + \mathbb{R}^+ X_0$, the latter being global in G in view of Corollary 3.5. Now Corollary 3.1 yields the globality of W.

Remark 5.2. In view of the counterexample, it is clear that we cannot drop the assumption that there is a global wedge W' surrounding $W \cap \mathfrak{n}$. Nevertheless this condition is not necessary for globality, because if we consider the invariant wedge W in the oscillator-algebra, then this wedge is naturally global, but there is no pointed global wedge W' surrounding $W \cap \mathfrak{n} = \mathbb{R}^+ Z$.

6. The globality problem of the Heisenberg-algebra

Let us consider the Heisenberg-algebra \mathfrak{g} with the standard base $\{P, Q, Z\}$ and brackets [P, Q] = Z, [P, Z] = [Q, Z] = 0. We identify it with the Heisenberg group G via the Campbell-Hausdorff-multiplication. From [1] we know, that the hyperplane-subalgebras of \mathfrak{g} play an important role. A half-space which is bounded by a subalgebra is called a halfspace-semialgebra. The following is an immediate consequence of [1, V.5.41]:

Corollary 6.1. If W is Lie generating and not contained in a halfspacesemialgebra, then W is controllable.

The hyperplane subaglebras of \mathfrak{g} may be described as follows:

Proposition 6.2. A hyperplane $\mathfrak{h} \subseteq \mathfrak{g}$ is a subalgebra iff $\mathfrak{z} \subseteq \mathfrak{h}$. Any proper subalgebra is contained in a hyperplane subalgebra.

Now we are ready to solve the globality problem of the Heisenberg-algebra.

Theorem 6.3. Suppose $W \subseteq \mathfrak{g}$ is a Lie-wedge, then the following are equivalent:

- (i) W is global in G.
- (ii) W is contained in a halfspace-semialgebra.
- (iii) $W^* \cap \mathfrak{z}^\perp \neq \{0\}.$

Proof. The equivalence of (ii) and (iii) follows from the classification of hyperplane subalgebras in \mathfrak{g} . For proving (i) \Rightarrow (ii), we consider a global wedge W. If W is Lie generating then Corollary 6.1 proves (ii). If W is not Lie generating, then it is contained in a proper subalgebra. Hence (ii) holds in view of Proposition 6.2. The crucial part of the proof is (iii) \Rightarrow (i).

We have to consider the different cases of $\dim H(W)$ separately:

- 1. dim H(W) = 2. In this case W is either a hyperplane-subalgebra or a halfspace-semialgebra, hence global.
- 2. dim H(W) = 1. The invariance of W under $e^{ad H(W)}$ implies

$$[H(W), W] \subseteq H(W) \cap \mathfrak{z},$$

thus either $H(W) = \mathfrak{z}$ or $W \subseteq H(W) + \mathfrak{z}$. In the first case, W satisfies the conditions of corollary 3.1, and in the second case W is contained in an abelian subalgebra, so W is global in any case.

dim H(W) = 0. Let ω ∈ W* ∩ 𝔅[⊥], then 𝔅 := ker ω is an abelian subalgebra and G/N ≃ ℝ. Take an arbitrary pointed W' surrounding W in 𝔅, then W' ∩ 𝔅 is pointed, surrounds W ∩ 𝔅 in 𝔅 and is global, since 𝔅 is abelian. Therefore Theorem 5.1 applies, proving the globality of W.

Thus everything is proved.

7. Some remarks on Lorentzian Lie groups

In [2] Levichev and Levicheva consider the Lorentzian manifold structure on a Lie group G obtained by choosing a Lorentzian wedge $W \subseteq \mathfrak{g}$. For a closed semigroup $S \subseteq G$ we may define the partial order \leq_S on G by $x \leq_S y$ iff $xS \ni y$. The notion of *future-distinguishability* is then equivalent to the condition that Sis pointed, i.e. $S \cap S^{-1} = \{1\}$. Hence the Lorentzian manifold G is futuredistinguishing iff the Lie wedge W is global in G.

It may happen that the Lorentzian manifold G is not geodesically complete, i.e. if we denote Exp the exponential function of the affine connection on Ginduced by the choice of a bilinear form on \mathfrak{g} , then Exp_1 is not defined on all of \mathfrak{g} . Nevertheless the Lie semigroup generated by a Lorentzian cone is always welldefined, so the future-distinguishability-property is independent of geodesically completeness. Thus it may happen that the future of an event is well-behaved although some geodesics are not infinitely extendable.

As a final remark, we mention that Theorem 5.1 applies to the cases considered in [2], because there the hyperplane ideal \mathfrak{n} is either abelian or almostabelian, and therefore every wedge $W' \subseteq \mathfrak{n}$ is global in the corresponding group (cf. [1, V.4.13]).

References

[1] Hilgert, J., K. H. Hofmann and J. D. Lawson, "Lie groups, Convex Cones and Semigroups," Oxford University Press, 1989. [2] Levichev A., and V. Levicheva, *Distinguishability Condition and the Future Subsemigroup*, Seminar Sophus Lie **2** 1992, 205–212.

Fachbereich Mathematik TH Darmstadt Schloßgartenstr. 7 D-6100 Darmstadt

Received October 20, 1992