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On the exponential function of an invariant Lie semigroup

Dirk Mittenhuber, Karl-Hermann Neeb

Introduction

It is a well known fact in the theory of Lie groups that the exponential
function exp: L(G) → G is surjective if L(G) is a compact Lie algebra. In [7]
the first author has presented a control theoretic proof of this result. The major
advantage of the control theoretic viewpoint is that it permits generalizations
which prove useful in the Lie theory of semigroups. In this paper we are aiming
at the result that the exponential function of an invariant Lie semigroup in a Lie
group with compact Lie algebra is surjective. Clearly, this generalizes the above
result on Lie groups to Lie semigroups. We will obtain this result from a more
general theorem about surjectivity properties of the exponential function of an
invariant Lie semigroup. This theorem is a very special case of more general
result concerning ordered manifolds with affine connections where the order is
defined by a cone field invariant under parallel transport ([8]). The results in [8]
apply not only to invariant Lie semigroups but also to orderd symmetric spaces
as considered in [3].

In this paper we restrict ourselves to the case of invariant subsemigroups
of Lie groups. In this case the results are much more easier to prove so that the
technical difficulties do not obscure the main ideas. Another advantage is that
Pontrjagin’s Maximum Principle appears more naturally and is easier to describe
in this case. This is mostly due to the fact that the tangent and cotangent bundle
of a Lie group permit nice trivializations.

The authors are gratefully indepted to E. B. Vinberg for many fruitful
discussions on the application of the characteristic function of a cone to Lie
semigroups.

The characteristic function and the length functional of a cone

Definition 1. A cone C in a finite dimensional vector space V is a closed
convex subset which is invariant under multiplication with positive scalars. We
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say that C is pointed if C ∩ C = {0} and that C is generating if C − C = V ,

i.e., if int(C) 6= Ø. The dual cone is C∗ := {ω ∈ V̂ : ω(C) ⊆ R+} , where V̂
denotes the linear dual of V . The group of linear automorphisms of V leaving
C invariant is denoted Aut(C). Note that this is a closed subgroup of Gl(V )
and therefore a Lie group.

Let C be a pointed generating cone in the n -dimensional vector space
V . We fix a Lebesgue measure µ

V̂
on V̂ . The associated characteristic function

ϕ = ϕC of C is defined by

ϕ(x) =

∫

C∗
e−〈ω,x〉dµ

V̂
(ω).

This function depends on the Haar measure on V̂ . Therefore we say that a
function ϕ′ on int(C) is a characteristic function of C if it is proportional to

ϕ . This property is independent of the choice of the Haar measure on V̂ . For
more information on the characteristic function of a cone we refer to [1].

Moreover, we define ψ = ψC on V by

ψ(c) =

{
ϕ(c)−

1
n for c ∈ int(C)

0 for c 6∈ int(C).

We say that a function ψ′ on V is a length functional of C if it is proportional
to ψ . This does not depend on the choice of Haar measure on V̂ .

Proposition 2. The function ψ has the following properties:

(i) ψ(c) > 0 for c ∈ int(C) .

(ii) ψ(g.c) = | det(g)| 1nψ(c) for g ∈ Aut(C) .

(iii) ψ(λc) = λψ(c) for λ ∈]0,∞[ .

(iv) ψ is continuous on V .

(v) ψ is smooth on int(C) and the second derivative d2 logψ(x) is negative
definite at each point x ∈ int(C) , hence logψ is strictly concave on
int(C) .

(vi) The mapping x 7→ x] := d(logψ)(x) is a diffeomorphism of int(C) onto
int(C∗) with the property that (λx)] = 1

λx
] .

(vii) There exists a norm ‖ · ‖ on V such that ψ ≤ ‖ · ‖ .

(viii) dψ(x)(x) = ψ(x) , i.e., x](x) = 1 for all x ∈ int(C) .

(ix) Let ω ∈ int(C∗) and c > 0 . Then there exists a unique element x ∈ C
with

ω(x) = min{ω(y) : ψ(y) = c}.
This element satisfies x] = 1

ω(x)
ω .

(x) ψ is concave on C .

Proof. [8, I.5]

If

C =

{
(x0, x1, . . . , xn) ∈ Rn+1 : x0 ≥

√
x2

1 + · · ·+ x2
n

}
,
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then

ψ(x0, . . . , xn) =
√
x2

0 − x2
1 − · · · − x2

nψ(1, 0, . . . , 0)

is the well known length function from Lorentz geometry on Minkowski space.

From now on we suppose that C is a pointed generating cone in the Lie
algebra g of the connected Lie group G .

Definition 3. We recall that an absolutely continuous curve γ: [a, b]→ G is
said to be a conal curve if the bounded measurable function

uγ : [a, b]→ g, t 7→ dλγ(t)−1

(
γ(t)

)
γ′(t)

takes almost everywhere values in the cone C .

As in Lorentzian geometry the length functional permits to measure the
“length” of a, not necessarily conal, curve as

L(γ) :=

∫ b

a

ψ
(
uγ(t)

)
dt.

Note that a non-constant curve may have length zero if all of its tangents, i.e.,
the values of uγ , lie on the boundary of the cone C .

The main advantage in the group setting is that the properties of this
length functional are very well reflected by the functional

Lψ:L∞c (R, g)→ R, u 7→
∫ ∞

−∞
ψ
(
u(t)

)
dt,

where L∞c (R, g) denotes the space of all essentially bounded functions with
compact support with values in the Lie algebra g . Note that this space is a
union of the Banach spaces L∞c ([−n, n], g).

Applications to invariant Lie semigroups

Definition 4. For a closed subsemigroup S of a Lie group G we define the
tangent wedge

L(S) := {X ∈ g : expR+X ⊆ S}.
We say that S is a Lie semigroup if S is reconstructable from its tangent wedge
in the sense that

S = 〈exp L(S)〉,
i.e., S is the smallest closed subsemigroup of G containing exp L(S). We say
that a Lie semigroup S is

(i) generating if its tangent wedge generates the Lie algebra g ,
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(ii) invariant if it is invariant under all inner automorphisms of G . Note
that this is equivalent to the invariance of L(S) under the adjoint action
of G on g , and

(iii) pointed if its group of units H(S) = S ∩ S−1 is reduced to {1} .

For a Lie semigroup S ⊆ G we define

comp(S) := {s ∈ S : S ∩ sS−1 is compact}.

If we consider the quasi order

g ≤S g′ :⇐⇒ g′ ∈ gS

on G , then comp(S) consists of all points s such that the order interval [1, s] =
{g ∈ G : 1 ≤S g ≤S s} = S ∩ sS−1 is compact.

The following theorem is our main result. As we will see later, it is
possible to drop the assumptions that S is pointed and generating.

Theorem 5. Let S ⊆ G be an invariant Lie semigroup. Then

comp(S) ⊆ exp L(S).

First we consider the special case where C := L(S) is a pointed generat-
ing invariant cone in the Lie algebra g . We use the length functional of C to get
a distance function on the group G from the length functional on conal curves.

Definition 6. Let g, h ∈ G and Ωg,h denote the set of all conal curves from
g to h in G . We define

g ≺S h :⇔ Ωg,h 6= Ø.

Note that g ≺S h implies that g �S h but that the converse does not hold in
general (cf. [9], [10]). We set

d(g, h) :=

{
0 for g 6≺S h
sup{L(γ) : γ ∈ Ωg,h} for g ≺S h.

Furthermore we set d(g) := d(1, g).

Lemma 7. The distance function d has the following properties:

(i) If p ≺S q ≺S r , then d(p, r) ≥ d(p, q) + d(q, r).

(ii) d(gx, gy) = d(x, y) for all g, x, y ∈ G .

(iii) d(s) > 0 iff s ∈ int(S) .

(iv) d(s) <∞ and 1 ≺S s for all s ∈ comp(S) .

Proof. (i) This follows by concatenation of conal curves.
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(ii) This is a direct consequence of the fact that L(λg ◦ γ) = L(γ), where λg is
the left multiplication with g .

(iii) Suppose that d(s) > 0. Then there exists a conal curve γ: [0, T ]→ G with
γ(0) = 1 , γ(T ) = s and L(γ) > 0. Whence there exists t0 ∈]0, T [ such that
ψ
(
uγ(t0)

)
> 0. Let α(t) := γ(t0)−1γ(t+ t0). Then α: [0, T − t0]→ G is a conal

curve starting in 1 . We choose a neighborhood U of 1 in G and V ⊆ g such
that exp:V → U is a diffeomorphism. Now

(exp |−1
V ◦ α)′(0) = d exp(0)−1α′(0) = uγ(t0) ∈ intC.

Therefore (exp |−1
V ◦α)(0) = 0 entails that there exists t > 0 with (exp |−1

V ◦α)(t) ∈
int(C). We conclude that

α(t) ∈ exp
(

int(C)
)
⊆ int(S).

Putting all these things together yields

γ(T ) = γ(t0)α(t)
(
γ(t0 + t)−1γ(T )

)
∈ S int(S)S ⊆ int(S).

For the converse, assume that s ∈ int(S). Pick X ∈ int(C) and choose
t > 0 such that exp(tX) ∈ int(sS−1) = s int(S)−1 . Then 1 ≺S exp(tX) ≺S s
and (i) shows that

d(s) = d(s,1) ≥ d
(
s, exp(tX)

)
+ d
(

exp(tX),1
)
≥ d
(

exp(tX)
)
≥ tψ(X) > 0.

(iv) Let s ∈ comp(S) and γ ∈ Ω1,s . In view of Proposition 2(vii) there exists a
euclidean norm ‖ · ‖ on g such that Ψ(c) ≤ ‖c‖ for all c ∈ g . The norm ‖ · ‖
defines a left-invariant Riemannian metric on G . We also note that such a metric
is complete. Using [10, 1.24] we see that there exists an upper bound L > 0 for
the Riemannian arc length of all conal curves γ ∈ Ω1,s . Whence L(γ) ≤ L holds
also for the ψ -arc length. Thus d(s,1) ≤ L < ∞ . The last assertion follows
from [10, 1.23, 1.24].

The preceding lemma proposes the following strategy for the proof of
Theorem 5. Pick s ∈ comp(S), and assume for a moment that d(s) > 0. Then
d(s) <∞ . Find a conal curve γ from 1 to s which realizes the distance d(s) as
ψ -arclength. Show that γ , after reparametrization, is a one-parameter group.

Proposition 8. Let s ∈ comp(S) and suppose that d(s) > 0 . Then there
exists a conal curve γ: [0, T ]→ S such that

L(γ) = d(s) = max{L(α) : α ∈ Ω1,s}.

Proof. We know from Lemma 7(iv) that d(s) < ∞ . Therefore we find a
sequence γn ∈ Ω1,s , γn: [0, Tn]→ G , such that L(γn)→ d(s). Let ω ∈ int(C∗).
Since L is invariant under reparametrization we may assume that the functions
uγn take values in the compact convex set Cω: = {c ∈ C : ω(c) = 1} and that
γn(0) = 1 . Note that this set is a base of the cone C .
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In view of Proposition 1.24 in [10] we know that the sequence

Tn = Lω(γn) :=

∫ Tn

0

〈ω(τ), uγn(τ)〉 dτ

is bounded by a certain number T > 0. Let X ⊆ L∞([0, T ], g) denote the set of
all functions taking values in the cone C . This is a norm closed convex cone in
this Banach space. Moreover, the functional Lψ is concave (Proposition 2(x))
and norm continuous, and the sequence uγn is contained in a weak-∗ -compact
subset. Let u be a cluster point of this sequence.

Choose ε > 0 and n0 ∈ N with L(γn) = Lψ(uγn) > d(s)− ε . The set

Xε := {v ∈ X : Lψ(v) ≥ d(s)− ε}

is norm-closed and convex, therefore weak-∗ -closed. It follows that

Lψ(u) ≥ d(s)− ε.

For the solution γ of the initial value problem

γ(0) = 1, γ′(t) = dλγ(t)(1)u(t)

on the interval [0, T ] , this entails that uγ = u and the sequence γn has a
subsequence converging uniformly to γ . Thus γ(T ) = limk→∞ γk(T ) = s and
γ ∈ Ω1,s satisfies

L(γ) = Lψ(u) ≥ d(s)− ε.
Since ε was arbitrary, it follows that d(s) = L(γ).

To prove that a distance maximizing curve is essentially a one-parameter
group, we apply Pontrjagins Maximum principle ([13]). To see how this works, we
consider the following control system on the group G×R . The set of admissible
controls is the cone

U := {u ∈ L∞c (R+, g) : u(t) ∈ C a.e.}

and the system is given by

(†) (γ, l)′(t) =
(
dλγ(t)(1)u(t), ψ

(
u(t)

))
, (γ, l)(0) = (1, 0).

Suppose that the curve γ: [0, T ]→ G is a distance maximizing curve from

1 to s . Define l(t) :=
∫ t

0
ψ
(
uγ(τ)

)
dτ . Then (γ, l) is a solution of the system

(†) and since every other solution (γ1, l1) of this system with γ1(t) = s satisfies
l1(t) ≤ l(t), the point

(
s, γ(T )

)
lies on the boundary of the set of reachable

points. Therefore the Maximum Principle, as stated in [7, 4.1] provides a non-
zero solution (ω, τ) of the adjoint system

(ω, τ)′(t) =
(
ω(t) ◦ adu(t), 0

)
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(cf. [7, 5.1]) satisfying

(∗) τ(t)ψ
(
u(t)

)
+ 〈ω(t), u(t)〉 = 0 = min

c∈C

(
τ(t)ψ(c) + 〈ω(t), c〉

)
.

In view of Theorem 5.1 in [7] we even have an explicit form of ω given by

ω(t) = ω(0) ◦Ad
(
γ(t)

)
.

Proposition 9. If γ is a distance maximizing curve from 1 to s and d(s) >
0 , then s ∈ exp L(S) .

Proof. We consider the solution (ω, τ) of the adjoint system. Set τ0 := τ(t).
Suppose that ω(0) = 0. Then τ0 6= 0 and therefore

τ0ψ
(
u(t)

)
= 0

entails that ψ
(
u(t)

)
= 0, i.e., u(t) ∈ ∂C for almost all t ∈ [0, T ] . This

contradicts the assumption that d(s) = Lψ(u) > 0. Whence ω(0) 6= 0.

For v ∈ ∂C we find that

0 ≤ τ0ψ(v) + 〈ω(0), v〉 = 〈ω(0), v〉.

This shows that ω(0) ∈ C∗ , and, since C and therefore C∗ is invariant under
Ad(G), we find that ω(t) ∈ C∗ for all t ∈ [0, T ] .

Suppose that τ0 ≥ 0. Then τ0ψ(u(t)
)
+〈ω(t), u(t)〉 = 0 entails that both

summands are zero. Pick t with ψ
(
u(t)

)
> 0. Then 〈ω(t), u(t)〉 > 0 and we

have a contradiction which shows that τ0 < 0. After rescaling of ω we assume
that τ0 = −1.

Pick t ∈ [0, T ] with u(t) ∈ int(C). Then

ψ
(
u(t)

)
= 〈ω(t), u(t)〉 > 0

and for v ∈ C with ψ(v) = ψ
(
u(t)

)
the assertion (∗) implies that

〈ω(t), v〉 ≥ ψ(v) = ψ
(
u(t)

)
= 〈ω(t), u(t)〉.

In view of Proposition 2(ix) this means that

d(logψ)
(
u(t)

)
=

1

ψ
(
u(t)

)dψ
(
u(t)

)
=

1

〈ω(t), u(t)〉ω(t).

We conclude that
dψ
(
u(t)

)
= ω(t) ∈ int(C∗).

It follows in particular that ω(s) ∈ int(C∗) holds for all s ∈ [0, T ] because C∗

is invariant under the coadjoint action.

Let X ∈ g . Since g contains a pointed generating invariant cone, the
group G is unimodular, i.e., det

(
Ad(g)

)
= 1 for all g ∈ G . Now the invariance

of C and Proposition 2(ii) show that

ψ ◦ eadX = ψ ∀X ∈ g.
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Whence

0 =
d

ds s=0
ψ
(
u(t)

)
=

d

ds s=0
ψ
(
es adXu(t)

)

= dψ
(
u(t)

)
◦ adX

(
u(t)

)
= ω(t) ◦ adX

(
u(t)

)

= −ω(t) ◦ adu(t)(X) = −ω′(t)(X).

Since X was arbitrary, ω is constant. Next Proposition 2 and dψ
(
u(t)

)
= ω(t) =

ω(0) yield that the values of u lie on a line R+X in the interior of C . Finally
this proves that s ∈ expR+X .

Proposition 10. If S is a pointed generating invariant Lie semigroup, then

comp(S) ⊆ exp L(S).

Proof. First we pick s ∈ int(S) ∩ comp(S). Then d(s) > 0 (Lemma 7) and
with Propositions 8 and 9 we see that s ∈ exp L(S).

Now let s ∈ comp(S) be arbitrary. Since comp(S) is open in S ([9, V.9])
and int(S) is dense, it follows from the first part of the proof that s ∈ exp L(S).
Let s = limn→∞ expXn with Xn ∈ L(S). If the sequence Xn is bounded, there
exists a convergent subsequence and s ∈ exp L(S) follows. If not, we may assume
that ‖Xn‖ → ∞ for a norm ‖ · ‖ on g . Passing to a subsequence we also assume
that 1

‖Xn‖Xn → X ∈ L(S) \ {0} . For t ∈ R+ this entails that

1 ≤S exp(t
1

‖Xn‖
Xn) ≤S exp(Xn)

and therefore

1 ≤S exp(tX) ≤S s.

Since s ∈ comp(S), it is impossible that the non-compact set exp(R+X) is
contained in the order interval [1, s] ([11, III.11]), a contradiction.

Proof. (of Theorem 5) Let H(S) := S∩S−1 . We may assume that comp(S) 6=
Ø. Then it follows in particular that H(S) is a compact normal subgroup of G .
Let G1 := G/H(S) and π:G → G1 denote the quotient homomorphism. Then
S1 := π(S) is an invariant Lie semigroup with H(S1) = {1} and comp(S1) =
π
(

comp(S)
)

([9, V.8]).

Let s ∈ comp(S). Then π(s) ∈ comp(S1). Let W1 := L(S1), g2 :=
W1 − W1 , G2 the group 〈exp g2〉 endowed with its Lie group topology, and
j:G2 → 〈exp g2〉 the corresponding injective morphism of Lie groups. Then
S2 := 〈expG2

W1〉 is an invariant Lie semigroup in G such that L(S2) = W1 is
generating in g2 . Now it follows from [12, IV.4] that there exists an element
s2 ∈ S2 such that j(s2) = π(s). We claim that s2 ∈ comp(S2). If this is false,
then there exists X ∈ W1 such that expG2

(R+w) ⊆ [1, s2] ([9, VI.3]). Then
expG1

(R+X) ⊆ [1, π(s)] contradicts the fact that π(s) ∈ comp(S1).

Now Proposition 10 provides X ∈ W1 with expG2
X = s2 . Then

π(s) = expG1
X . Let q ⊆ g be an H(S)-invariant vector space complement for
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h := L
(
H(S)

)
. Then [h, q] = {0} and L(S) = h + L(S) ∩ q . Let X ′ ∈ L(S) ∩ q

such that dπ(1)X ′ = X . Then

π(expGX
′) = expG1

X = π(s).

Therefore there exists h ∈ H(S) such that s = (expGX
′)h . The compactness of

the group H(S) now implies the existence of Y ∈ h such that expY = h . Since
[Y,X ′] = 0, this leads to

s = expX ′ expY = exp(X ′ + Y )

with X ′ + Y ∈ L(S).

Corollary 11. If g = L(G) is a compact Lie algebra and S ⊆ G an invariant
Lie semigroup, then S = exp L(S) .

Proof. (Sketch, cf. [8, IV.9]) This is a standard reduction argument. The
new complication, in comparison with the proof of Theorem 5, is that H(S) may
be non-compact. This does not really matter because the non-compact factor of
H(S) is a central vector group in G .

We note that the last result is a contribution to the theory of divisible
subsemigroups of Lie groups (cf. [4, 5]). Corollary 11, together with [2, II.7.3,
V.6.11] characterizes the divisible pointed subsemigroups of Lie groups with
compact Lie algebra as those that are invariant.
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