The rule of Littlewood/Richardson and its treatment by a computer

Hartmut Schlosser

1. Introduction

The irreducible summands of the sum decomposition of the tensor product of two irreducible representations of a classical group or algebra are computable by aid of the rule of Littlewood/Richardson (shortly LR-rule). The LR-rule is effective also for other decomposition problems. It originated from the task to decompose the product of two Schur functions into a sum of Schur functions. The idea connecting all these problems is the characterization of the objects by a partition $\mathbf{l}=\left(l_{1}, l_{2}, \ldots, l_{p}\right), l_{1} \geq l_{2} \geq \ldots \geq l_{p} \geq 0, l_{i} \in \mathbb{N}$ or by a Young frame with p rows and l_{i} boxes in the i-th row $(i=1, \ldots, n)$. We get the summands of the product of two such objects adding the boxes of the second frame in a various way to the first frame. With the LR-rule we have to expect certain restrictions. It is possible that two frames with only a few rows give a great number of summands. So the use of a computer for the calculation appears to be indicated; for this purpose the LR-rule will be translated in a formula.

2. The rule of Littlewood/Richardson

We consider two Young frames $\mathbf{l}=\left(l_{1}, l_{2}, \ldots, l_{p}\right)$ and $\mathbf{m}=\left(m_{1}, m_{2}, \ldots, m_{q}\right)$. In the j-th row of \mathbf{m} we write in all the boxes the number j and denote these boxes by j-boxes. Now we add the boxes of \mathbf{m} to \mathbf{l} beginning with the 1 -boxes, next the 2 -boxes etc. In the built frame the following conditions must be satisfied:
I. The frame gotten from 1 after the addition of the 1 -boxes (2-boxes, ...) must be admissible, i.e., the length of successive rows are non-increasing.
II. The frame does not contain boxes with equal labels appearing in a column.
III. The number of $(j+1)$-boxes is never greater than the number of j boxes if we count up the boxes in the rows from the right to the left and from top to bottom ($j=1, \ldots, q-1$).

We sum symbolically all Young frames built in this way and denote this sum as the result of the multiplication of \mathbf{l} and \mathbf{m}.

Example: The two factors are \square and \square (1,1) and (2,1) resp.).

We fill the second frame with numbers:

Now we add the 1-boxes to the first frame:
(1)

(2)

(3)

(4)

(5)

By I. is forbidden: (4); by II. are forbidden: (2),(5). Now we add the 2-box to (1) and (3):
(1a)

(1b)

(3b)

(3c)

(3d)

By I. are forbidden: (3c); by III. are forbidden: (1a), (3a). The result is the following:(1b),(1c),(3b) and (3d) or (3,2),(3,1,1), (2,2,1) and (2,1,1,1).

3. A closed formula for the LR-rule

A general formula for the LR-rule is given in [S91]. There we can find also formulas for some Clebsch-Gordan-series of classical Lie algebras and superalgebras. Here we will prove only a special case, but the same idea leads to the general proof. We look to $\mathbf{l}=\left(l_{1}, \ldots, l_{p}\right)$ und $\mathbf{m}=\left(m_{1}, m_{2}\right)$ and complete \mathbf{l} by $l_{p+1}=l_{p+2}=0$. We consider an admissible distribution of the 1 -boxes and the 2 -boxes of \mathbf{m} at \mathbf{l} and denote the number of i-boxes in the h-th row by $k_{h i}$. If we put first $k_{p+1,1} 1$-boxes to the $(p+1)$-th row of \mathbf{l}, then $k_{p 1} 1$-boxes to the p-th row etc., we have the following restrictions by I. and II.:

$$
\begin{gathered}
k_{h 1} \leq \min \left(l_{h-1}-l_{h}, m_{1}-\sum_{j=h+1}^{p+1} k_{j 1}\right)=\operatorname{Min}(l, m ; h, 1) \\
k_{11}=m_{1}-\sum_{j=2}^{p+1} k_{j 1}
\end{gathered}
$$

for $h=2, \ldots p+1$. For the parameters $k_{h 2}$ we get from I. and II.:

$$
\begin{gathered}
k_{h 2} \leq \min \left(\left(l_{h-1}+k_{h-1,1}\right)-\left(l_{h}+k_{h 1}\right), m_{2}-\sum_{j=h+1}^{p+2} k_{j 2}\right)=\operatorname{Min}(l, m ; h, 2) \\
k_{11}=m_{1}-\sum_{j=2}^{p+1} k_{j 1}
\end{gathered}
$$

for $h=2, \ldots p+2$.

Now we have to consider also condition III. :

$$
\sum_{j=2}^{h} k_{j 2} \leq \sum_{j=1}^{h-1} k_{j 1}
$$

or

$$
\sum_{j=3}^{h} k_{j 2}+m_{2}-\sum_{j=3}^{p+2} k_{j 2} \leq \sum_{j=2}^{h-1} k_{j 1}+m_{1}-\sum_{j=2}^{p+1} k_{j 1}
$$

or

$$
m_{2}-m_{1}-\sum_{j=h+2}^{p+2} k_{j 2}+\sum_{j=h}^{p+1} k_{j 1} \leq k_{h+1,2}
$$

for $h=2, \ldots, p+1$.
So we get

$$
\operatorname{Max}(m ; h, 2)=\max \left(0, m_{2}-m_{1}+\sum_{j=h-1}^{p+1} k_{j 1}-\sum_{j=h+1}^{p+2} k_{j 2}\right) \leq k_{h 2}
$$

$(h=3, \ldots p+1)$ and can press the LR-rule in the following form:

$$
\begin{gathered}
l * m= \\
\sum_{k_{p+1,1}} \ldots \sum_{k_{21}} \sum_{k_{p+2,2}} \ldots \sum_{k_{32}}\left(l_{1}+k_{11}, l_{2}+k_{21}+k_{22}, \ldots, l_{p+1}+k_{p+1,1}+k_{p+2,2}, l_{p+2}+k_{p+2,2}\right) \\
0 \leq k_{h 1} \leq \operatorname{Min}(l, m ; h, 1)
\end{gathered}
$$

$$
\begin{aligned}
& \operatorname{Max}(m ; h, 2) \leq k_{h 2} \leq \operatorname{Min}(l, m ; h, 2) \\
& k_{11}=m_{1}-\sum_{j=2}^{p+1} k_{j 1}, k_{22}=m_{2}-\sum_{j=3}^{p+2} k_{j 2}
\end{aligned}
$$

4. Treatment by a computer

This formula and the general formula also can be treated by a computer. We have written in Greifswald a C-program which give the result of the LR-rule using the proved formula. For example, we have computed the following cases: (1) $(5,3,1) *(2,2,1)(2)(6,5,3,3,1) *(3,2,1)(3)(8,6,5,4,2,1) *(4,2,2,1)$ The sums consists of (without consideration of multiplicities) 37 summands (1), 436 summands (2),

10483 summands (3). These results show that it is necessary to use a computer. It is possible to compute the summands of the LR-rule by an other procedure. This procedure is realized in Bayreuth using the special computer-algebra- system SYMCHAR. The theoretical basis of this procedure is given in the paper [LS85] of Lascoux/Schützenberger. The first comparisons show that this procedure should be a little quicker than our computation. But it seems that an advantage of the formulas of [S91] consist in the possibility of computing the Clebsch-Gordanseries of representations of classical Lie algebras and superalgebras without change of the program: We only have to replace the definition of $\operatorname{Max}(m ; h, i)$ and $\operatorname{Min}(l, m ; h, i)$ by a similar definition.

References

[LS85] Lascoux, A. and Schützenberger, M.-P., Schubert polynomials and the Littlewood-Richardson rule, Letters in Math. Phys. 10(1985), 111-124.
[S91] Schlosser, H., A closed formula for the rule of Littlewood/Richardson with applications in the theory of representations of $g l(V)$ and the superalgebra $p l(V)$, Math. Nachr. 151 (1991), 315-326.

[^0]Received March 31, 1992

[^0]: Fachrichtungen
 Mathematik/Informatik
 Ernst Moritz Arndt Universität
 Friedrich Ludwig Jahn-Straße 15a
 O-2200 Greifswald, Germany

