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Integrable operator representations of R? and SL,(2,R)

Konrad Schmiidgen

1. Introduction

Unbounded self-adjoint or normal operators in Hilbert space which sat-
isfy some algebraic relations appear in representation theory of Lie algebras and
in mathematical physics. To be more precise, one deals with certain “well-
behaved” representations of the relations. There is no canonical way to define
these well-behaved representations for a given set of relations, but in many cases a
reasonable candidate for such a definition is easy to guess. For instance, it is quite
natural to define the well-behaved representations of the relation ab—ba = —i for
self-adjoint operators a and b by the requirement that a and b fulfill the Weyl
relation e et = eits gisb gita ¢ s ¢ R. More generally, for a representation of
a Lie algebra by skew-adjoint operators in Hilbert space (or for the corresponding
commutation relations of a set of Lie algebra generators) one would take those
which come from a unitary representation of the associated simply connected and
connected Lie group. In representation theory of Lie algebras, such representa-
tions are usuallly called integrable (see e.g. [S1], Definition 10.1.7). Following
this terminology, we shall also call the well-behaved representations of an arbi-
trary set of relations (not necessarily of Lie type) “integrable”. Before we come
to quantum groups, let us briefly mention another general example: Consider
the relation ab = b F'(a) for a self-adjoint operator a and a normal operator b,
where F' is a given measurable function on the real line. The integrable repre-
sentations for this relation can be defined by requiring that f(a)b C bf(F(a))
for all L°-functions f on R. This approach has been studied by [OS] and in
various other papers of the Kiev school.

Let us turn to quantum groups now. In what follows we suppose that
q is a fixed complex number of modulus one. Let ]Rg denote the free x-algebra
with unit element 1 which is generated by two hermitean elements =z and y
satisfying the relation

Ty = qyz . (1)

In quantum group theory (cf. [M]), Rg is usually called the real quantum plane.
For ¢ =1, R[QI is the commutative polynomial algebra C[z,y] in two hermitean
indeterminats = and y. How do we get the points of the real plane R? from
the *-algebra C[z,y]? The answer is easy and well-known: The points of R?
are (in one-to-one correspondence to) the equivalence classes of irreducible pairs
{z,y} of strongly commuting self-adjoint operators z and y on a Hilbert space.
(Strong commutativity of two self-adjoint operators means that their spectral
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projections commute. Note that it is not sufficient that the self-adjoint operators
commute pointwise on a common invariant core, because there exist so-called
“Nelson couples”, cf. [S1], Section 9.3). If we try to proceed in a similar way in
case of arbitrary ¢, we first have to define strong commutativity (or integrable
representations in our prefered terminology) for the relation (1). The equivalence
classes of irreducible integrable representations {z,y} of (1) may be thought of
as the “points” of the real quantum plane Rg.

It might be worth to note that for g2 # 1 the relation (1) for self-adjoint
operators x and y has interesting operator-theoretic properties: If one of the
operators x, y is bounded, then we are in the trivial case where x = 1 ®0 and
y = 0®y; . Further, in contrast to Lie algebra relations, non-zero analytic vectors
for x and y do not exist except in trivial cases. To be precise, if (1) is satisfied
on an invariant dense domain D of a Hilbert space and if ker x = ker y = {0},
then the only analytic vector for @ and b in the domain D is the null vector.

In the following two sections we propose a definition of integrable rep-
resentations for the real quantum plane R? and for the real form SL,(2,R) of
SL,(2) and we classify the irreducible integrable representations up to unitary
equivalence. The material is taken from the authors paper [S2] which contains
detailed treatments and proofs of all results discussed in what follows.

Throughout the following, we assume that ¢* # 1 and we write ¢ = e~
with || < 7 and ¢,:= ¢ —7n for n € Z. If = is a self-adjoint operator, we
write © > 0 (resp. z <0) if ker z = {0} and « > 0 (resp. = <0).

2. Integrable representations of R(QJ

Let x and y be self-adjoint operators acting on the same Hilbert space
H. We want to define what we shall mean by saying that the couple {z,y} is
an integrable representation of R[QI.

First let us suppose that z > 0 or x < 0. If the relation (1) is fulfilled for
elements = and y of an algebra with unit, then we have f(x)y =y f(qx) for any
complex polynomial f. It seems to be natural to define integrability by requiring
the latter relation for the self-adjoint operators x and y and for certain “nice”
functions f, say f(s) = |s|®, s,t € R. We shall do this and we interpret |gx|*
as e(P727R)| |t = e¥2xt|g|* . Since we have asssumed that 2 > 0 or 2 < 0, this
might be justified. The precise formulation of the preceding is given in part (i)
of the following definition.

Definition 2.1. (i) Suppose that z > 0 or z < 0. We shall say that the pair
{z,y} is an integrable representation of Rg if there exists an integer k such that

2|ty = eP2ly|z|® for teR. (2)
(i) Suppose that © > 0 or # < 0. Set Ho:= ker x and z1:= x|Hg . The
pair {x,y} is called an integrable representation of Rg if there are self-adjoint
operators yo on Ho and y; on HE such that y = yo @ y1 on Ho & Hy and
{1,591} is an integrable represenation of R2 according to (i).
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If (2) is satisfied in part (i) of Definition 2.1, we shall write {x,y} €
Car(q). In part (ii) we also write {x,y} € Cor(q) if {z1,11} € Car(q).

Next we turn to the general case where x is neither positive nor negative
in general. Throughout the following discussion we shall assume that x has a
trivial kernel. Formally, (1) yields 2%y = ¢*yx?. It might be natural to require

that integrability for zy = qyr implies integrability for 2%y = ¢?yx?. Since

2?2 > 0 because of ker z = {0}, integrability is already defined for the latter
relation. By Definition 2.1, (i), it means that (22)%y = e(2¢=27k)ty(22) t c R,
for some integer k. That is, |z|®y = e¥*Sy|z|** for s € R or equivalently,
{|z|,y} is an integrable representation of R2 , where ¢ = (—1)*. This is our
first condition in Definition 2.2 below. To derive the second condition, we use
the polar decomposition = = u,|z| of the self-adjoint operator z. From the first
condition that {|z|,y} is an integrable representation of RZ, it can be shown
that there is a core D for |x| and y such that |z|D =D and |z|yy = eqy|z|¢,
1 € D. Another reasonable requirement for the integrability of (1) might be to

assume that xyy = qyxy for ¢ € D. Then we obtain

Ty = uz|zlyy = equay|x| = qury = quuglxlyy for Y e D,

so that u,yn = eyu,n for n € |z|D. Since D is a core for y, we get u,y C eyu, .
This is our second condition in the following definition.

Definition 2.2.  We shall say that a couple {x,y} of self-adjoint operators
is an integrable representation of ]RZ if for e =1 or ¢ = —1 the following two
conditions are fulfilled:

(D.1) {|z|,y} is an integrable representation of RZ_ .

(D.2) u,y C eyuy,.

From (D.1), there is a k € Z such that {|z|,y} € Cor(q). We write
{z,y} € Cor(q) if e=1 and {z,y} € Car41(q) if € = —1 in Definition 2.2.

Despite of the above discussion, our Definitions 2.1 and 2.2 might still
look a bit artificial. We state a few facts which show that integrable representa-
tions have indeed very nice properties.

1.) A couple {z,y} of self-adjoint operators is an integrable representation of
R?2 if and only if u.|y| C |ylue, uylz| C |z|uy,, usuy = cuyu, and {|z],|y|} is
an integrable representation of qu for e =1 or for ¢ = —1.

In contrast to Definition 2.2, the preceding conditions are symmetric in  and
y. Therefore, {z,y} is an integrable representation of Rg if and only if {y,z}
is an integrable representation of R%.

2.) If {z,y} is an integrable representation of R?, then there exists a linear
subspace D of D(z) N D(y) which is invariant under = and y and a core for
both operators such that xyy = qyxi for vectors ¢ in D.

3.) Suppose that = > 0 and y > 0. Then {z,y} is an integrable representation
of Rg if and only if there is a k € Z such that the unitary groups z* and y**
satisfy the Weyl relation % 3% = e?P2rts ¢/ it for ¢,s € R.
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The last assertion is the main technical ingredient for the classification
of irreducible integrable representations. As usual, we denote by P and @ the
momentum operator resp. the position operator from quantum mechanics, i.e.
P is the differential operator —i-% and @ is the multiplication operator by ¢ on

dt
the Hilbert space L*(R).

Theorem 2.3. Each irreducible integrable representation {x,y} of R(QI 18
unitarily equivalent to one of the following list:

Doy e 1= e1e9,y = e0e¥* P on H = L2(R) : e1,69 € {1, -1}, k € Z.

Q por+1 P
e 0 0 er2k+
(thx:<0 _{Q),y:<émﬂp ) )

onH=L*R)®L*R): k€ Z.
(D,p:z=a,y=0omnH=C: a€R.
(Dy 4 :2=0,y=aonH=C: a€R.

All pairs of this list are irreducible integrable representations of ]Rg.
We conclude this section by the following

Example 2.4. Suppose that A and B are self-adjoint operators on a Hilbert
space G. Let k,1,n € Z. Let = denote the self-adjoint operator e? @ I®—(e?®1)
on the Hilbert space H: = L*(R)®G @ L*(R) ®G. It is not difficult to show that
the operator matrix
eP2rP RA eP2nt1P QI
(6<,02n+1P QT e P ® B )

defines an essentially self-adjoint operator on H. We denote its closure by y.
Then the self-adjoint operators x and y satisfy the relation (1) pointwise on a
common invariant core for both operators. The couple {z,y} on H is irreducible
if and only if the couple {A, B} on G is irreducible. Further, two couples {z, y} of
this kind are unitarily equivalent if and only if the corresponding couples {A, B}
on G are unitarily equivalent and the corresponding triples {k,l,n} of integers
coincide. That is, our example gives a wealth of irreducible representations of (1)
by self-adjoint operators. But such a couple {x,y} is an integrable representation
of R[QI only in the obvious case where A =0 and B = 0.

3. Integrable representations of SL,(2,R)

First let us recall that SL,(2,R) is the free *-algebra with unit element
1 generated by four hermitean elements a, b, ¢, d which satisfy the following seven
relations:

ab = gba , ac = qca , bd = qdb, c¢d = qdc, bc = ¢b (3)
ad —da = (q —7q) be, (4)
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ad —gbc=1. (5)

(A little more in detail, this definition means the following: Let C(a,b,c,d) be
the free complex algebra with unit generated by four elements a,b,c,d and let
7 denote the two-sided ideal of this algebra generated by the seven elements
ab— gba, ac—qca, bd—qdb, c¢d— qde, be—cb, ad—da— (q—q)be, ad —qbc—1.
Then the quotient algebra C(a,b,c,d)/Z is denoted by SL4(2), cf. [M]. There
is a unique involution on the algebra C(a,b,c,d) for which a,b,c and d are
hermitean elements. Since |¢| = 1 by assumption, the ideal Z is invariant under
this involution. Therefore, SL,(2) becomes a *-algebra which is denoted by
SLy(2,R).)

Note this SL,(2,R) is even a Hopf x-algebra, but we do not use this
additional structure in what follows. For our purposes it is convenient to replace
(4) by

da —gbc=1. (6)

It is clear that (3), (4), (5) and (3), (5), (6) are equivalent families of relations.
We begin with a simple lemma which is the algebraic background for the
operator-theoretic considerations below.

Lemma 3.1. Let a,b,c, and d be hermitean elements of a *-algebra A with
unit.

(i) Suppose that a is an invertible element of A. Then a,b,c,d fulfill the
relations (3), (4), (5), if and only if

ab = qba , ac = qca , be = cb (7)

and

d= (gbc+1)a~t. (8)

(ii) Suppose that b resp. c is an invertible element of A. Then z:=b"1c (resp.
z:=c"1b) is a hermitean element of A which permutes with a,b,c, and d.

Slightly simplified, the main idea behind our integrability definition given
below is as follows: We assume that the self-adjoint operator a has trivial kernel
and we express d in terms of a~!,b, ¢ via (8).

On the purely algebraic level, the seven equations (3), (4), (5) are equiv-
alent to the three equations of (7). For the first two of the three relations of
(7) integrable representations have been already defined in the preceding sec-
tion. For the third relation such a definition is obvious: A couple {b,c} of two
self-adjoint operators is said to be an integrable representation of R? if b and ¢
strongly commute (i.e. the spectral projections of b and ¢ commute).

Definition 3.2. Let a,b,c,d be self-adjoint operators acting on the same
Hilbert space H such that ker a = {0}. We shall say that the quadruple
{a,b,c,d} is an integrable representation of SL,(2,R) if the following three
conditions are satisfied:

(D.1) Three is an n € Z such that {a,b} € C,,(q¢) and {a,c} € C,(q).

(D.2) b and ¢ strongly commute.
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(D.3) d is the closure of the operator (gbc+ 1)a™1.

Let us discuss the preceding by a number of remarks.
1.) In [S2] another definition of integrable representations of SL,(2,R) has been
used. That it is equivalent to the above Definition 3.2 is stated in Theorem 4.12,
(i), of [S2].
2.) Formally, ab = gba and ac = qca imply that a~'bc = g%bca™!. From condi-
tion (D.1) it follows easily that the pair {a~!,bc} is an integrable representation
of Rgz . Having this, it can be shown that the operator (gbc+1)a~! is symmetric

and densely defined. Since d is self-adjoint, (gbc + 1)a—! has to be essentially
self-adjoint by (D.3). This suggests the following view of our Definition 3.2:
The integrable representations of SL,(2,R) are in one-to-one correspondence to
triples {a, b, ¢} of self-adjoint operators on a Hilbert space H with ker a = {0}
such that (D.1) and (D.2) are fulfilled and the operator (gbc+1)a~" is essentially
self-adjoint.

3.) Suppose {a,b,c,d} is an integrable representation of SL,(2,R). Then, by
condition (D.1), the pairs {a,b} and {a,c} are integrable representations of R?.
It should be emphasized that (D.1) requires more, namely that both couples
{a,b} and {a,c} belong to the same class C,(q). The reason for this stronger
requirement in (D.1) is that it has the following consequence: If ker b = {0},
then the self-adjoint operator z: = b—!c commutes strongly with a (and obviously
also with b, ¢ and d).

4.) The relations (3), (4), (5) defining SL,(2,R) imply that

ad — ¢*da= (1—¢*)1. 9)

and
da—q’ad=(1-7°)1. (10)

Integrable representations for this type of relations have been also defined in [S2].
We shall not repeat this definition here.

5.) The above Definition 3.2 may look as the weakest possible variant of a
reasonable definition of integrability. However, it hides our original motivation
for such a definition: We wanted to select the “best possible well-behaved”
representations of the x-algebra SL,(2,R) in the sense that they give integrable
representations of all subrelations and that they behave nicely under algebraic
manipulations. It turns out that our Definition 3.2 achieves these aims. To be
precise, each integrable representation {a,b,c,d} of SL,(2,R) has the following
properties:

— The couples {a,b}, {a,c}, {b,d}, {c,b}, {b,c}, {a,d} and {d,a} are inte-
grable representations of the corresponding relations in (3), (9) and (10).

— {d,b,c,a} is an integrable representation of SLz(2,R). (In particular, this
means that ker d = {0} and a is the closure of the operator (gbc+ 1)d~1.)

— There is a dense domain D of the underlying Hilbert space H which is an
invariant core for each operator a,a™!,b,c,d such that all relations (3)—(10)
are pointwise fulfilled for vectors in D. (In particular, this implies that each
integrable representation of SL,(2,R) defines indeed a x-representation of the
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x-algebra SLy(2,R) on the domain D in the sense of unbounded representation
theory, cf. Section 8.1 of [S1].)

The following theorem gives a complete classification of all irreducible
integrable representations of SL,(2,R) up to unitary equivalence.

Theorem 3.3. Put k=0 if p >0 and k= —1 if p <0. For arbitrary \ €
(0,400), €1,62 € {1,—1} and a € R\{0}, the following quadruples {a,b,c,d}
are irreducible integrable representations of SLy(2,R):

(D)\,Ehsz ra=e 6Q7 b=ey 8¢P7 c=Ab,

d=¢c (@e*" +1)e? on H=L*R).

(I>00761752 :a:€18Q7 b:07 CZEQBQDP, d:gleQ
on H=L2(R).
e® 0 0 eP2r+1 P
(II)_A:a:<O 0 ) b= emarr 0 e= b,
d— (g)\62<‘02’“+1p + 1) e @ 0
a 0 — (gre?e2raf 4 1) €

Q war+1 P
e 0 0 e¥2k+
(II)OOZCL: 0 —6Q> 7bzovc:<e<,02k+1P 0 )

(), :a=a,b=c=0,d=a"' on H=C.

(The formulaes for d in (I), _, ., and in (II)_, should be read in the sense that
d 1is the closure of the operator on the right hand side.)

Conversely, each irreducible integrable representation of SL4(2,R) is unitarily
equivalent to one and only one representation of this list.

After a first look at this list one may wonder at the restriction to positive
values of A for (I),_ _, and (II)_,. Also, one may try to replace ¢ by
Yon, n € Z, in (I) or to allow arbitrary integers k£ in (II). Indeed, all this
gives quadruples {a, b, c,d} of operators which fulfill the relations (3)—(10) on a
suitable invariant core fora,a~!,b,c and d. Further, a,b and ¢ are self-adjoint
and satisfy the conditions (D.1) and (D.2) of Definition 3.2. But the operator
(gbc+1)a™! is essentially self-adjoint only in the few cases collected in our list of
Theorem 3.3. (The other representations just mentioned are called a-integrable
in [S2].)

We close our discussion by two examples.
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Example 3.4. The only operator representation of SL,(2,R) which appeared
in the literature (according to my knowledge) is due to L.D. Faddeev and L.A.
Takhtajan, cf. [FT]. It occured in their study of the Liouville model on the
lattice and it is defined as follows: Set ¢ = e?, a = eTV1+e2Rex ,b=c=¢?
and d = e~ 21+ e2Q~ 2 on H = L2%(R). The operators a and d (considered
on a suitable domain) have self-adjoint closures which are again denoted by a
and d, respectively. It can be shown that {a,b,c,d} is an irreducible integrable
representation of SL4(2,R) and unitarily equivalent to the representation (I), ; ;
of our list. o

Example 3.5. Retain the notation of Example 2.4 and put a =z, b=y, c =
0, d=2z~!. From Example 2.4 we then obtain a large family of irreducible non-
integrable representations of SL,(2,R) by self-adjoint operators a,b, ¢, d which
fulfill the relations (3)—(10) on a common invariant core for these operators.
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