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Endomorphisms of Stable Planes

Markus Stroppel

ABSTRACT. Endomorphisms of stable planes are introduced, and it is

shown that these are injective, locally constant or collapsed. Examples are

studied, and it is shown that there are stable planes admitting “substantially

more” endomorphisms than automorphisms.

It seems to be a rather popular feeling that geometry is the domain of groups
and symmetry, whereas asymmetry and semigroups have been banished to other
fields in mathematics. The purpose of this note is to show that this feeling is
justified in the area of locally compact connected affine or projective planes, but
that the situation is completely different if one studies hyperbolic planes and
their generalizations.

Definition 1.

a) A linear space (P,L) consists of a non-empty set P (“points”) and a
system L of subsets of P (“lines”) such that

- for each pair (p, q) of distinct points there is exactly one set L ∈ L
(denoted by pq ) such that {p, q} ⊆ L ,

- each member of L contains at least two elements, and P 6∈ L .

b) A stable plane 1 (P,L) is a linear space whose point space P and line
space L are equipped with non-discrete2 Hausdorff 3 topologies such
that

- the join map ∨:P 2 \ {(p, p)|p ∈ P} → L: (p, q) 7→ pq is continuous,

- the set D :=
{

(L,M) ∈ L2
∣∣ L 6= M,L ∩M 6= Ø

}
is open in L×L , and

the intersection map ∧:D → P : (L,M) 7→ L ∧M is continuous (where
L ∧M is defined by {L ∧M} = L ∩M ).

- there exists a quadrangle in P (i.e., four points such that no three of
them are contained in a line).

The fact that D is open in L2 shall be referred to as stability.

1 In a number of papers by R. Löwen or the author, stable planes are studied
under the additional assumption that P and L are locally compact and of
positive covering dimension, see [13] for an overview. We do not need these
assumptions in the present note, thus we resume the terminology of [7].
2 Note that this, together with the geometrical assumptions that define a stable
plane, already implies that there are no isolated points in any line, cf. [7: 1.2].
3 In fact, the Hausdorff property is an easy consequence of the remaining axioms,
cf. [3: 4.2].
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Definition 2. Let (P,L) and (P ′,L′) be linear spaces. A mapping π:P → P ′

is called a lineation from (P,L) to (P ′,L′) if for each line L ∈ L there exists a
line L′ ∈ L′ (not necessarily unique) such that Lπ ⊆ L′ . A lineation π is called
collapsed if the image P π is contained in some line H ∈ L′ .

Lemma 3. Let π: (P,L)→ (P ′,L′) be an injective 4 lineation of stable planes.

a) There exists a unique mapping λ:L → L′ such that Lπ ⊆ Lλ for each
L ∈ L .

b) If π is non-collapsed then λ is injective.

c) If π is continuous then λ is continuous.

Proof. Assume that L and M are two lines such that Lλ = Mλ . If p ∈ L
and q ∈ M \ {p} then (pq)λ = Lλ . Hence we may assume that L meets M .
Let z be a point that is not contained in L∪M . By stability, there exists a line
H through z that meets both L and M in different points. This implies that
zπ ∈ Hλ = Lλ , and π is collapsed.

Finally assume that π is continuous. Let U be a neighborhood of Lλ for
some line L ∈ L . Choosing two points p, q ∈ L we infer that there are
neighborhoods U ′ of pπ and V ′ of qπ , respectively, such that U ′V ′ ⊆ U .
Now there are neighborhoods U of p and V of q , respectively, such that
Uπ ⊆ U ′ and V π ⊆ V ′ . Consequently, UV is a neighborhood of L such that
(UV )λ = UπV π ⊆ U ′V ′ ⊆ U .

In the sequel, let (P,L) and (P ′,L′) be stable planes, and assume that π:P → P ′

is a continuous lineation from (P,L) to (P ′,L′).

Lemma 4. Assume that p, q ∈ P are points such that pπ 6= qπ . If there is a
point r ∈ P \ pq such that rπ = qπ then there is a neighborhood U of p such
that Uπ ⊆ pπqπ , i.e., the restriction π|U is collapsed.

Proof. By stability, there is a neighborhood U ⊆ V of p such that each line
in qU := {qu | u ∈ U} meets the line pr in a point of V . Consider the mapping

α:U → pr ∩ V :u 7→ qu ∧ pr.
Since uα ∈ qu , we know that uαπ ∈ qπuπ (recall that qπ 6= uπ ). On the other
hand, we have that uα ∈ pr , hence uαπ ∈ pπrπ = pπqπ . Now uαπ 6= qπ by the
choice of V , and we infer that pπrπ = uαπqπ = uπqπ . Thus Uπ ⊆ pπqπ .

Lemma 5. Assume that there are a neighborhood U in P , a point z ∈ P and
a line L ∈ L′ such that Uπ ⊆ L but zπ 6∈ L . Then the restriction π|U is locally
constant.

Proof. Let u, v be points in U such that u, v, z are collinear. Then vπ =
zπvπ ∧ L = zπuπ ∧ L = uπ . Hence the mapping ζ: zU → L: zu 7→ uπ is well-
defined. For each v ∈ U and each y ∈W \ zv there exists a neighborhood U of
zv in Lz such that the line yv meets each member of U in a point of U . Using
the mapping η: yU → L: yu 7→ uπ we infer that ζ|U is constant. Consequently,
the restriction π|V is constant, where V := {u ∈ U | zu ∈ U} is a neighborhood
of v .

4 I.e., the mapping π:P → P ′ is injective.
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Theorem 6. If a continuous lineation π: (P,L) → (P ′,L′) of stable planes
is not injective, then π is collapsed or π is locally constant.

Proof. Let q, r ∈ P be two points such that qπ = rπ . Since π is not collapsed,
there are points p and s such that pπ, qπ, sπ are not collinear. In particular,
we may assume that p 6∈ qr . By (4) and (5), there is a neighborhood V of p
such that π|V is constant. If x is a point such that xπ 6= pπ then (4) and (5)
apply again, yielding a neighborhood of x such that the restriction of π to this
neighborhood is constant. Since P π 6= {pπ} there exists at least one such point,
and interchanging the roles of p and x gives such a neighborhood for each point
y with yπ = pπ .

Theorem (6) is a generalization of S. Breitsprecher’s result [1: 3.5] for
the case of topological projective planes.

Examples 7.

a) A typical example for a non-injective, non-collapsed lineation is the
epimorphism from the projective plane over the field of rational numbers,
or over the field of p -adic numbers (for the sake of compactness) onto
the projective plane over a field of characteristic p , cf. [6: p.182].

b) Similar constructions work for each field F (x) of rational functions
[6: p.182]; one obtains lineations from the projective plane over F (x)
onto the projective plane over F . Note that the latter can be embed-
ded in the plane over F (x), i.e., we may consider these examples as
“endomorphisms”.

c) Epimorphisms onto finite projective planes play a prominent role in the
theory of compact disconnected projective planes. See T. Grundhöfer’s
paper [4] for recent results and further references.

d) For any stable plane (P,L) and any triangle x, y, z in P there are neigh-
borhoods X,Y, Z of x, y, z , respectively, such that XY,XZ, YZ are mu-
tually disjoint neighborhoods5 of the lines xy, xz, yz in L, respectively.
Hence the mapping

π:X ∪ Y ∪ Z → X ∪ Y ∪ Z: p 7→
{
x if p ∈ X
y if p ∈ Y
z if p ∈ Z

is a lineation from the stable plane P that is induced on the point set
X ∪ Y ∪ Z onto P . The same procedure applies to any finite subset S
of P with the property that no line meets S in more than two points.

Theorem (6) and the examples motivate the introduction of a category StP of
stable planes, whose morphisms are continuous injective non-collapsed lineations.
This implies that images under morphisms are stable planes. In contrast, for
a category of projective planes one would take as morphisms those lineations
whose image contains a quadrangle (and hence is a projective plane). In StP,
we exclude morphisms whose image is discrete.

Additional topological assumptions make our morphisms especially well-
behaved:

5 For disjoint sets A,B ⊆ P , we write AB := {ab | a ∈ A, b ∈ B} ⊆ L .
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Theorem 8. Let P = (P,L) be a stable plane, and assume that P is locally
compact and of positive, finite covering dimension. Then each endomorphism
π of P is an open mapping. Moreover: If λ is the mapping defined in (3)
then (π, λ) is an isomorphism from (P,L) onto (P π,LPπ) , where LPπ :=
{L ∩ P π | L ∈ L} \ {Ø} .

Proof. Since π is continuous and injective, it induces a homeomorphism from
Ū onto Ūπ . Consequently, the sets U and Uπ are homeomorphic. From the
domain invariance property (cf. [8: Th. 11,b)]) we infer that Uπ is open in P .
By assumption, the mapping π:P → P π is a bijection. According to (3), we
have that λ:L → LPπ is also a bijection. This implies that π−1 is a lineation
(with line mapping λ−1 ): If p, q, r are three points in P then rπ ∈ pπqπ = (pq)λ

if, and only if, (rp)λ = (pq)λ . Hence rp = pq , and r ∈ pq . Since π is an open
mapping, the restriction π:P → P π is a homeomorphism.

Note that, in the situation of (8), both λ and λ−1 are continuous by
(3,c); this reflects the fact that in each stable plane the topology of the line space
is determined uniquely by the topology of the point space [7: 1.4,1.5].

If P is compact, then the domain invariance property is not needed in
the proof of (8). On the other hand, compactness of P is equivalent to the
assumption that any two lines in (P,L) meet [7: 1.27]. Since compact projective
planes of positive dimension are connected [12: Cor. 7.7], we obtain from (6) and
(8):

Corollary 9. Let P = (P,L) be a compact projective plane of positive finite
covering dimension. Then each continuous lineation from P to P is either
collapsed or an automorphism.

This generalizes H. Salzmann’s result [11] on flat projective planes (i.e.,
compact projective planes of dimension 2), which was proved by the use of
coordinate methods. See also [10: V,§4] for similar results in that direction.

As a consequence of (8), we have that each semigroup of endomorphisms
of a stable plane whose point space is locally compact and of positive finite
covering dimension is “almost a group”:

Theorem 10. Assume that P = (P,L) is a stable plane, and let Σ be a set of
endomorphisms of P , endowed with the compact-open topology derived from the
action on P . If Σ is closed under composition then Σ is a topological semigroup.
If for each element π ∈ Σ the image P π has non-empty interior in P then Σ is
cancellative 6 .

Proof. This follows easily from the facts that P π is a neighborhood in P and
that a lineation ψ: (P,L)→ (P,L) is determined by the restriction ψ|U for each
neighborhood U in P . The latter is a consequence of the property that for each
point p ∈ P there exist two lines L,M through p that meet U in more than
one point.

6 I.e., for π, α, β ∈ Σ, the implications πα = πβ ⇒ α = β and απ = βπ ⇒ α =
β hold.
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Actually, there are many examples of semigroups of endomorphisms that
are embedded in a group of automorphisms of a (larger) stable plane:

11. An important class of examples of stable planes is obtained in the
following way: In a compact projective plane P = (P,L), let U be an open non-
empty subset of P , and let LU := {L ∩ U | L ∈ L} \ {Ø} . Then U := (U,LU )
is a stable plane. In such situations, one obtains in an obvious way a semigroup
of endomorphisms of U :

EndP(U) := {π | π is a continuous collineation of P such that Uπ ⊆ U }

Moreover:

Theorem 12. Let P = (P,L) be a compact projective plane, and let U
be an open non-empty subset of P . Let Aut(P) be the group of all continuous
collineations of P , endowed with the compact-open topology derived from the
action on P . Then the following hold:

a) EndP (U) is a subsemigroup of Aut(P) . The topology that is induced
from Aut(P) on EndP(U) coincides with the compact-open topology
derived from the action on U .

b) If there exists some π ∈ Aut(P) such that Ūπ ⊆ U then EndP(U) has
non-empty interior.

Proof. By definition of compact-open topology, the set
{
π ∈ Aut(P)

∣∣ Ūπ ⊆ U
}

is open in Aut(P).

13. Let P be the projective plane over the real numbers R , and let

H :=
{
R(x, y, 1)

∣∣ x2 + y2 < 1
}
.

Then the stable plane H := (H,LH) is the real hyperbolic plane (Klein’s model).
Obviously, the diagonal matrix diag( 1

2
, 1

2
, 1) ∈ GL3R induces a collineation π of

P such that H̄π ⊂ H . Consequently, the semigroup EndP (H) has non-empty
interior in the 8-dimensional Lie group Aut(P) ∼= PGL3R . Thus we have:

Theorem 14. There exists a topological semigroup Ω of continuous injective
lineations of the real hyperbolic plane such that:

a) The topological space underlying Ω is an 8-dimensional manifold (with
boundary).

b) The boundary of Ω contains the full group of collineations of H , which
is a Lie group of dimension 3 .

The semigroup Ω is known from the theory of Lie semigroups and invariant
cones, cf. [9]. The next example, which is obtained similarly, is perhaps even
more striking:

Example 15. Let U be an open set of points in the real projective plane P
such that U is contained in the interior of some conic C , and that

{π ∈ Aut(P) | Uπ = U}
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consists of the identity alone (this may be achieved by deleting a suitable closed
set of points). Then there exists a simply connected neighborhood V ⊂ U . Since
the conic C can be mapped into V by an element of Aut(P), the semigroup
EndP(U) has non-empty interior in the 8-dimensional Lie group Aut(P).

Similar constructions work in the projective planes over the complex numbers,
Hamilton’s quaternions, or Cayley’s octonions; as well as in many non-classical
planes.

For the case of locally compact connected affine planes of finite covering
dimension, we obtain that there exist no proper endomorphisms at all (in contrast
to (14)):

Theorem 16. Let A = (A,LA) be a locally compact connected affine plane
of finite covering dimension. Then each continuous lineation from A to A is
either collapsed or an automorphism of A .

Proof. From (6) we infer that π is an endomorphism of A . According to
(8), the mapping π is open. In particular, for each line L ∈ L the intersection
L∩A is open in L . Assume that x ∈ A \Aπ . For any point a ∈ A , the line aπx
contains another point bπ ∈ Aπ . Since π is not collapsed, there exists a point
c ∈ A such that cπ 6∈ aπbπ . Every line through cπ contains a point of Aπ \{cπ} .
Therefore there is exactly one line L through cπ that does not contain a point of
(aπbπ)∩Aπ . Since intersection points are unique in A , we obtain that L = cπx .
This contradicts the fact that there exists a parallel to aπbπ through cπ .

Remark 17. V. Corbas has proved [2] that each surjective lineation from
an affine plane onto an affine plane is an isomorphism. In our result (16), the
assumption of surjectivity is replaced by topological assumptions.

Even in the case of disconnected affine planes, the procedure described
in (11) does not give any new lineations:

Theorem 18. Let P = (P,L) be a projective plane, and let A = (A,LA)
be the affine plane, where A := P \ L for some L ∈ L . Then each element of
EndP(A) is a collineation of A .

Proof. This implies that EndP (A) equals the stabilizer of L in Aut(P).
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