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On Algebraic and Semialgebraic Groups and Semigroups

Helmut Boseck

0 . This is a “semi”lecture1 whose background is as follows: The Lie-theory
of subsemigroups of a Liegroup, as it is considered in the compact presentation
by K. H. Hofmann in volume 1, no. 1 of this seminar [4], largely reduces to
a Lie-theory of subgroups in the algebraic case. Specifically, if the group G in
question and the subsemigroup S are both affine algebraic varieties the S is in
fact a subgroup. This fact is well known in the theory of algebraic semigroups and
a consequence of a theorem on subsemigroups of algebraic Lie groups published
by C. Chevalley in the second volume of his book on Lie groups in 1951 [2]. We
shall rewrite the theorem using Hopf algebras and consider several consequences.
The second part of the lecture deals with the main consequence. It answers the
question which class of subsemigroups of an algebraic group one should consider in
order to develop a “satisfactory” Lie-theory of semigroups in algebraic Lie groups
by methods close to algebraic geometry. In the case of a real base field we propose
the consideration of semialgebraic semigroups and illustrate this proposal by some
basic facts and interesting examples as well.

1. The CHEVALLEY theorem and its consequences

Theorem 1.1. Let K denote an infinite base field, and P be the Hopf algebra
of polynomial functions on GL(n;K). Assume that S ⊆ GL(n;K) is a subsemi-
group, and a = annP S its annihilator ideal in the algebra P . Then we have the
following conclusions

i) a is a coideal in P , too, i.e., ∆a ⊆ a⊗ P + P ⊗ a;

ii) G(a) = {g ∈ G(P) : (idP ⊗g)∆a ⊆ a} is a group;

iii) G = annGL(n;K)a is an affine algebraic group canonically isomorphic to G(a),
and a = annPG.

By ∆ we denote the coproduct of the Hopf algebra P , while G(P) denotes
the structure group of P . In other words, G(P) is the set of homomorphisms of the
commutative algebra P onto K with convolution as multiplication. The canonical
isomorphism between G and G(a) is the restriction of the canonical isomorphism
which maps every g ∈ GL(n;K) onto the homomorphism P → K defined by
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evaluation at g .
A sketchy proof of ii) and iii) runs as follows: The mapping g 7→ r(g) with
r(g) = (idP ⊗g)∆ ∈ AutP is just the so-called right regular representation of
G(P) on the linear space P . Now ii) follows from Lemma 1 of Chevalley
stating: if a is a linear subspace of P and r(g)a ⊆ a for every g ∈ G(P)
,then r(g)a = a. If G ′(a) = annG(P) a, then evidently we have G ′(a) ⊆ G(a),
for r(g)a = (idP ⊗g)∆a ⊆ ag(P) = a. Assume g0 ∈ G ′(a). Then once more by
Lemma 1 we get r(g0)a = a, and for every p ∈ a there exists a q ∈ a such that
p = r(g0)q . Let ε ∈ G(P) denote the identity, i.e., ε is the counit of P , then it
holds that ε(p) = ε(r(g0)q) = (ε ⊗ g0)∆q = g0(q) = 0, and for every g ∈ G(P)
we have g(p) = (ε⊗ g)∆p = ε(r(g)p) = 0. This implies G(a) ⊆ G ′(a), and thus,
finally, iii).

1.2. Consequences.

A. A Zariski-closed subsemigroup of an affine algebraic group over an infinite
base field is an affine algebraic group.

B. The group of units of an affine algebraic semigroup is an affine algebraic group
[6].

In the following we assume the base field to be algebraically closed.

C. Let H denote an affine Hopf algebra (i.e., H is commutative and finitely
generated). Every linear subspace a, which is an ideal and a coideal of H , is
annihilated by the augmentation or counit ε of H , that is, ε(a) = 0, and is
invariant under the antipode or symmetry σ of H , that is σ(a) ⊆ a. In short:
Every biideal of an affine Hopf algebra is a Hopf ideal [5].

D. Every quotient bialgebra of an affine Hopf algebra is a quotient Hopf algebra.

E. If S is an affine algebraic semigroup, then for every s ∈ S there exists a power
sk which belongs to a subgroup of S [6].
There is an “elementary” proof of this statement, which is sketched as follows:
Assume S ⊆ Mat(n;K) to be an affine algebraic semigroup. Denote by G′m the
group of n× n matrices of the form

(
A O
O O

)
; A ∈ GL(m;K), 1 ≤ m ≤ n,

G′m
∼= GL(m;K). If s ∈ S and rank s = m, then there exists a matrix t ∈

GL(n;K) such that s′ = tst−1 has Jordan normal form. There is a power of s′

such that s′k ∈ G′m . The group Gm = t−1G′mt is isomorphic to GL(m;K) and
H = S ∩Gm is not void since sk ∈ H . Also, H is a group by the theorem.

F. If S is an affine algebraic semigroup, then for every s ∈ S there exists an
idempotent e0 such that for suitable powers of s we have e0s

k = sk = ske0 [6].

G. If there is only one idempotent in an affine algebraic monoid S , then S is a
group [6].
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2. Semialgebraic Semigroups

2.1. Foundations

From now on we take the base field K to be the field of real numbers R.
We denote the Hopf algebra of polynomial functions on GL(n) = GL(n;R) by

P(n) = R[X11, . . . , Xnn, x]/(x detX − 1).

Let G denote a real affine algebraic group

G = annGL(n) a, and a = annP(n)G,

where a denotes an ideal and a coideal of P(n), contained in the kernel of the
augmentation ε, and invariant under the antipode σ of P(n)

∆a ⊆ a⊗ P(n) + P(n)⊗ a, ε(a) = 0, σ(a) ⊆ a.

Accordingly,

P = P(G) = P(n)/a

denotes the Hopf algebra of polynomial functions on G.

Let S ⊆ G denote a subsemigroup of G. We call S a semialgebraic
semigroup if

S = {s ∈ G; rj(s) ≥ 0, rj ∈ P, j = 1, . . . , l}.
Then S is a “closed” affine semialgebraic set. For simplicity we restrict the
considerations to “closed” semialgebraic semigroups.
If b = annP S denotes the annihilator of S in P , then b is an ideal and a coideal
of P and by 1.2C it is contained in the kernel of ε and is invariant under σ , hence
P∗ = P/b is a real Hopf algebra defining a real affine algebraic subgroup G∗ of
G, which contains S as a subsemigroup. G∗ is the “smallest” real affine algebraic
group which contains S as a subsemigroup.

In the sequel we may assume G = G∗ . Let S ⊆ G denote a closed affine
semialgebraic set

S = {s ∈ G; rj(s) ≥ 0, rj ∈ P, j = 1, . . . , l}.

The cone

P+(S) = {p ∈ P : (∀s ∈ S) p(s) ≥ 0}
defines a semiorder on P :

p ≤S q iff q − p ∈ P+(S).

We observe that p ≤S q and q ≤S p implies q − p ∈ b = annPS . Let us identify

the tensor product P ⊗ P with the algebra of polynomial functions on G×G.

The semialgebraic set S is a semialgebraic semigroup iff

i) ∆P+(S) ⊆ (P ⊗ P)+(S × S),
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it is a semialgebraic monoid iff, moreover, it is true that

ii) ε(p) ≥ 0 for every p ∈ P+(S),

and it is a semialgebraic group iff, in addition, the following condition is satisfied:

iii) σ(P+(S)) ⊆ P+(S).

If S is a semialgebraic semigroup, then, by our assumption G = G∗ , the
relations p ≤S q and q ≤S p imply p = q for every p, q ∈ P .
Let G(P) denote the structure group of the Hopf algebra P . Then G(P) ∼= G
canonically, and we have the isomorphism

S ∼= {ς ∈ G(P) : ς(P+(S)) ⊆ R+}
= {ς ∈ G(P) : (∀p, q ∈ P) p ≤S q implies ς(p) ≤ ς(q)}.

Assume G to be an irreducible real affine algebraic group, and denote by R = R(G)
the field of fractions of the polynomial functions P = P(G). I.e., R is the field of
rational functions on G. Set

S = {s ∈ G : rj(s) ≥ 0, rj ∈ P, (j = 1, . . . , l)}.

Then S is a semialgebraic subset of G. We denote by
∑R2 the cone consisting of

the sums of squares of elements from R, and by
∑R2(rj; (j = 1, . . . , l)) the cone

in R generated by r1, . . . , rl . The elements of the cone
∑R2(rj; (j = 1, . . . , l))

are of the form f = f0 +
∑k
i=1 fiti , where fi ∈

∑R2 , i = 1, . . . , k , and where the
ti, (i = 1, . . . , k) are products of the r1, . . . , rl. The Positivstellensatz ([1], pp. 84,
93, 95) implies the following equation:

P+(S) =
∑
R2(rj; (j = 1, . . . , l)) ∩ P.

Keeping in mind that the direct product G×G is irreducible, too, and using once
more the Positivstellensatz we get the following criterion:

Let G denote an irreducible real affine algebraic group. A semialgebraic
subset

S = {s ∈ G : rj(s) ≥ 0, rj ∈ P, j = 1, . . . , l}
of G is a semialgebraic semigroup iff

i) ∆rj = f0j +
k∑

i=1

fij(tij ⊗ t′ij), j = 1, . . . , l,

where the fij , i = 0, 1, . . . , k , j = 1, . . . , l are sums of squares of elements from
the field of fractions of P ⊗ P , and where the tij , t′ij , i = 1, . . . , k , j = 1, . . . , l
are products of the r1, . . . , rl .

Let us consider the case G = GL(n). Write R(n) for the field of frac-
tions of P(n), then R(n) is isomorphic to R(X) = R(X11, . . . , Xnn). Define a
semialgebraic set by the equation

S = {s ∈ GL(n); rj(s) ≥ 0, rj ∈ P(n), j = 1, . . . , l},
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then we may choose rj ∈ R[X] = R[X11, . . . , Xnn], j = 1, . . . , l . Now assume
G = GL(n)×GL(n). Then P(G) ∼= P(n)⊗P(n). Denote the field of fractions by
R(n, n). Now R(n, n) is isomorphic to R(X, Y ) = R(X11, . . . , Xnn, Y11, . . . , Ynn).
Using the Positivstellensatz the criterion looks as follows:

The semialgebraic set

S = {s ∈ GL(n) : rj(s) ≥ 0, rj ∈ R[X], j = 1, . . . , l}

is a semialgebraic semigroup iff

i) ∆rj = f0j +
k∑

i=1

fij(tij ⊗ t′ij) j = 1, . . . , l,

where the fij , i = 0, 1, . . . , k , j = 1, . . . , l are sums of squares of elements from
R(n, n), fij ∈

∑R2(n, n), and where the tij , t′ij , i = 1, . . . , k , j = 1, . . . , l are
products of the r1, . . . , rl ∈ R[X].

We may rewrite the necessary and sufficient condition i) using the isomor-
phisms indicated above and having in mind that the coproduct ∆ is defined by
matrix multiplication as follows:

i′) rj(XY ) = f0j(X, Y ) +
k∑

i=1

fij(X, Y )tij(X)t′ij(Y ) j = 1, . . . , l.

Here rj(XY ) is a short notation for rj (
∑n
i=1 X1iYi1, . . . ,

∑n
i=1 XniYin); moreover,

the functions fij(X, Y ) = fij(X11, . . . , Xnn, Y11, . . . , Ynn) belong to
∑
R(X, Y )2 ,

i.e., are sums of squares of rational functions in 2n2 variables, and the functions
tij(X) = tij(X11, . . . , Xnn) are products of the r1(X), . . . , rl(X), while the func-
tions t′ij(Y ) = t′ij(Y11, . . . , Ynn) are products of the r1(Y ), . . . , rl(Y ).

Let S denote a semialgebraic monoid. Assume S ⊆ G with a real affine
algebraic group G, and denote by L(G) the Lie algebra of G. We define the Lie
wedge of S by the following equation

W (S) = {u ∈ L(G); (∀p ∈ P+(S), t ∈ R+) p(exp tu) ≥ 0}
= {u ∈ L(G); (∀t ∈ R+) rj(exp tu) ≥ 0, j = 1, . . . , l}.

Evidently only those elements p ∈ P+(S) are important, which satisfy the equation
p(e) = ε(p) = 0. Regarding the r1, . . . , rl ∈ P defining the set S , we may assume
r1(e) = · · · = rk(e) = 0, and rk+1(e) > 0, . . . , rl(e) > 0. Then

W (S) = {u ∈ L(G); (∀p ∈ P+(S) with p(e) = 0, t ∈ R+) p(exp tu) ≥ 0}
= {u ∈ L(G); (∀t ∈ R+) ri(exp tu) ≥ 0, i = 1, . . . , k}.

2.2 Examples

1) Let G = D(n) denote the group of regular real n× n diagonal matrices,

S = Dm
+ (n) = {s ∈ D(n); sii ≥ 1, i = 1, . . . , m, sjj ≥ 0, j = m+ 1, . . . , n}.
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The set Dm
+ (n) is a semialgebraic monoid with the following Lie wedge:

W (Dm
+ (n)) = {u ∈ Rn2

; uij = 0, i 6= j, uii ≥ 0, i = 1, . . . , m}.

The group of units consists of the regular diagonal matrices having 1 at the first
m places in the diagonal; it is isomorphic to D(n − m). Note that D0(1) is the
multiplicative group of positive real numbers, and that D1(1) is the multiplicative
monoid of real numbers ≥ 1.

2) Assume G = GL(n), and put

S = SL+(n) = {s ∈ GL(n) : det s ≥ 1}.

Then SL+(n) is a semialgebraic monoid with Lie wedge

W (SL+(n)) = {u ∈ Rn2

; Tr u ≥ 0}.

The group of units of SL+(n) is SL(n).

3) Assume G = GL(n), put

S = GLm+(n) = {s ∈ GL(n); sii ≥ 1, i = 1, . . . , m,

sij ≥ 0, i 6= j or i = j = m + 1, . . . , n}.

The set GLm+ (n) is a semialgebraic monoid with Lie wedge

W (GLm+ (n)) = {u ∈ Rn2

; uii ≥ 0, i = 1, . . . , m, uij ≥ 0, i 6= j}.

Now GL0
+(n) is the monoid of nonnegative regular n× n matrices.

4) Define SLm+(n) = GLm+(n) ∩ SL+(n). Then SLm+ (n) is a semialgebraic monoid
and

W (SLm+ (n)) = W (GLm+ (n)) ∩W (SL+(n)).

In the case m = n we have

W (SLn+(n)) = W (GLn+(n)).

5) By s

(
i1 · · · ik
j1 · · · jk

)
we denote the k -minor of the matrix s given by the rows with

indices i1 · · · ik and the columns with the indices j1 · · · jk . Assume G = GL(n),
and put

S = GLm++(n) =

{
s ∈ GL(n); s

(
i1 · · · ik
i1 · · · ik

){≥ 1 if 1 ≤ i1 ≤ · · · ≤ ik ≤ m,
≥ 0 otherwise

}
.

The set GLm++(n) is a semialgebraic monoid. The Lie wedge of GLm++(n) equals
the Lie wedge of GLm+ (n). Here GL0

++(n) is the monoid of completely nonnegative
regular n× n matrices. If n ≥ 3 then

GLn++(n) ⊂ SLn+(n) ⊂ GLn+(n),
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and
W (GLn++(n)) = W (SLn+(n)) = W (GLn+(n)).

6) Let G denote the group of “similarities” in euclidean n-space:

G = {g ∈ GL(n); g = αh, α ∈ R, α 6= 0, and h ∈ SO(n)}.

We define
S = {s ∈ G; s = αh, α ≥ 1, and h ∈ SO(n)}.

The set S is a semialgebraic monoid with the Lie wedge

W (S) = {αu ∈ Rn2

; α ≥ 0 and u ∈ so(n)}.

S is the monoid of “expanding” similarities, isomorphic to the direct product of
the monoid D1(1) and the orthogonal group SO(n) : S ∼= D1(1)×SO(n); its Lie
wedge is isomorphic to R+ ⊕ so(n); its unit group is SO(n).

7) The last example is a little bit beyond the context of this lecture. Consider the
set

S = Osc(n) = {s ∈ GL0
++(n); sij > 0, if |i− j| ≤ 1}.

The set Osc(n) is the semialgebraic semigroup of oscillation matrices ([3], p.447);
it is not a monoid, and it is not “closed”.
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