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Geometric Aspects of SL(2)-Invariant
Second Order Ordinary Differential Equations

Günter Czichowski

1. Actions of SL(2) on the Real Plane

With respect to real point transformations there are three different actions
of the group SL(2) on the real R2 -plane corresponding to certain canonical forms
of the Lie algebra sl(2) (see e.g.[2,4], for the classification with respect to complex
variables). If this Lie algebra is realized in the known matrix form with generators
L1, L2, L3,

sl(2) : L1 =

(
0 0
1 0

)
, L2 =

(
1/2 0
0 −1/2

)
, L3 =

(
0 −1/2
0 0

)

and corresponding commutator relations

[L1, L2] = L1, [L2, L3] = L3, [L1, L3] = L2,

then the three actions correspond to three canonical forms for sl(2) given in terms
of first order differential operators (vector fields) on the x, y -plane R2 by

∂1 = ∂x, ∂2 = x∂x + y∂y, ∂3 =
x2 + εy2

2
∂x + xy∂y, (ε = 0, 1,−1)

The values 0, 1,−1 of the parameter ε correspond to the various SL(2)-
actions as follows:

ε = 0 : equivalence to the linear action on R2,
ε = 1 : equivalence to the action by simultaneous

Möbius transformations on R2,
ε = −1 : action by Möbius transformations on C.

But with respect to a geometric point of view it is more convenient to give
this actions in terms of infinitesimal generators related to the known SL(2)-actions
in matrix form cited above. The forms for the generators are given then as follows:

Linear action:

∂1 = y∂x, ∂2 =
x

2
∂x −

y

2
∂y, ∂3 = −x

2
∂y,

Möbius transformations on R2 :

∂1 = ∂x + ∂y, ∂2 = x∂x + y∂y, ∂3 =
x2

2
∂x +

y2

2
∂y,

Möbius transformations on C:

∂1 = ∂x, ∂2 = x∂x + y∂y, ∂3 =
x2 − y2

2
∂x + xy∂y.
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2. SL(2)-Invariant Differential Equations and Solutions

Every action of the group SL(2) on R2 can be characterized by a second
order ordinary differential equation which is invariant with respect to this action,
and there is an interesting connection between the problem to solve this differential
equation (using the symmetries) and to determine the type for the SL(2)-action
in the solution space [1]:
In the following p stands for y′ . If y′′ = F (x, y, p) is an invariant second order
differential equation, then consider the differential operator

D = ∂x + p∂y + F (x, y, p)∂p,

whose kernel is invariant under the prolonged group action and consists of all first
integrals of the differential equation. Hence there exists a canonical form for the
SL(2)-action in the space of first integrals (FI-form). I.e, with respect to suitable
coordinates u, v in this space the following relations hold (where ∂ ′k denotes the
first prolongation of ∂k ):

∂′1 = ∂u, ∂′2 = u∂u + v∂v, ∂′3 =
u2 + εv2

2
∂u + uv∂v, (ε = 0, 1,−1)

As a consequence there exist first integrals u = u(x, y, p), v = v(x, y, p) satisfy-
ing

∂′1(u) = 1, ∂′1(v) = 0 ∂′2(u) = u, ∂′2(v) = v ∂′3(u) =
u2 + εv2

2
, ∂′3(v) = uv

Together with the equations D(u) = 0, D(v) = 0 there are then 8 equations for
u, v , which allow the computation of the first integrals u, v without integration.
Elimination of p gives then the general solution containing u, v (constant on any
solution) as parameters. The key for this procedure and the interesting fact from
the geometric point of view is the change of the canonical forms in the transition
from the original x, y -plane to the u, v -plane of first integrals. With respect to
this effect the case of SL(2)-symmetry seems to be distinguished among the second
order ordinary differential equations with three symmetries.

In the following we will give in the various cases of SL(2)-actions the invari-
ant differential equations with corresponding first integrals and general solutions.
The transition between the canonical forms respectively the various SL(2)-actions
is characterized in terms of the ε-values: (ε1 → ε2).

Since some of the differential equations contain a real parameter c, it should
be noted that this transition depends on the c-value too. The exceptional c-values
are given by the zeros of certain differential invariants I1, I2 [3]. The computations
are made with REDUCE. They are, after the formulation of the corresponding
equations with the suitable ε-value, in some sense straightforward, but not simple
for technical reasons (appearence of radicals, factorizations). As a consequence of
the solution procedure described above one gets a good model for the SL(2)-action
in the first integral space. We will demonstrate this in a more detailed fashion in
the first case (ε = 0).
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2.1. Linear Action (ε = 0)

The general form of the corresponding differential equation, which is invariant
under the linear action, is given by

y′′ = c(px− y)3.

After a simple scale transformations one can assume c = 1 ore c = −1.

2.1.1. Differential equation:

y′′ = (px− y)3, (ε = 0→ ε = −1)

First Integrals:

u =
p2x3y − 2px2y2 + p + xy3

p2x2y2 + p2 − 2pxy3 + y4
, v =

p2x2 − 2pxy + y2

p2x2y2 + p2 − 2pxy3 + y4
.

General solution:

u2y2 − 2uxy + x2 + v2y2 − v = 0.

This equation defines for v > 0 a two-parametric set of ellipses in central
position and with area equal to π , which is of course invariant under the linear
action of SL(2). For the limit v → 0 one gets the straight lines y = 1

u
x, which form

an invariant one-parametric set of solutions. These are the “boundary” elements
in the upper halfplane (v > 0) of the u, v -space, which is the solution space as
SL(2)-orbit. There is also a geometric argument to construct the general solution
without any integration: Take the unit circle x2+y2 = 1, (u = 0, v = 1) as a special
solution, which is invariant with respect to the rotations in SL(2). Application of
the elements of SL(2) leads then to the two-parametric family of ellipses defined
above. Hence one gets in the solution space clearly the situation of the SL(2)-
action by Möbius transformations on the upper half-plane of C (ε = −1) : A half-
plane as a two-parametric orbit is bounded by a one-parameter orbit. Analogous
considerations hold for the following cases, and we give only the results in term of
first integrals, solutions and additional remarks in some cases.

2.1.2. Differential equation:

y′′ = −(px− y)3, (ε = 0→ ε = 1)

First Integrals:

u =
p2x3y − 2px2y2 − p + xy3

p2x2y2 − p2 − 2pxy3 + y4
, v =

p2x2 − 2pxy + y2

p2x2y2 − p2 − 2pxy3 + y4
.

General Solution: u2y2 − 2uxy + x2 − v2y2 + v = 0.
The solutions are hyperbolae and lines, the interpretation is analogous to that in
the previous case.
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2.2. Action by Möbius Transformations on R2 (ε = 1)

In the following four cases the solutions are hyperbolae and lines, the general
solution can be contained by application of the SL(2)-action to a hyperbola
(x+ r)(y − r) = s (with suitable r , s).

2.2.1. Differential equation:

y′′ =
cp

3
2 − 2p2 − 2p

x− y , (ε = 1→ ε = 1, |c| > 4)

First Integrals:

u =
c
√
p(x+ y)− 4px− 4y

2(c
√
p− 2p− 2)

, v =

√
c2 − 16

√
p(x− y)

2(c
√
p− 2p− 2)

General Solution:
−
√
c2 − 16cxv +

√
c2 − 16cyv− c2u2 + c2ux+ c2uy− c2xy + c2v2 + 16u2− 16ux−

16uy + 16xy − 16v2 = 0

2.2.2. Differential equation:

y′′ =
cp

3
2 − 2p2 − 2p

x− y , (ε = 1→ ε = −1, |c| < 4).

First Integrals:

u =
c
√
p(x + y)− 4px− 4y

2(c
√
p− 2p− 2)

, v =

√
16− c2√p(x− y)

2(c
√
p− 2p− 2)

.

General Solution:
−cv
√

16− c2x+ cv
√

16− c2y + c2u2− c2ux− c2uy+ c2v2 + c2xy− 16u2 + 16ux+
16uy − 16v2 − 16xy = 0.

2.2.3. Differential equation:

y′′ =
4p

3
2 − 2p2 − 2p

x− y , (ε = 1→ ε = 0, c = 4)

First Integrals:

u =

√
px− y√
p− 1

, v =

√
p(x− y)

p− 2
√
p + 1

General Solution: u2 − ux− uy − vx + vy + xy = 0.

2.2.4. Differential equation:

y′′ =
−4p

3
2 − 2p2 − 2p

x− y , (ε = 1→ ε = 0, c = −4).

First Integrals:

u =

√
px+ y√
p+ 1

, v =

√
p(x− y)

2
√
p+ p+ 1

.

General Solution: u2 − ux− uy + vx− vy + xy = 0.
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2.3. Action by Möbius transformations on C, (ε = −1)

In the following four cases the solutions are circles and lines, the general solution
is contained by application of the Möbius transformations given by the elements
of SL(2) in the complex plane to a special circle or line as a special solution.

2.3.1. Differential equation:

y′′ =
c(p2 + 1)

3
2 − p2 − 1

y
, (ε = −1→ ε = 1, |c| < 1).

First Integrals:

u =
c
√
p2 + 1x− py − x
c
√
p2 + 1− 1

, v =

√
1− c2

√
p2 + 1y√

p2 + 1c− 1
.

General Solution:
−2
√

1− c2cvy − c2u2 + 2c2ux+ c2v2 − c2x2 − c2y2 + u2 − 2ux− v2 + x2 + y2 = 0.

The solutions are circles and lines which intersect the x-axis under a fixed
angle.The two-parametric family of this curves can be constructed geometrically
by the application of SL(2) on the solution y = rx (r suitable). The case c = 0,

y′′ = −p2−1
y

is of special interest: The solutions are circles perpendicular to the

x-axis, the group SL(2) is then acting by Möbius transformations in the Poincaré
model of the non-euclidean plane.

2.3.2. Differential Equation:

y′′ =
c(p2 + 1)

3
2 − p2 − 1

y
, (ε = −1→ ε = −1, |c| > 1).

First Integrals:

u =
c
√
p2 + 1x− py − x
c
√
p2 + 1− 1

, v =

√
c2 − 1

√
p2 + 1y

c
√
p2 + 1− 1

.

General Solution:
−2
√
c2 − 1cvy + c2u2 − 2c2ux+ c2v2 + c2x2 + c2y2 − u2 + 2ux− v2 − x2 − y2 = 0.

The solutions are circles (x− a)2 + (y − b)2 = R2 with b
r

= c.

2.3.3. Differential Equation:

y′′ =
(p2 + 1)

3
2 − p2 − 1

y
, (ε = −1→ ε = 0, c = 1).

First Integrals:

u =

√
p2 + 1x− py − x√

p2 + 1− 1
, v =

−y(
√
p2 + 1 + p2 + 1)

p2
.

General Solution: u2 − 2ux+ 2vy + x2 + y2 = 0.

The solutions are circles tangent to the x-axis, the solution space is then a
two-parametric orbit with the invariant solution y = 0 as boundary point.
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2.3.4. Differential Equation:

y′′ = −(p2 + 1)
3
2 + p2 + 1

y
, (ε = −1→ ε = 0, c = −1).

First Integrals:

u =

√
p2 + 1x + py + x√

p2 + 1 + 1
, v =

−y(
√
p2 + 1 + p2 + 1)

p2
.

General Solution: u2 − 2ux − 2vy + x2 + y2 = 0. The solution space can be

interpreted as in the previous case.
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