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Generating Functions of π2n−1(SUn)

Christian Gross

In many questions concerning homotopy groups of Lie groups G , especially of
the unitary groups Um and SUm , it suffices to know the mere group structure
of πn(G). For this purpose one can consult tables. For example, it is known that

(1) π2n(SUm) = π2n(Um) = 0, π2n+1(SUm) ∼= π2n+1(Um) ∼= Z, m > n ∈ N
by Bott’s periodicy theorem [1]. However, often we have to know representa-
tives U :Sn → G for the generators of these homotopy groups.

One example for this situation is the Skyrme model [5] in theoreti-
cal nuclear physics, a chiral invariant effective field theory describing the low
energy limit of the quantum chromodynamics (QCD). By compactification of
euclidian space R3 , resp., of space-time R4 , the meson fields are differentiable
functions Û :R(t) × S3 → SUNF , resp., U :S4 → SUNF , NF being the number
of flavors in the QCD (NF = 2, resp., NF = 3). In this model nucleons appear
as topological soliton solutions of these field configurations. The number of nu-
cleons described by a certain meson field Û can be computed by integration of
the pullback

(2)
1

24π2
Û?ω3 =

1

24π2
Tr (L ∧ L ∧ L)

over the space manifold, with L: = Û† dÛ , where ∧ is the wedge product of dif-
ferential forms and ω3 is the generator of the de-Rham cohomology H3(SUm) ∼=
H3(Um) ∼= R for m ≥ 2.

The meson fields obey the field equations derived as Euler-Lagrange
equations from a lagrangian L(U, dU) by variation of the action integral∫
S4 L dV . Let εµνρσ denote the totally antisymmetrical Levi-Civita symbol,

Lµ = U † ∂µU and λ a coupling constant. Then for NF = 3 the field equations
involve an additional term

(3) λ εµνρσ LµLνLρLσ,

that describes anomalous processes of the QCD. (In (3) we have used the Ein-
stein summation convention.) Unfortunately, it is impossible to build up the
global corresponding term in the lagrangian from which (3) could be derived
by variation. Instead by using π4(SU3) = 0 from (1) one argues that U can
be extended to a differentiable function U ′:D5 → SU3 from a five-dimensional
disc D5 whose boundary ∂D5 is space-time S4 [7]. Now the corresponding term
for (3), the so-called Wess-Zumino term [6], is λ

∫
D5(U ′)?ω5 , with ω5 being the
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generator of H5(SUm) ∼= R for m ≥ 3. Using Stokes’ theorem we can perform
the integration along space-time which leads — at least locally — to (3).

For any possible extension U ′ the result has to be unique. This is equiv-
alent to the requirement that

λ

∫

S5

(Ũ)?ω5 = 2πz, z ∈ Z,

where S5 is the 5-sphere which one obtains by gluing any two 5-cells D5
(1) and

D5
(2) at space-time S4 = ∂D5

(1) = ∂D5
(2) together, and where we have defined

Ũ = U ′(1) ∪U ′(2):S
5 → SU3 as the corresponding extension to this 5-sphere. This

forces λ to be set equal to 1
240π2 by the following index theorem (cf. Bott,

Seeley [2]). The factor 1
24π2 in (2) can also be deduced from this conclusion.

Recall Lµ = U † ∂µU .

Theorem 1. For every map U :S2n−1 → Um the integral

∫

S2n−1

(
i

2π

)n
(n− 1)!

(2n− 1)!
U?ω2n−1 =

∫

S2n−1

(
i

2π

)n
(n− 1)!

(2n− 1)!
εµ1µ2···µ2n−1 Tr (Lµ1

Lµ2
· · ·Lµ2n−1

) dx1 ∧ dx2 ∧ · · · ∧ dx2n−1

is an integer n(U) . The assignment [U ] 7→ n(U):π2n−1(Um)→ Z is an isomor-
phism for m ≥ n .

We have seen that in the case of the Skyrme model, explicit represen-
tatives Û(t, ·):S3 → SUNF and Ũ :S3 → SUNF for the generators of π3(SUNF )
and π5(SUNF ) have physical significance. Thus it is worthwhile to look for such
explicit representatives. This is the task of the following article.

For π3(SU2) there is the so-called Hedgehog Ansatz [5] where the field
equations can be transformed into a differential equation for the radial part
of this ansatz. Unfortunately, this is not transferable to π5(SUm), let alone
π2n−1(SUm). In order to achieve such an extension we take the more mathe-
matical point of view and do not demand our representatives to obey certain
physical field equations. A first result is the following: having found a genera-
tor U of π2n−1(SUn) one also has a generator j ◦ U of π2n−1(SUm) for m > n
through the inclusion

j:SUn → SUm, U 7→
(
U 0
0 1lm−n

)
,

because of U?ωk = (j ◦U)?ωk . On the other hand one obtains a generator i ◦U
of π2n−1(Un) (and thereby of π2n−1(Um) for m ≥ n) via the inclusion i:SUn →
Un .

So the main problem is to find representatives for π2n−1(SUn). By
looking at the Lie algebra of Un and the use of the exponential map we make
the following ansatz for a function of a (2n − 1)-dimensional disc D2n−1

(1) into

Un : let H denote the hermitian operator
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(4)




x0 z1 0
z1 −x0 z2 0

0 z2 x0 z3
. . .

0 z3 −x0
. . . 0

. . .
. . .

. . . zn−1

0 zn−1 ±x0




,

where zj := x2j−1 + ix2j for j = 1, . . . , n− 1. Let x = (x0, x1, . . . , x2n−2) and
define U1:D2n−1

(1) → Un by U1(x) = exp(iπH(x)). To obtain a representative of

a generator of π2n−1(Un), resp., of π2n−1(SUn) one has to construct a second

function Ũ1 of a second disc D2n−1
(2) (northern and southern hemisphere) so that

U1 ∪ Ũ1 is a continous function of D2n−1
(1) ∪D2n−1

(2)
∼= S2n−1 , well defined on the

equator ∂D2n−1
(1) = ∂D2n−1

(2)
∼= S2n−2 . In order to get a generator we must make

sure that this “gluing process” is not trivial: if we were so careless as to choose Ũ1

so that U1∪Ũ1 is symmetric about the equator, then we would obtain a candidate
for the zero element of π2n−1(Un) instead of a generator. In this paper we shall
carry out this program for n = 1, 2, 3.

In [3] Lundell has proven an iteration for the construction of rep-
resentatives for generators of π2n−1(SUn). This iteration even leads to func-
tions U :S2n−1 → SUn directly, one doesn’t have to look for fitting second func-
tions on the northern hemisperes. But unfortunately, as he himself admits, “the
actual formulae are too complicated for reasonable calculation”. They do not
inherit any symmetries between the matrix elements — like the ones built up by
(4) — that allow for the calculation of the integral in Theorem 1. So this iteration
is of more theoretical interest, whereas the representatives presented here could
be of practical use whenever the problem of finding functions for the northern
hemispheres is solved for n ≥ 4.

Using Clifford algebras Lundell and Tosa constructed representa-
tives for generators of the stabe homotopy groups of SO , SU and Sp [4].
In the case of SU their formalism leads to functions U :S2n+1 → SU2n , so
π2n−1(SUn), n ≥ 3 isn’t covered either.

A Generator of π1(U1)

For the sake of illustration and completeness we begin by discussing the simplest
case. The isomorphism U1 → S1 yields a representative for the generator of
π1(U1). We also obtain this representative by using our scheme in (4). In this
case we set:

H = (x0), U1(x) = U1(x0) = exp(iπx0).

Here we have U1(−1) = U1(1) = −1. Therefore we can map D1 onto S1 by
identifying 1 and −1 (and so we define our second function from D1

(2) to S1 by

Ũ1(x) = −1 = const). The mapping U :S1 → U1 we obtain is a homeomorphism
and thus generates π(U1). This is confirmed by our invoking Theorem 1: Because
of (U1)?ω1 = Tr [exp(−iπx0)iπ exp(iπx0)] dx0 = iπ dx0 , integration gives
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∫ +1

−1

(
i

2π

)1
0!

1!
iπ dx0 = −1.

Note. Representatives for the other elements of π1(U1) are obtained by expand-
ing the domain for U1 to be n · D1 = [−n, n] . Because of U1(−n) = U1(n) =
(−1)n , we can again identify n and −n and thereby transform n ·D1 into S1 .
Integration leads to ∫ +n

−n

(
i

2π

)1
0!

1!
iπ dx0 = −n.

If we keep D1 = [−1, 1] as domain, Un = exp(inπx0), resp., U−n = exp(−inπx0)
is a representative for the n -th element of π1(U1).

A Generator of π3(SU2)

Here we have SU2
∼= S3 . Under this identification the identity on S3 is again a

representative for the generator of π3(SU2). We are led to it through our scheme
defined by (4) (remember z1 = x1 + ix2 ):

H =

(
x0 z1

z1 −x0

)
, U1(x) = U1(x0, x1, x2) = exp(iπH(x)).

Evaluating the exponential map and using R2 := x2
0 + x2

1 + x2
2 , we obtain

U1(x) =

(
cosπR+ ix0

R sinπR i z1R sinπR

i z1R sinπR cosπR− ix0

R sinπR

)
.

Setting y0 := cosπR , y1 := x1

R sinπR , y2 := x2

R sinπR , and y3 := x0

R sinπR ,

we get
∑3
j=0 y

2
j = 1 and realize the isomorphism χ:SU(2)→ S3 as follows:

(
y0 + iy3 −y2 + iy1

y2 + iy1 y0 − iy3

)
7→ (y0, y1, y2, y3) ∈ S3.

In particular, R = 1 yields

U1(x) =

(
−1 0
0 −1

)
,

and therefore, similarly to the previous case, we can transform our function
U1:D3 → SU2 into a continous mapping U :S3 → SU2 by collapsing all points
x ∈ D3 with R = 1 into one single point ∞ , the “North Pole”.

For the evaluation of the integral in Theorem 1 we use the three inde-
pendent parameters x0, r1, φ1 defined by z1 = r1e

iφ1 . We thus rather compute
ψ?(U1)?ω3 instead of U?ω3 , where ψ:R× [0, 1]× [−π,+π] → D3 is defined by
ψ(x0, r1, φ1) = (x0, r1 cosφ1, r1 sinφ1). By cyclic permutation under the trace we
get

ψ?(U1)?ω3 = −3 · Tr{Lx0
[Lφ1

, Lr1 ]} dx0 ∧ dr1 ∧ dφ1.
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Next we compute the Lµ ’s, using the abbrevations c := cosπR, s :=
sinπR :

Lx0
= i




πx2
0

R2 +
r2
1sc
R3 z1

[
πx0

R2 − x0sc
R3 + i s

2

R2

]

z1

[
πx0

R2 − x0sc
R3 − i s

2

R2

]
−πx

2
0

R2 − r2
1sc
R3


 , (5)

Lφ1
= i


 − r

2
1s

2

R2 z1

[
x0s

2

R2 + i scR

]

z1

[
x0s

2

R2 − i scR
]

r2
1s

2

R2


 , (6)

Lr1 = ir1




πx0

R2 − x0sc
R3 z1

[
π
R2 +

x2
0sc

r2
1R

3 − i x0s
2

r2
1R

2

]

z1

[
π
R2 +

x2
0sc

r2
1R

3 + i x0s
2

r2
1R

2

]
−πx0

R2 + x0sc
R3


 . (7)

This yields

[Lφ1
, Lr1 ] =

2ir1

R2


 −πr

2
1sc
R − x2

0s
2

R2 z1

[
πx0sc
R − x0s

2

R2 − iπs2
]

z1

[
πx0sc
R
− x0s

2

R2 + iπs2
]

πr2
1sc
R

+
x2

0s
2

R2




and Tr{Lx0
[Lφ1

, Lr1 ]} = 4πr1
R2 sin2πR , from which we deduce

ψ?(U1)?ω3 = −12πr1

R2
sin2πR dx0 ∧ dr1 ∧ dφ1,

resp., U?ω3 = −12π

R2
sin2πR dx0 ∧ dx1 ∧ dx2.

By the transformation rule for integrals we obtain for the integral in theorem 1

I1 =

∫

S3

− 1

24π2
U?ω3 =

+1∫

−1

dx0

√
1−x2

0∫

0

dr1

2π∫

0

dφ1
r1

2πR2
sin2πR =

+1∫

0

dx0

√
1−x2

0∫

0

dr1
2r1

R2
sin2πR

(the integrand is even in x0 ). We choose new variables R, r2
1 , observe dR∧d(r2

1) =
2x0r1
R dx0 ∧ dr1 , and finally get

I1 =

+1∫

0

dR

R2∫

0

d(r2
1)

sin2πR

R
√
R2 − r2

1

=

+1∫

0

2 sin2πR dR = 1.

This confirmes that U is a representative for the generator of π3(SU2).

Note. As for π1(U1), we obtain representatives for all other elements of π3(SU2)
by expanding our domain to the ball of radius R = n . For x with ‖x‖ = R = n
we have

U1(x) =

(
(−1)n 0

0 (−1)n

)
.

For this reason even a mapping from n ·D3 can be transformed into a continous
mapping from S3 , resp., n · S3 , into S3 , which yields

In =

n∫

0

2 sin2πR dR = n.
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If we want to keep our domain D3 , we simply replace x by nx and obtain
Un:D3 → SU2 :

Un(x) =

(
cosnπR+ ix0

R sinnπR i z1R sinnπR

i z1R sinnπR cosnπR− ix0

R sinnπR

)

as representative for the n -th element of π3(SU2). In order to get the inverse
elements we replace x0 by −x0 , then Lx0

changes into −Lx0
and U?ω3 changes

into −U?ω3 . We obtain U−n:D3 → SU2 :

U−n(x) =

(
cosnπR− ix0

R sinnπR i z1R sinnπR

i z1R sinnπR cosnπR+ ix0

R sinnπR

)
.

A Generator of π5(SU3)

There is no isomorphism between SU3 and a sphere and for the first time
we will have to make use of the gluing process described in the introduction.
Two mappings U1:D5

(1) → SU3 and Ũ1:D5
(2) → SU3 that coincide on the

boundaries ∂D5
(1) = ∂D5

(2) = S4 , are transformed into a well defined continous

function U = U1 ∪ Ũ1:S5 → SU3 . In analogy with (4) we have

H =



x0 z1 0
z1 −x0 z2

0 z2 x0


 ,

{
z1 = x1 + ix2 = r1e

iφ1

z2 = x3 + ix4 = r2e
iφ2

}
,

4∑

i=0

x2
i = x2

0 + r2 = R2,

and a mapping U ′1:D5 → U3 defined by U ′1(x) = exp(iπH)(x).

detU ′1 = exp(iπTrH) = exp(iπx0),

so we have U ′1(D5) 6⊆ SU3 . Using the diagonalisation of H we compute

U ′1(x) =




r2
1

r2 (c+ ix0

R s) +
r2
2

r2 e
iπx0 i z1R s

z1z2
r2 (c+ ix0

R s− eiπx0)

i z1R s c− ix0

R s i z2R s
z1z2
r2 (c+ ix0

R
s− eiπx0) i z2

R
s

r2
2

r2 (c+ ix0

R
s) +

r2
1

r2 e
iπx0


 ,

where we again used c = cosπR and s = sinπR for convenience. In order to
obtain U1:D5 → SU3 , we multiply every matrix U ′1(x) by a matrix T (x) of de-
terminant detT (x) = exp(−iπx0), preserving a convenient degree of symmetry
between its elements. Thus we choose

(8) U1(x) = T (x) · U ′1(x) with T (x) =



e−i

π
2 x0 0 0

0 1 0
0 0 e−i

π
2 x0


 .

Using π± := c± ix0

R s for further convenience we obtain

U1(x) =




r2
1

r2π
+e−i

π
2 x0 +

r2
2

r2 e
+i π2 x0 i z1

R
se−i

π
2 x0 z1z2

r2 (π+e−i
π
2 x0 − e+i π2 x0)

i z1R s π− i z2R s
z1z2
r2 (π+e−i

π
2 x0 − e+i π2 x0) i z2R se

−iπ2 x0
r2
2

r2π
+e−i

π
2 x0 +

r2
1

r2 e
+i π2 x0
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as the function on the southern hemisphere of S5 . On the equator (R = 1) it
turns out to be

U1(x) =



− r

2
1

r2 e
−i π2 x0 +

r2
2

r2 e
+i π2 x0 0 − z1z2

r2 (e+iπ2 x0 + e−i
π
2 x0)

0 −1 0
z1z2
r2 (e+iπ2 x0 + e−i

π
2 x0) 0 − r

2
2

r2 e
−iπ2 x0 +

r2
1

r2 e
+i π2 x0


 .

Obviously this is not constant like in the previous cases, so it is impossible to
contract the boundary into one single point, but we have to look for a nontrivial
mapping Ũ1 on the northern hemisphere, that coincides with U1 on the equator.
There are two possibilities:

Ũ1(x)=



− r

2
2

r2π
−e+i π2 x0− r2

1

r2 e
−i π2 x0 ±i z2

R
se+iπ2 x0 z1z2

r2 (π−e+i π2 x0 − e−iπ2 x0)

∓i z2
R
s π+ ±i z1

R
s

z1z2
r2 (π−e+i π2 x0 − e−iπ2 x0) ∓i z1R se+iπ2 x0 − r

2
1

r2π
−e+i π2 x0− r2

2

r2 e
−i π2 x0


.

To secure the property of being unitary we have to choose either the upper or
the lower signs. Once the choice has been made, it propagates to all products,
its derivations and inverses, and so — by forming the trace at the end of the
computation of (Ũ1)?ω5 — does not influence the value of this pullback. In the
following we choose the upper signs.

Again we will use polar coordinates for the evaluation of our 5-form:
let K = R × R+

0 × R+
0 × [−π,+π] × [−π,+π] and define ψ:K → R5 by

ψ(x0, r1, r2, φ1, φ2) = (x0, r1 cosφ1, r1 sinφ1, r2 cosφ2, r2 sinφ2), resp., restrict K
to ψ−1(D5). By cyclic permutation under the trace we then obtain

(9) ψ?(U1)?ω5 = 5 · Tr{L · Lx0
} dx0 ∧ dr1 ∧ dr2 ∧ dφ1 ∧ dφ2

with the hermitian matrix

(10)
L = +[Lφ1

, Lφ2
][Lr1 , Lr2 ]− [Lφ1

, Lr1 ][Lφ2
, Lr2 ] + [Lφ1

, Lr2 ][Lφ2
, Lr1 ]

+[Lr1 , Lr2 ][Lφ1
, Lφ2

]− [Lφ2
, Lr2 ][Lφ1

, Lr1 ] + [Lφ2
, Lr1 ][Lφ1

, Lr2 ]

(L† = L is a consequence of [Lµ, Lν ]† = −[Lµ, Lν ] , which itself follows from
L†µ = −Lµ , cf. (5) to (7)).

The computation of ψ?(U1)?ω5 is straightforward but long and tedious.
We have collected the main steps in the appendix. We end up with (14):

ψ?(U1)?ω5 =30iπ
r1r2

R3

[
−π sin2πR(sinπR cosπx0 −

x0

R
cosπR sinπx0)

+ 2π sinπR(cosπx0−cosπR) + (2
R2

r2
+2)

sin2πR

R
(1−cosπR cosπx0)

− (2
R2

r2
+1)

x0

R2
sin3πR sinπx0

]
dx0∧dr1∧dr2∧dφ1∧dφ2.

For the mapping on the northern hemisphere, it turns out that — cf. (15) —

(Ũ1)?ω5 = (U1)?ω5 = −(U1)?ω5.

Fortunately, the negative sign compensates the factor (−1), that arises as a
consequence of the opposite orientation of the northern hemisphere. So both
integrals yield the same value:
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I1 =

∫

S5,“south”

− i

480π3
(U1)?ω5 +

∫

S5,“north”

− i

480π3
(Ũ1)?ω5

= 2

∫

S5,“south”

− i

480π3
(U1)?ω5 = 2

∫

ψ−1(D5)

− i

480π3
ψ?(U1)?ω5.

Because ψ?(U1)?ω5 is even in x0 , we integrate twice over positive values of
x0 , the integration over φ1 and φ2 just yields the factor 4π2 . Using new vari-
ables R, x0 and r2

1 and observing dR ∧ dx0 ∧ dr2
1 = 2 r1r2

R
dx0 ∧ dr1 ∧ dr2 , we

obtain

I1 =

1∫

0

dR

R2

R∫

0

dx0

R2−x2
0∫

0

[
−π sin2πR(sinπR cosπx0 −

x0

R
cosπR sinπx0)

+ 2π sinπR(cosπx0 − cosπR)− (2
R2

r2
+ 1)

x0

R2
sin3πR sinπx0

+ (2
R2

r2
+ 2)

sin2πR

R
(1− cosπR cosπx0)

]
dr2

1

=

1∫

0

dR

R2

R∫

0

[
−π(R2−x2

0) sin2πR(sinπR cosπx0 −
x0

R
cosπR sinπx0)

+ 2π(R2−x2
0) sinπR(cosπx0 − cosπR)− (3R2−x2

0)
x0

R2
sin3πR sinπx0

+ (4R2−2x2
0)

sin2πR

R
(1− cosπR cosπx0)

]
dx0.

Partial integration yields:

I1 =

∫ 1

0

[
+2 sin2πR− 2

3
πR sinπR cosπR− 1

3
sin2πR

−2
sinπR cosπR

πR
+

sin2πR

π2R2
+ 4

sin3πR cosπR

π3R3
− 3

sin4πR

π4R4

]
dR

=

∫ 1

0

2 sin2πR dR+

[
−1

3
R sin2πR− sin2πR

π2R
+

sin4πR

π4R3

]R=1

R=0

= 1 + 0 = 1.

This finally proves that our mapping constructed from U1 and Ũ1 represents the
generator of π5(SU3).

Representatives for further Elements of π5(SU3)

Having found a representative U for the generator [U ] of π5(SU3), we could use
standard techniques to construct representatives for the powers [U ]n , notably,
since SU3 is a group. But neither of these is practical for an explicit numerical
representation of a Vn with [Vn] = [U ]n . Fortunately, there is a simple technique
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due to the fact that we can expand the domains for U1 and Ũ1 . They not
only can be glued together at R = 1, but as well at R = 2n + 1, yet not at
R = 2n (n ∈ N0).

I2n+1 =

∫ 2n+1

0

2 sin2πR dR = 2n+ 1,

we thus easily obtain further representatives for all odd products of [U ] . For

even products U1 has to be combined with another function Û1: 2n ·D5 → SU3 .
Choosing

Û1(x)=




r2
2

r2π
−e+i π2 x0 +

r2
1

r2 e
−i π2 x0 i z2R se

+i π2 x0 − z1z2r2 (π−e+iπ2 x0−e−i π2 x0)

i z2
R
s π+ i z1

R
s

− z1z2r2 (π−e+i π2 x0−e−i π2 x0) i z1R se
+i π2 x0 r2

1

r2π
−e+i π2 x0 +

r2
2

r2 e
−i π2 x0




for points on the northern hemisphere, we recognize that Û1 can be glued
together with U1 at R = 2n , since

Û1(x) =




r2
1

r2 e
−i π2 x0 +

r2
2

r2 e
+i π2 x0 0 −z1z2r2 (e+iπ2 x0−e−i π2 x0)

0 1 0
z1z2
r2 (e+iπ2 x0−e−i π2 x0) 0

r2
2

r2 e
−i π2 x0 +

r2
1

r2 e
+iπ2 x0


= U1(x)

for all points x with ‖x‖ = R = 2n . Because of Û1(x = 0) = 1l3 = U1(x = 0),
both North Pole and South Pole of S5 are mapped onto the base point of SU3 .
Using the fact that the Lµ are invariant under left multiplications, we have

Û1(x) =



−1 0 0
0 1 0
0 0 −1


 · Ũ1(x) =⇒ L̂µ(x) = L̃µ(x).

This yields (Û1)?ω5 = (Ũ1)?ω5 and thus:

I2n =

∫

2n·S5,“south”

− i

480π3
(U1)?ω5 +

∫

2n·S5,“north”

− i

480π3
(Û1)?ω5

= 2

∫

2n·S5,“south”

− i

480π3
(U1)?ω5 =

∫ 2n

0

2 sin2πR dR = 2n.

In order to obtain representatives for the corresponding inverse elements
of π5(SU3) we replace x0 by −x0 , or define U1 to be the mapping of the northern

hemisphere and Ũ1 , resp., Û1 to be the mapping of the southern hemisphere of
S5 . If we replace x by 2nx , resp., by (2n + 1)x , we can keep D5 instead of
2n ·D5 , resp., (2n+ 1) ·D5 as domain.

Representatives for Elements of π5(U3)

As already mentioned in the introduction, U :S5 → SU3 constructed above also
is a representative for the generator of π5(U3) via the inclusion i:SU3 → U3 .
Alternatively, we can also use the function U ′1:D5 → U3 that we had obtained
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by (4) directly, to build up representatives for all the elements of π5(U3), as a
short computation will show.

For the mappings on the northern hemisphere we define:

Ũ ′1(x) =



− r

2
2

r2π
−eiπx0 − r2

1

r2 i z2R se
iπ2 x0 z1z2

r2 (π−eiπx0 − 1)

−i z2R sei
π
2 x0 π+ i z1R se

i π2 x0

z1z2
r2 (π−eiπx0 − 1) −i z1

R
sei

π
2 x0 − r

2
1

r2π
−eiπx0 − r2

2

r2


 , resp.,

Û ′1(x) =




r2
2

r2π
−eiπx0 +

r2
1

r2 i z2R se
iπ2 x0 z1z2

r2 (−π−eiπx0 + 1)

i z2R se
iπ2 x0 π+ −i z1R sei

π
2 x0

z1z2
r2 (−π−eiπx0 + 1) −i z1

R
sei

π
2 x0 r2

1

r2π
−eiπx0 +

r2
2

r2


 ;

these can be glued together with U ′1 at R = 2n+ 1, resp., R = 2n , because

Ũ ′1(x) =



− r

2
1

r2 +
r2
2

r2 e
iπx0 0 − z1z2r2 (1 + eiπx0)

0 −1 0
z1z2
r2 (1 + eiπx0) 0 − r

2
2

r2 +
r2
1

r2 e
iπx0


 = U ′1(x)

for all x with ‖x‖ = R = 2n+ 1 and

Û ′1(x) =




r2
1

r2 +
r2
2

r2 e
iπx0 0 z1z2

r2 (1− eiπx0)
0 1 0

z1z2
r2 (1− eiπx0) 0

r2
2

r2 +
r2
1

r2 e
iπx0


 = U ′1(x)

for all x with ‖x‖ = 2n . Recalling T (x) from (8) we get

U ′1(x) = T−1(x)·U1(x), Ũ ′1(x) = Ũ1(x)·T−1(x), Û ′1(x) = Û1(x)·T−1(x).

T (x) only depends on x0 , so the matrices that occur in our calculation of
(U1)?ω5 (conf. (9)), only change in the following manner (we omit the argu-
ment x for convenience):

L′x0
= Lx0

+ i
π

2
U†1EU1,

L̃′x0
= T · L̃x0

· T−1 + i
π

2
E,

L̂′x0
= T · L̂x0

· T−1 + i
π

2
E,

L′ = L, L̃′ = T · L̃ · T−1, L̂′ = T · L̂ · T−1,

where we have defined E :=




1 0 0
0 0 0
0 0 1


 . We easily deduce

Tr{L′ · L′x0
} = Tr{L · Lx0

}+ i
π

2
Tr{L · U †1EU1} and

Tr{L̃′ · L̃′x0
} = Tr{L̂′ · L̂′x0

} = −Tr{L · Lx0
}+ i

π

2
Tr{L ·E}.

For the total integral we get I ′n = In + ∆ with

∆ =

n∫

0

dR

R2

R∫

−R

dx0

R2−x2
0∫

0

dr2
1

1

48

R3

r1r2
Tr{L · (U †1EU1 − E)},
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and for M := U †1EU1 − E we compute

M =




− r
2
1s

2

R2 z1(x0
s2

R2 + i scR ) −z1z2
s2

R2

z1(x0
s2

R2 − i scR ) r2s2

R2 z2(x0
s2

R2 − i scR )

−z1z2
s2

R2 z2(x0
s2

R2 + i scR ) − r
2
2s

2

R2


 .

Using (11) to (13) from the appendix we obtain

Tr{L ·M} =
s2

R2
S + 2

sc

R

(
r2
1 Im{L12

z1
} − r2

2 Im{L23

z2
}
)

=
r1r2

R3

[
−24πs3c(1−ccx−

x0

R
ssx) + 24πs3c(1−ccx−

x0

R
ssx)

]
= 0.

This yields ∆ = 0, and thus — as expected —

I ′n = n.

This result once again confirms that our ansatz (4) directly leads to
representatives for generators of π2n−1(SUn), resp., π2n−1(Un), depending on n
being even or odd — at least for the lower dimensions examinated here.

Appendix

In order to compute ψ?(U1)?ω5 we first calculate the antihermitian Lµ ’s.
Throughout all computations we will use the following abbrevations for con-
venience and clarity:

c = cosπR,

π+ = cosπR+ i
x0

R
sinπR,

cx = cosπx0,

e+ = exp(+iπx0),

s = sinπR,

π− = cosπR− ix0

R
sinπR,

sx = sinπx0,

e− = exp(−iπx0).

Remember K = R × R+
0 × R+

0 × [−π,+π] × [−π,+π] as domain for
the polar coordinate function ψ and let v := (x0, r1, r2, φ1, φ2) ∈ K . Define
the linear involution Λ:K → K by w = Λ(v ) = (x0, r2, r1,−φ2,−φ1). So
U1(ψ(w)) is the matrix we obtain from U1(ψ(v)) by replacing (z1, z2) by
(z2, z1), resp., (r1, φ1) by (r2,−φ2), and vice versa.

Let AP denote the matrix A “rotated by 180◦ ”, so that A11 becomes
A33 , A12 becomes A32 , A13 becomes A31 , and so on. Obviously this operation
commutes with the hermitian conjugation and the derivation of A . We have
(AB)P = APBP and Tr{AP } = Tr{A} . Because of UP1 ◦ψ = U1◦ψ◦Λ we obtain
∂
∂x0

(UP1 ◦ψ) = ∂
∂x0

(U1 ◦ψ ◦Λ) = ∂
∂x0

(U1 ◦ψ)◦Λ, ∂
∂r1

(UP1 ◦ψ) = ∂
∂r1

(U1 ◦ψ ◦Λ) =
∂U1

∂r2
(U1 ◦ψ) ◦Λ and ∂

∂φ1
(UP1 ◦ψ) = ∂

∂φ1
(U1 ◦ψ ◦Λ) = −∂U1

∂φ2
(U1 ◦ψ) ◦Λ. We thus

have an additional symmetry between the elements of the antihermitian Lµ ’s
(here Lµ = (U1 ◦ ψ)† ∂

∂µ
(U1 ◦ ψ):K →M3(C) for µ = x0, r1, r2, φ1, φ2 ):

Lx0
(v) = LPx0

(w),

Lφ1
(v) = −LPφ2

(w), Lφ2
(v) = −LPφ1

(w),

Lr1(v) = +LPr2(w), Lr2(v) = +LPr1(w),
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which makes life a bit easier. We obtain

Lx0
(v) =

iπ

2R2
·




R2+r2
1( 2sc
πR−1−c2) z1

[
−x0(2scπR−1−c2)+i(2s

2

π −Rsc)
]

z1z2( 2sc
πR−1−c2)

z1
[
−x0(2scπR−1−c2)−i(2s2π −Rsc)

]
−2R2−r2( 2sc

πR−1−c2) z2
[
−x0(2scπR−1−c2)−i(2s2π −Rsc)

]

z1z2( 2sc
πR−1−c2) z2

[
−x0(2scπR−1−c2)+i(2s

2

π −Rsc)
]

R2+r2
2( 2sc
πR−1−c2)


,

Lφ1
(v) = i ·




− r
2
1
s2

R2 −
r2
1
r2
2

r4
|π+−e+|2 +iz1

s
R

(
r2
1
r2
π−+

r2
2
r2
e−
)

+
z1z2
r4

(r2
1π
−+r2

2e
−)(π+−e+)

−iz1 sR
(
r2
1
r2
π++

r2
2
r2
e+
)

+
r2
1
s2

R2 −iz2 sR
r2
1
r2

(π+−e+)

+
z1z2
r4

(r2
1π

++r2
2e

+)(π−−e−) +iz2
s
R

r2
1
r2

(π−−e−) +
r2
1
r2
2

r4
|π+−e+|2


,

Lφ2
(v) = i ·




− r
2
1
r2
2

r4
|π+−e+|2 −iz1 sR

r2
2
r2

(π−−e−) − z1z2
r4

(r2
2π

++r2
1e

+)(π−−e−)

+iz1
s
R

r2
2
r2

(π+−e+) − r
2
2
s2

R2 +iz2
s
R

(
r2
2
r2
π++

r2
1
r2
e+
)

− z1z2
r4

(r2
2π
−+r2

1e
−)(π+−e+) −iz2 sR

(
r2
2
r2
π−+

r2
1
r2
e−
)

+
r2
2
s2

R2 +
r2
1
r2
2

r4
|π+−e+|2


,

Lr1(v) = ir1 ·


x0r
2
1

r2
( π
R2− sc

R3)+i
r2
2
r4

(π−e+−π+e−) z1

[
( π
R2− scR3)+

s(r2
1
π−+r2

2
e−)

r2
1
r2R

]
z1z2

[
x0
r2

( π
R2− scR3)−r

2−r2
1
π−e+−r2

2
π+e−

ir2
1
r4

]

z1

[
( π
R2− sc

R3 )+
s(r2

1
π++r2

2
e+)

r2
1
r2R

]
−x0( π

R2− sc
R3 ) z2

[
( π
R2− sc

R3 )+
s(π+−e+)

r2R

]

z1z2

[
x0
r2

( π
R2− scR3)+

r2−r2
1
π−e+−r2

2
π+e−

ir2
1
r4

]
z2

[
( π
R2− sc

R3)+
s(π−−e−)

r2R

]
x0r

2
2

r2
( π
R2− sc

R3)−i r
2
2
r4

(π−e+−π+e−)


,

Lr2(v) = ir2 ·


x0r
2
1

r2
( π
R2− sc

R3)−i r
2
1
r4

(π−e+−π+e−) z1

[
( π
R2− sc

R3)+
s(π−−e−)

r2R

]
z1z2

[
x0
r2

( π
R2− scR3)+

r2−r2
1
π−e+−r2

2
π+e−

ir2
2
r4

]

z1

[
( π
R2− sc

R3 )+
s(π+−e+)

r2R

]
−x0( π

R2− sc
R3 ) z2

[
( π
R2− sc

R3 )+
s(r2

2
π++r2

1
e+)

r2
2
r2R

]

z1z2

[
x0
r2

( π
R2− scR3)−r

2−r2
1
π−e+−r2

2
π+e−

ir2
2
r4

]
z2

[
( π
R2− scR3)+

s(r2
2
π−+r2

1
e−)

r2
2
r2R

]
x0r

2
2

r2
( π
R2− sc

R3)+i
r2
1
r4

(π−e+−π+e−)


.

For the antihermitian [Lµ, Lν ] we have the following additional symmetries:

[Lφ1
, Lφ2

](v) = −[Lφ1
, Lφ2

]P (w), [Lr1 , Lr2 ](v) = −[Lr1 , Lr2 ]P (w),

[Lφ1
, Lr1 ](v) = −[Lφ2

, Lr2 ]P (w), [Lφ2
, Lr1 ](v) = −[Lφ1

, Lr2 ]P (w),

[Lφ1
, Lr2 ](v) = −[Lφ2

, Lr1 ]P (w), [Lφ2
, Lr2 ](v) = −[Lφ1

, Lr1 ]P (w),

so that [Lφ1
, Lr2 ](v) and [Lφ2

, Lr2 ](v ) do not need to be computed. For the
others we obtain
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[Lφ1
, Lφ2

](v) =




0 −iz1 sR
r2
2
r2

(π−−e−) z1z2
s2

R2

−iz1 sR
r2
2
r2

(π+−e+) 0 iz2
s
R

r2
1
r2

(π+−e+)

−z1z2 s
2

R2 iz2
s
R

r2
1
r2

(π−−e−) 0


,

[Lr1 , Lr2 ](v) =
r1r2

r2R2
·




πRs(e+−e−)

+iπx0(ce++ce−−2)

+ix0
s
R (2c−e+−e−)

iz1
r2
1





πr2(ce−−1)

+x2
0
s
R (e−−c)

+ix0s
2





z1z2
r2
1r

2
2





−πRs(r2
1e

++r2
2e
−)

+iπx0r
2
2(ce−−1)

−iπx0r
2
1(ce+−1)

+ix0r
2
1
s
R (e+−c)

−ix0r
2
2
s
R (e−−c)





iz1
r2
1





πr2(ce+−1)

+x2
0
s
R (e+−c)
−ix0s

2



 0 − iz2

r2
2





πr2(ce+−1)

+x2
0
s
R (e+−c)
−ix0s

2





z1z2
r2
1r

2
2





πRs(r2
1e
−+r2

2e
+)

+iπx0r
2
2(ce+−1)

−iπx0r
2
1(ce−−1)

+ix0r
2
1
s
R (e−−c)

−ix0r
2
2
s
R (e+−c)





− iz2
r2
2





πr2(ce−−1)

+x2
0
s
R (e−−c)

+ix0s
2





−πRs(e+−e−)

−iπx0(ce++ce−−2)

−ix0
s
R (2c−e+−e−)




,

[Lφ1
, Lr1 ](v) = r1 ·




2iπx0r
2
1
r2
2
csx

r4R2 − 2iπr4
1
sc

r2R3

− 2iπr2
1
r2
2
scx

r4R
− 2ix0r

2
1
r2
2
ssx

r4R3

− 2ir2
2
(r2

2
−r2

1
)

r6
|π+−e+|2

+
2ir2

1
r2
2
s2

r4R2 +
2ir4

1
s2

r2R4 − 2is2

R2

z1





2πr2
1
s2

r2R2 +
r2
2
s

r2R3 (e−−c)

− πr2
2

r2R2 (ce−−1)

+
2ix0r

2
2
s

r2R4 (πRc−s)

+
2r2

2
s

r4R
(e−−π−)





z1z2





− x0
r4R3 (r2

1e
++r2

2e
−)(πRc−s)

+ iπs
r4R

(r2
1e

+−r2
2e
−)

+
πx0
r2R2−

2iπr2
1
sc

r2R3

+ is2

R4 +
4ir2

2
r6
|π+−e+|2

− x0sc

r2R3−
ix2

0
(r2

1
−r2

2
)s2

r4R4





z1





− 2πr2
1
s2

r2R2 −
r2
2
s

r2R3 (e+−c)

+
πr2

2
r2R2 (ce+−1)

+
2ix0r

2
2
s

r2R4 (πRc−s)

− 2r2
2
s

r4R
(e+−π+)





2is
R4 [r2

1(πRc−s)+R2s] z2





− 2πr2
1
s2

r2R2 +
r2
1
s

r2R3 (e+−c)

− πr2
1

r2R2 (ce+−1)

+
2ix0r

2
2
s

r2R4 (πRc−s)

− 2r2
2
s

r4R
(e+−π+)





z1z2





x0
r4R3 (r2

1e
−+r2

2e
+)(πRc−s)

+ iπs
r4R

(r2
1e
−−r2

2e
+)

− πx0
r2R2−

2iπr2
1
sc

r2R3

+ is2

R4 +
4ir2

2
r6
|π+−e+|2

+
x0sc

r2R3−
ix2

0
(r2

1
−r2

2
)s2

r4R4





z2





2πr2
1
s2

r2R2 −
r2
1
s

r2R3 (e−−c)

+
πr2

1
r2R2 (ce−−1)

+
2ix0r

2
2
s

r2R4 (πRc−s)

+
2r2

2
s

r4R
(e−−π−)





− 2iπx0r
2
1
r2
2
csx

r4R2 − 2iπr2
1
r2
2
sc

r2R3

+
2iπr2

1
r2
2
scx

r4R
+

2ix0r
2
1
r2
2
ssx

r4R3

+
2ir2

2
(r2

2
−r2

1
)

r6
|π+−e+|2

−2ir2
1r

2
2s

2r4R2+
2ir2

1
r2
2
s2

r2R4




,
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[Lφ2
, Lr1 ](v) = r1 ·



2iπx0r
2
1
r2
2
csx

r4R2 +
2iπr2

1
r2
2
sc

r2R3

− 2iπr2
1
r2
2
scx

r4R
− 2ix0r

2
1
r2
2
ssx

r4R3

− 2ir2
2

(r2
2
−r2

1
)

r6
|π+−e+|2

+
2ir2

1
r2
2
s2

r4R2 − 2ir2
1
r2
2
s2

r2R4

z1





− 2πr2
2
s2

r2R2 +
r2
2
s

r2R3 (e−−c)

− πr2
2

r2R2 (ce−−1)

− 2ix0r
2
2
s

r2R4 (πRc−s)

+
r2
2

(r2
1
−r2

2
)s

r2
1
r4R

(e−−π−)




z1z2





− x0
r4R3 (r2

1e
++r2

2e
−)(πRc−s)

+ iπs
r4R

(r2
1e

+−r2
2e
−)

+
πx0
r2R2−

2iπr2
1
sc

r2R3

+
ir2

2
s2

r2
1
r2R2 +

4ir2
2

r6
|π+−e+|2

− x0sc

r2R3 +
2ix2

0
r2
2
s2

r4R4





z1





2πr2
2
s2

r2R2 −
r2
2
s

r2R3 (e+−c)

+
πr2

2
r2R2 (ce+−1)

− 2ix0r
2
2
s

r2R4 (πRc−s)

− r
2
2

(r2
1
−r2

2
)s

r2
1
r4R

(e+−π+)





− 2is
R4 [r2

2(πRc−s)] z2





2πr2
2
s2

r2R2 +
r2
1
s

r2R3 (e+−c)

− πr2
1

r2R2 (ce+−1)

− 2ix0r
2
2
s

r2R4 (πRc−s)

− (r2
1

+3r2
2

)s

r4R
(e+−π+)





z1z2





x0
r4R3 (r2

1e
−+r2

2e
+)(πRc−s)

+ iπs
r4R

(r2
1e
−−r2

2e
+)

− πx0
r2R2 +

2iπr2
2
sc

r2R3

+
ir2

2
s2

r2
1
r2R2 +

4ir2
2

r6
|π+−e+|2

+
x0sc

r2R3 +
2ix2

0
r2
2
s2

r4R4





z2





− 2πr2
2
s2

r2R2 −
r2
1
s

r2R3 (e−−c)

+
πr2

1
r2R2 (ce−−1)

− 2ix0r
2
2
s

r2R4 (πRc−s)

+
(r2

1
+3r2

2
)s

r4R
(e−−π−)





− 2iπx0r
2
1
r2
2
csx

r4R2 +
2iπr4

2
sc

r2R3

+
2iπr2

1
r2
2
scx

r4R
+

2ix0r
2
1
r2
2
ssx

r4R3

+
2ir2

2
(r2

2
−r2

1
)

r6
|π+−e+|2

− 2ir2
1
r2
2
s2

r4R2 +
2ir2

1
r2
2
s2

r2R4 − 2ir2
2
s2

R4




.

We further have

[Lφ1
, Lφ2

][Lr1 , Lr2 ](v) = ([Lφ1
, Lφ2

][Lr1 , Lr2 ])P (w),

[Lr1 , Lr2 ][Lφ1
, Lφ2

](v) = ([Lr1 , Lr2][Lφ1
, Lφ2

])P (w),

[Lφ1
, Lr1 ][Lφ2

, Lr2 ](v) = ([Lφ1
, Lr1 ][Lφ2

, Lr2 ])P (w),

[Lφ2
, Lr2 ][Lφ1

, Lr1 ](v) = ([Lφ2
, Lr2 ][Lφ1

, Lr1 ])P (w),

[Lφ2
, Lr1 ][Lφ1

, Lr2 ](v) = ([Lφ2
, Lr1 ][Lφ1

, Lr2 ])P (w),

[Lφ1
, Lr2 ][Lφ2

, Lr1 ](v) = ([Lφ1
, Lr2 ][Lφ2

, Lr1 ])P (w),

from which we deduce for L defined by (10)

L(v) = LP (w), L · Lx0
(v ) = (L · Lx0

)P (w) and Tr{L · Lx0
}(v ) = Tr{L · Lx0

}(w).

Since dx0 ∧ dr1 ∧ dr2 ∧ dφ1 ∧ dφ2 = dx0 ∧ dr2 ∧ dr1 ∧ d(−φ2) ∧ d(−φ1), we
have ψ?(U1)?ω5(v ) = ψ?(U1)?ω5(w) by (9). Even if we make good use of these
symmetries there is still some work left over to compute L . We finally obtain

L(v) =
r1r2

R3
·




12r2
1
s2

r2
(πscx−π x0

R csx+
x0
R2 ssx)

+8s(2−3
r2
2
r2

) [π(c−cx)

+
x2
0
s

r2R
(1−ccx)− x0

r2
s2sx]

z1

{
12s
r2

(1−ccx− x0
R ssx)·

·(−πx0c+iπRs+
x0
R s)

}
z1z2





12s2

r2
(πscx−π x0

R csx+
x0
R2 ssx)

+24 s
r2

[π(c−cx)

+
x2
0
s

r2R
(1−ccx− x0

R ssx)]





z1

{
12s
r2

(1−ccx− x0
R ssx)·

·(−πx0c−iπRs+x0
R s)

} −12s2(πscx−π x0
R csx+

x0
R2 ssx)

−8s [π(c−cx)

+
x2
0
s

r2R
(1−ccx)− x0

r2
s2sx]

z2

{
12s
r2

(1−ccx− x0
R ssx)·

·(−πx0c−iπRs+x0
R s)

}

z1z2





12s2

r2
(πscx−π x0

R csx+
x0
R2 ssx)

+24 s
r2

[π(c−cx)

+
x2
0
s

r2R
(1−ccx− x0

R ssx)]



 z2

{
12s
r2

(1−ccx− x0
R ssx)·

·(−πx0c+iπRs+
x0
R s)

} 12r2
2
s2

r2
(πscx−π x0

R csx+
x0
R2 ssx)

+8s(2−3
r2
1
r2

) [π(c−cx)

+
x2
0
s

r2R
(1−ccx)− x0

r2
s2sx]




.
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Using

Tr{L · Lx0
} =

∑

ij

Lij(Lx0
)ji =

∑

i

Lii(Lx0
)ii + 2i

∑

i<j

Im{Lij(Lx0
)ji}

we have (omitting the argument v )

Tr{L · Lx0
} =i(

2s2

R2
− πsc

R
)
(
r2
1 Im{L12

z1
} − r2

2 Im{L23

z2
}
)

+ i
π

2
(L11 − 2L22 + L33) + i

(π(1 + c2)

2R2
− sc

R3

)
S

with S =
[
−r2

1L11 + r2L22 − r2
2L33 − 2r2

1r
2
2 Re{ L13

z1z2
}

+ 2x0

(
r2
1 Re{L12

z1
}+ r2

2 Re{L23

z2
}
)]
. (11)

We obtain

r2
1 Im{L12

z1
} − r2

2 Im{L23

z2
} =

r1r2

R3
12πRs2(1− ccx −

x0

R
ssx), (12)

r2
1 Re{L12

z1
}+ r2

2 Re{L23

z2
} =

r1r2

R3
12x0s(

s

R
− πc)(1− ccx −

x0

R
ssx),

L11 − 2L22 + L33 =
r1r2

R3

{
36s2

[
π(scx −

x0

R
csx) +

x0

R2
ssx

]

+ 24s
[
π(c− cx) +

x2
0s

r2R
(1− ccx)− x0

r2
s2sx

]}
,

−2r2
1r

2
2 Re{ L13

z1z2
} =

r1r2

R3

r2
1r

2
2

r2

{
−24s2

[
π(scx −

x0

R
csx)− x0

R2
ssx

]

− 48s
[
π(c− cx) +

x2
0s

r2R
(1− ccx −

x0

R
ssx)

]}
,

−r2
1L11+r2L22−r2

2L33 =
r1r2

R3
r2
{
−24s2(1− r

2
1r

2
2

r4
)
[
π(scx −

x0

R
csx) +

x0

R2
ssx

]

− 24s
r4
1+r4

2

r4

[
π(c−cx) +

x2
0s

r2R
(1−ccx)− x0

r2
s2sx

]}
,

thus: S =− r1r2

R3
24πR2sc(1− ccx −

x0

R
ssx) (13)

and Tr{L · Lx0
} =i

r1r2

R3

{
12π2s(cx−c)− 6π2s2(scx −

x0

R
csx)

− 6π(2
R2

r2
+1)

x0

R2
s3sx + 6π(2

R2

r2
+2)

s2

R
(1−ccx)

}
.

It is finally done. For the desired 5-form on the southern hemisphere of the S5

we end up with

ψ?(U1)?ω5 =30iπ
r1r2

R3

[
−π sin2πR(sinπR cosπx0 −

x0

R
cosπR sinπx0)

+ 2π sinπR(cosπx0−cosπR) + (2
R2

r2
+2)

sin2πR

R
(1−cosπR cosπx0)

− (2
R2

r2
+1)

x0

R2
sin3πR sinπx0

]
dx0∧dr1∧dr2∧dφ1∧dφ2. (14)
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After this preliminary work it is quite easy now to compute (Ũ1)?ω5 on

the northern hemisphere. We rewrite Ũ1 as

Ũ1 = FU1
P
FP =

(
FPU1F

)P
,

where we have defined F :=



−1 0 0
0 1 0
0 0 1


 . This yields

Ũ1

†
=
(
FU1

†
FP
)P

,
∂Ũ1

∂xi
=

(
FP

∂U1

∂xi
F

)P
,

because complex conjugation and differentiation along real variables commute.
We thus have

L̃xi = (FLxiF )P ,

Tr{L̃ · L̃x0
} = Tr{(FL · Lx0

F )P } = Tr{FL · Lx0
F}

= Tr{L · Lx0
} = Tr{L · Lx0

}
and immediately obtain

(15) (Ũ1)?ω5 = (U1)?ω5 = −(U1)?ω5.
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