
Seminar Sophus Lie
3 (1993) 35–46

New sufficient criteria
for the globality of Lie wedges

Dirk Mittenhuber∗

Abstract

We consider a simply connected Lie group G with Lie algebra g and
Lie semigroups S, T ⊆ G with tangent wedges L(S), resp. L(T ). We
give some sufficient conditions for W := L(S) + L(T ) to be a global Lie
wedge. The first theorem applies to the situation where G = NH is a
semidirect decomposition and W is adapted to this decomposition in the
sense of L(S) ⊆ n and L(T ) ⊆ h while the second theorem applies to
the case where the semigroup generated by S and T admits a product
decomposition 〈S ∪ T 〉 = ST . As an application, we prove that in a three-
dimensional Lie algebra every Lie wedge that lies in the intersection of
two distinct halfspace-semialgebras is global in the corresponding simply
connected Lie group.

1. Introduction

First we recall some definitions and notations concerning Lie wedges, Lie
semigroups and orders. In what follows, G denotes an arbitrary Lie group and g
its Lie algebra. We consider only real Lie algebras.

Definition 1.1. Suppose S ⊆ G is a subsemigroup, then we define the tangent
wedge L(S) by X ∈ L(S) if and only if there exist sequences (sj)j∈N ⊆ S and
mj ∈ R+ such that

lim
j
sj = 1, and X = lim

j
mj log sj,

where log denotes the logarithm which is well-defined on a sufficiently small neigh-
borhood of 1.
A subsemigroup S ⊆ G is a Lie semigroup iff it is reconstructible from its tangent
wedge, i.e.

S = 〈expL(S)〉.

Remark 1.2. Four our purposes the former definition turns out to be more
convenient than the equivalent (see [1])

L(S)
def
=
{
X ∈ g | expR+X ⊆ S

}
.
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In any case it’s worth to note that L(S) = L(S). Therefore we will be able to
restrict most of our considerations to dense subsemigroups of Lie semigroups.

Definition 1.3. Let g be a Lie algebra, W ⊆ g is a Lie wedge, if it satisfies

W = W, W +W = W, R+W = W and eadH(W )W = W,

where H(W )
def
= W ∩−W is called the edge of W and ad is the adjoint represen-

tation.
Let G be a Lie group with Lie algebra g. A Lie wedge W ⊆ g is global in G, if
there exists a subsemigroup S ⊆ G with W = L(S). A Lie wedge is global, if it
is global in the simply connected Lie group corresponding to g.

The starting point of the Lie theory of semigroups was the observation
that for any subsemigroup S ⊆ G the tangent wedge L(S) ⊆ g is a Lie wedge.

Conversely, if W ⊆ g is a Lie wedge, then S(W )
def
= 〈expGW 〉 is the smallest Lie

semigroup with L(S(W )) ⊇ W , but the inclusion may be proper. Equality holds
if and only if W is global in G. The so-called halfspace semialgebras are of special
importance, because they are maximal global Lie wedges:

Definition 1.4. A halfspace-semialgebra in a Lie algebra g is a halfspace
such that its bounding hyperplane is a subalgebra. An intersection of halfspace-
semialgebras is called an intersection-semialgebra.

Finally every semigroup gives rise to a left-invariant partial order on the
whole group:

Definition 1.5. Let S ⊆ G be a subsemigroup, then we denote with ≤S the
left invariant order on G induced by S :

x ≤S y iff xS 3 y.

For x, y ∈ G the order interval [x, y]S is defined as [x, y]S = xS ∩ yS−1 .

2. A globality theorem for wedges that are adapted to a semidirect
decomposition

Lemma 2.1. Suppose G is a Lie Group, N a closed normal subgroup, H a
closed subgroup satisfying N ∩H = {1} and NH = NH . Assume gj = njhj with
nj ∈ N , hj ∈ H and limj gj = 1. Then hj converges to 1 and so does nj .

Proof. We consider the factor group G/N . The quotient map π:G → G/N
is continuous, hence π|H:H → π(H) ⊆ G/N is a surjective, continuous homo-
morphism onto a locally compact group. Since H ∩ N = {1} we know that π|H
is injective, hence bijective. Now the open mapping theorem applies and yields a
continuous homomorphism ψ: π(H)→ H which inverts π|H .
The continuity of π and gj → 1 in G imply π(gj) = π(hj)→ 1 in G/N . Therefore
hj = ψ(π(hj))→ 1 by the continuity of ψ . Thus hj → 1 in G which immediately
yields nj = gjh

−1
j → 1 in G.
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Theorem 2.2. Suppose G is a Lie group, N = N̄ � G a normal subgroup
and H = H̄ ≤ G a Lie subgroup such that N ∩H = {1} and NH ⊆ G is closed.
Let S ⊆ N and T ⊆ H be Lie semigroups with intH(T ) 6= Ø and tangent wedges

L(S) ⊆ n, L(T ) ⊆ h. We define the following family of wedges:

W = {W ′ ⊆ n | W ′ global in N , (∃t0 ∈ intH T )(∀t ∈ [1, t0]T )Ad(t)L(S) ⊆ W ′} .
Then the following holds:
If
⋂W = L(S) then the Lie wedge L(S) + L(T ) is global in G.

Proof. Let t ∈ T , then we denote with α(t) the inner automorphism of G
induced by t ∈ T , i.e. α(t)(g) = tgt−1 and we let

Et = {α(t1)(s1) . . . α(tn)(sn)s | ti ∈ [1, t]T , si ∈ expL(S)}
and E =

⋃
t∈T Et . We will prove the following:

(i) E is a semigroup because for t, t′ ∈ T we have EtEt′ ⊆ Ett′ . Indeed,
if g = (

∏n
i=1 α(ti)(si))t ∈ Et and g′ = (

∏m
j=1 α(t′j)(s

′
j))t

′ ∈ Et′ then

gg′ =

(
n∏

i=1

α(ti)(si)

)
t




m∏

j=1

α(t′j)(s
′
j)


 t′

=

(
n∏

i=1

α(ti)(si)

)
α(t)




m∏

j=1

α(t′j)(s
′
j)


 tt′

=

(
n∏

i=1

α(ti)(si)

)


m∏

j=1

α(tt′j)(s
′
j)


 tt′ ∈ Ett′ .

(ii) L(E) ⊇ L(S) + L(T ) for obviously expL(S) ∪ expL(T ) ⊆ E .

(iii) L(E) ⊆ L(S) +L(T ). This is the non-trivial part of the proof. Let Y ∈ L(E)
then there exist sequences mj ∈ R+ and qj ∈ E such that limj qj = 1 and Y =
limjmj log(qj). Now qj = njtj with nj ∈ N , tj ∈ T and limj nj = 1 = limj tj .
Applying the Campbell-Hausdorff-formula we obtain

mj log qj = mj log njtj = mj(log nj ∗ log tj) = mj lognj︸ ︷︷ ︸
∈n

+mj log tj︸ ︷︷ ︸
∈h

+mjrj︸ ︷︷ ︸
∈n

.

Since L(H) ∩ L(N) = {0} the sequence mj log tj converges and since tj ∈ T ,
tj → 1 it follows that limmj log tj ∈ L(T ). Since ‖rj‖ ≤ c ‖log tj‖ ‖lognj‖ for a
suitable norm and positive constant c, we conclude limj rj = 0 for ‖log nj‖ → 0
and mj ‖log sj‖ is bounded. Thus limjmj log nj also exists. Now let W ′ ∈ W be
given, then there is a t0 ∈ intH(T ) such that Ad(t)L(S) ⊆ W ′ for all t ∈ [1, t0]T .
But t0 ∈ intH(T ) implies the existence of an open, symmetric U = U−1 such
that Ut0 ∩ H ⊆ T . Therefore H ∩ U = H ∩ U−1 ⊆ t0T

−1 . Since tj → 1, we
may conclude tj ≤T t0 for all sufficiently large j . Hence nj ∈ 〈expW ′〉 and the
globality of W ′ in N implies limmj log nj ∈ W ′ . This proves Y ∈ W ′ + L(T ) for
all W ′ ∈ W , hence

L(E) ⊆
⋂

W ′∈W
W ′ + L(T ) = L(S) + L(T ),

by our assumption on
⋂W which proves (iii).
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From (i)–(iii) we deduce that L(S) + L(T ) = L(E) is the tangent wedge of a
subsemigroup E ⊆ G, therefore it is a Lie wedge and global in G.

This is a slightly more general version of Theorem 1.1 in [2]. There was an
additional assumption imposed on L(S) and L(T ) in order to ensure that L(S) +

L(T ) is a Lie wedge, but this assumption may be dropped, because the latter
follows automatically from L(E) = L(S) + L(T ). In fact the assumption made
in [2] is necessary (but not sufficient) for

⋂W = L(S) to hold. Investigating the
condition

⋂W = L(S), one obtains by the same arguments as in [2] the following
corollary:

Corollary 2.3. If the ideal n is almost-abelian and L(S), L(T ) are pointed
wedges, then

⋂W = L(S) always holds, i.e. L(S) + L(T ) is global in G.

3. A globality Theorem for a sum of pointed wedges

Proposition 3.1. Let G be a topological group and S, T ⊆ G. Let tj ∈ T and
sj ∈ S be arbitrary sequences, then the following are equivalent:

(i) sjtj → 1 iff sj → 1 and tj → 1.

(ii) (∀V )(∃U)S ∩ UT−1 ⊆ V .

(iii) (∀V )(∃U)S−1U ∩ T ⊆ V .

Proof. We will prove: (i)⇒(ii)⇒(iii)⇒(i).
Suppose (i) holds, so sjtj → 1 implies sj → 1 and tj → 1. Now we assume that
there is a V such that for any U we have S∩UT−1 6⊆ V . Then we take a sequence
Uj of 1-neighborhoods converging to 1. According to our assumption we find an
element sj ∈ (S ∩ UjT−1) \ V and an tj ∈ T with sj ∈ Ujt−1

j . Hence sjtj ∈ Uj
which implies sjtj → 1 but sj 6→ 1 since sj ∈ V C , a contradiction to (i). Thus
(ii) must hold.
Next we suppose that (ii) holds. Let V be given then we choose V ′ = V ′−1 with
V ′V ′ ⊆ V . Since (ii) holds, we find a U = U−1 ⊆ V ′ such that S ∩ UT−1 ⊆ V ′ .
Hence S−1 ∩ TU ⊆ V ′ which proves (iii) since

S−1U ∩ T ⊆ (S−1 ∩ TU)U ⊆ V ′U ⊆ V ′V ′ ⊆ V.

Finally we assume that (iii) holds and that sjtj → 1. We will prove tj → 1,
i.e. (∀V )(∃j0)(∀j ≥ j0)sj ∈ V . Let V be given, then we can find U such that
S−1U ∩ T ⊆ V . Choose j0 such that sjtj ∈ U for all j ≥ j0 . Then we have
tj ∈ s−1

j U , thus tj ∈ T−1U ∩ S ⊆ V for all j ≥ j0 proving (i).

Definition 3.2. Let S, T ⊆ G be Lie semigroups. We say that S and T are
well-separated, if one of the equivalent conditions in Proposition 3.1 holds.
Let W1,W2 ⊆ V be two wedges in a vector space. We call W1 and W2 well-
separated, if W1 ∩ −W2 = {0}.
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Remark 3.3. If the Lie semigroups S and T are well-separated, then so are
their tangent wedges L(S) and L(T ). The converse is not true. It suffices to
choose W1 pointed and controllable in order to obtain a counterexample.

Proposition 3.4. Let W1 , W2 be pointed and well-separated wedges, then
their sum W1 +W2 is also a pointed wedge. In addition, we can find surrounding
wedges W̃1 and W̃2 which are still well-separated.

Theorem 3.5. Let S and T ⊆ G be well-separated Lie semigroups with
pointed tangent wedges L(S) and L(T ). We further assume that 〈S ∪ T 〉 = ST ,
then L(S) + L(T ) is global in G.

Proof. Let g ∈ 〈S∪T 〉, then we may write g = st with s ∈ S and t ∈ T . If we
have a sequence gj = sjtj → 1 and Y = limjmj log gj , then the well-separateness
of S and T implies tj → 1 and sj → 1. Let WS and WT be well-separated
wedges surrounding L(S), resp. L(T ). Then

mj log(sjtj) = mj log sj︸ ︷︷ ︸
∈WS

+mj log tj︸ ︷︷ ︸
∈WT

+mjrj

Since WS and WT are well-separated, WS + WT is pointed, so its dual has non-
empty interior. Let ω ∈ int((WS +WT )∗), then there exists a constant c > 0 such
that ω(w) ≥ c ‖w‖ for all w ∈ WS +WT . Thus

ω(mj log gj) = mjω(log sj) +mjω(log tj) +mjω(rj)

≥ mj(c ‖log sj‖+ c ‖log tj‖ −M ‖log sj‖ ‖log tj‖)
with some positive constant M > 0. But the function

f(x, y; c,M) = cx+ cy −Mxy = M

(
c2

M2
−
(
x− c

M

)(
y − c

M

))

is positive for all (x, y) ∈
[
0, 2c

M

]
×
[
0, 2c

M

]
. So we may conclude ω(Y ) ≥ 0. Since

ω ∈ int((WS + WT )∗) was arbitrary, we obtain Y ∈
(
int((WS + WT )∗)

)∗
=

WS +WT . Since this holds for arbitrary WS and WT (close enough to L(S), resp.

L(T )), we conclude

Y ∈
⋂

WS ,WT

WS +WT = L(S) + L(T ),

proving our claim.

Remark 3.6. A problem always occurring in this kind of proof is getting rid of
the term mjrj . This can easily be done if S ⊆ Z(G) because then rj ≡ 0. Another
idea applies if S is already an invariant subsemigroup, i.e. Ad(G) L(S) = L(S).
In that case we may conclude log sj ∈ L(S) for sj sufficiently close to 1. Therefore
rj ∈ Ad(G) log sj ⊆ L(S), implying mj log gj ∈ L(S) + WT . So we may drop the
assumption that L(T ) is pointed.

It may be a difficult task to prove the well-separateness of two Lie semi-
groups S and T . We will need the following characterization of globality from [3,
II.11; IV.1.]:
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Theorem 3.7. A Lie generating wedge W ⊆ g is global in G if and only if
the analytic subgroup H corresponding to H(W ) = W ∩ −W is closed in G and
there exists a function f ∈ C∞(G) such that

〈df(g), dλg(1)X〉 > 0 for all X ∈ W \H(W ), g ∈ G,

i.e. df(g) ◦ dλg(1) ∈ algintW ∗ = intW ∗−W ∗W ∗ . The function f is called W -
monotone, it is constant on all cosets gH .

In view of the preceding theorem and the globality result for subwedges of
global wedges in [1, VI.5.2] the following is an interesting application:

Proposition 3.8. Suppose W ⊆ g is a global Lie wedge and h = W ∩−W its
edge. Suppose S and T are Lie semigroups such that

(i) L(S) ⊆ W ,

(ii) L(S) ∩ h = {0},

(iii) L(T ) ⊆ h,

Then S and T are well-separated.

Proof. We have to prove: If sjtj → 1, then sj → 1 and thus tj → 1. Since
W is global, there exists a W -positive function f :G → R satisfying f(1) = 0,
f(gT ) = f(g) and df(g) ◦ dλg(1) ∈ algintW ∗ ⊆ int L(S)∗ . If sjtj → 1, then
f(sj) = f(sjtj)→ 0 thus sj → 1, because f is strictly L(S)-positive, proving our
claim.

Corollary 3.9. Suppose W ⊆ g is a global Lie wedge with edge h = W ∩−W .
Suppose S and T are pointed Lie semigroups with the following properties:

(i) L(S) ⊆ W ,

(ii) L(S) ∩ h = {0},

(iii) L(T ) ⊆ h,

(iv) 〈S ∪ T 〉 = ST .

Then L(S) + L(T ) is global in G.

Proof. According to Proposition 3.8 the Lie semigroups S and T are well-
separated, hence we may apply Theorem 3.5.

4. Some preliminaries on almost abelian groups

Since we are interested in having nice product decompositions of the form
〈S ∪ T 〉 = ST , we investigate at first semigroups in the two-dimensional non-
abelian Lie group because we will use these semigroups as building blocks for
larger semigroups. In addition the geometric interpretation of these results is of
its own interest. At first we need some information about almost abelian Lie
algebras:
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Definition 4.1. A Lie algebra g is called almost abelian if there is a linear
form α: g→ R such that the bracket is given by

[X, Y ] = α(X)Y − α(Y )X.

If α 6= 0 then g is called truly almost abelian.

Proposition 4.2. For every n ≥ 2 there exists up to isomorphism a unique
truly almost abelian Lie algebra g with dim g = n and a unique Lie group G with
Lie algebra g. The group is G ∼= Rn−1oR∗+ with group multiplication

(x, s)(y, t) = (x + sy, st) ,

the Lie algebra is g ∼= Rn−1oR with bracket [(x, s), (y, t)] = (sy − tx, 0) and the
exponential function is given by

exp(x, s) =
(
es − 1

s
x, es

)
= (f(s)x, es).

Theorem 4.3. Let g be a Lie algebra, then the following are equivalent:

(i) g is almost abelian.

(ii) Every hyperplane is a subalgebra.

(iii) Every wedge is a Lie wedge.

(iii) Every wedge is a Lie semialgebra.

(iv) Every Lie wedge is global.

(v) For every Lie wedge W the following equality holds:

〈expW 〉 = expW.

If W is a polyhedral wedge in an almost abelian Lie algebra, then the
semigroup expW possesses nice product decompositions. This can be verified by
some elementary computations, but it is best elucidated by the following geometric
considerations on the two-dimensional non-abelian Lie group:
The group of motions of the real line is the unique two-dimensional non-abelian
Lie group. It may be represented as G = RoR∗+ with group operation

(b, a)(b′, a′) = (b+ ab′, aa′).

The identity element is 1 = (0, 1) and the group may be visualised as the upper
half plane in R2 . The unique normal subgroup N = comm(G) corresponds to the
horizontal line {(b, 1) | b ∈ R} This is a convenient representation because of the
geometric significance of fundamental objects such as one-parameter subgroups
and left and right cosets:

• If g = (b, a) ∈ G \ {1}, then the one-parameter subgroup containing g is
just the line through g and 1. The one-parameter subgroups are the lines
containing 1.
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Figure 1: Geometric construction of g1g2

• If L is a one-parameter subgroup and g ∈ G \ L, then the left coset gL is
the line parallel to L containing g .

• If L is a one-parameter subgroup and g ∈ G \ L, then the right coset Lg
is the line that joins g and v0 where v0 is the point of intersection of L
with the horizontal line a = 0. If L is horizontal, i.e. there is no point of
intersection, then Lg is the horizontal line containing g .

• If g1 , g2 are elements of G that do not lie on the the same one-parameter
subgroup, i.e. gi ∈ Li with L1 6= L2 , then one can obtain their product g1g2

by taking the intersection of cosets (i.e. lines):

g1g2 = g1L2 ∩ L1g2,

Figure 1 shows how the product g1g2 is obtained geometrically.

A one parameter semigroup is a ray emanating from 1 and the semigroup
that is generated by two such rays is the convex region inbetween. But there is a
structural difference depending on whether the two rays are of the same type or
not. Let us denote these ray-semigroups with S1 , S2 and the semigroup generated
by them with S = 〈S1 ∪ S2〉, then the following cases may occur:

(i) One of them is horizontal, w.l.o.g. S1 is horizontal, then S1S2 = S2S1 = S
simply because S1 is invariant under all inner automorphisms of G.

(ii) None of them is horizontal, either both rays meet the horizontal axis y = 0
or none of them does. One can assume the latter w.l.o.g. because otherwise
it suffices to replace Si by its inverse S−1

i . Applying an inner automorphism
one can further assume that S1 is the vertical ray and that S2 is located as
in figure 2. Now one can easily prove S1S2 = S2S1 = S . Figure 2 shows
how the factors gi, hi ∈ Si are determined for an arbitrary g ∈ S such that
g1g2 = g = h2h1 .
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Figure 2: Geometric construction of the factors such that g1g2 = g = h2h1 .

(iii) One of them, let’s say S2 meets the horizontal axis and the other one, S1 does
not. Again applying an inner automorphism of G, one may assume w.l.o.g.
that the configuration is as in figures 3,4. We have S = S1S2 , but there is a
large “gap” between S1S2 and S2S1 , one can only reach the points between
S1 and the parallel ray through the intersection of S2 with the horizontal
axis, the points on this parallel ray are not in S2S1 . But nevertheless it’s
clear that S = N12S2S1 where N12 = S1S2 ∩ N denotes the horizontal ray
that is the intersection of S with the normal subgroup N .

Thus one can prove by repeated applications of the preceding arguments:

Proposition 4.4. Suppose g is an almost abelian Lie algebra, Si = expR+Xi

with α(Xi) > 0, Tj = expR+Yj with α(Yj) < 0 and Nk = expR+Zk with
α(Zk) = 0, i = 1 . . . n, j = 1 . . .m, k = 1 . . . l , then

〈
n⋃

i=1

Si ∪
m⋃

j=1

Tj ∪
l⋃

k=1

Nk

〉
= N1 · · ·NkS1 · · ·SnT1 · · ·Tm

= N1 · · ·NkN11N12 · · ·NnmT1 · · ·TmS1 · · ·Sn,

with Nij = N ∩ SiTj , where N denotes the maximal normal subgroup of G,
N = comm(G).

5. Applications to three-dimensional groups

Now we are ready to prove the globality result stated at the beginning:
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Proposition 5.1. Suppose g is a three-dimensional Lie algebra and W ⊆ g is
a pointed Lie wedge which lies in an intersection-semialgebra, i.e. W ⊆ h+

1 ∩ h+
2 ,

where h+
i = ω−1

i (R+), hi = kerωi is a hyperplane subalgebra and h1 6= h2 , i.e.
dim h1∩h2 = 1. Then W is global in the simply-connected Lie group corresponding
to g.

Proof. Let h = h1 ∩ h2 . If h ∩W = {0}, we may apply [1, VI.5.2] in order
to prove the globality of W . Now suppose W ∩ h 6= {0}. Since W is pointed,
h\W 6= Ø and we can find an α ∈ W ∗\h⊥ . Pick 0 6= X ∈ h∩W , 0 6= Yi ∈ kerα∩hi
and define T = expR+X , Si = expR+Yi . The Lie subgroups Hi corresponding to
hi are almost abelian, so we may apply proposition 4.4 in order to obtain a product
decomposition of 〈Si ∪ T 〉 = NiSiT . Either Ni = {1} or Ni = TSi ∩ comm(Hi),
in any case L(Ni) ∩ h = {0}. If we let

S = 〈S1 ∪N1 ∪ S2 ∪N2〉 ,

then L(S) = R+Y1 +R+Y2 +L(N1)+L(N2), because the right-hand side is a global
Lie wedge by [1, VI.5.2]. In addition L(T ) = R+X and W ⊆ L(S) + L(T ). By
the choice of Si and Ni , we immediately obtain

〈S ∪ T 〉 = ST,

because of TNiSi = NiSiT . Thus corollary 3.9 proves the globality of L(S)+L(T )
and hence of W .

As an interesting example we consider the Lie algebra g = sl(2,R), and the
Lie group Sl(2,R). We denote G the simply connected Lie group corresponding
to g and π:G→ Sl(2) the quotient homomorphism. The semigroup of all 2× 2-
matrices in Sl(2) with nonnegative entries is denoted Sl(2)+ and its tangent
wedge P+ . Then in view of [1, V.4.25], globality in Sl(2,R) is now completely
characterized:

Theorem 5.2. A Lie wedge W ⊆ sl(2) is global in Sl(2) iff W is a subalgebra
or a conjugate of W is contained in P+ .

Proof. The if-part is proved in [1, V.4.25] and the only-if-part follows immedi-
ately from the preceding proposition and the fact that 〈expG P+〉 ∩ ker π = {1},
the latter being a consequence of [1, V.4.24, V.4.40].

Obviously the same statement holds for PSl(2,R) = G/Z(G). The char-
acterization of globality in the simply connected group G is still an open research
problem.
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