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Moufang loops and Malcev algebras

Péter T. Nagy

Abstract

The paper contains the proof of the uniqueness of a connected and simply
connected analytical Moufang loop having a given tangent Malcev algebra.
This result completes the extension of the global Lie theory to analytical
Moufang loops investigated by E. N. Kuzmin and F. S. Kerdman.

1. Preliminaries

One of the central questions in differentiable loop theory is the generaliza-
tion of the Lie algebra - Lie group correspondence to the non-associative case. For
local analytical Moufang loops this question is solved by E. N. Kuzmin [5] using
Campbell-Hausdorff formulas. The tangent algebras of these loops are called Mal-
cev algebras. The possibility of realizing a given Malcev algebra as tangent algebra
of a unique global Moufang loop has been investigated by F. S. Kerdman [3].
He proved the following:
Theorem. For any real Malcev algebra there exists an analytical Moufang loop
whose tangent algebra is the given Malcev algebra. If the loop is solvable or
semisimple and simply connected, then it is uniquely determined by its tangent
Malcev algebra up to isomorphism.

The uniqueness question is open in the general case. This is closely related
to the extension problem of local homomorphisms and isomorphisms of analytical
loops (cf. K. H. Hofmann and K. Strambach [2], Problem IX.6.33). The
aim of our paper is the proof of the second assertion of Kerdman’s theorem
without the assumption of solvability or semisimplicity by the investigation of the
existence and uniqueness up to isomorphism of global extensions of analytical local
loop isomorphisms.

2. Loops, 3-nets and Chern connection

Definition 2.1. We say that the manifold N has a 3-net structure, if there
are given three direct product decompositions Xi×Xi+1 of N such that the vertical
leaves of the i-th decomposition Xi × Xi+1 coincide with the horizontal leaves of
the i + 1-th decomposition (mod 3), i = 1, 2, 3. In the following we choose
one of these product decompositions and its horizontal and vertical leaves we call
horizontal and vertical lines, respectively. The leaves of the third foliation in the
given product decompositions are called transversal lines of the 3-net N .
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It is clear that the lines of a 3-net are of the same dimension which is equal to the
half of the dimension of the net manifold. We denote by H, V and T the family of
horizontal, vertical and transversal lines, respectively, they are called sometimes
the directions of the 3-net. Each direction H, V, T has a natural differentiable
manifold structure. The dimension of the manifolds of parallel lines (i.e., of the
directions H, V and T ) is the same as the dimension of lines. It follows from
the above definitions that the function assigning to every point the horizontal
(vertical or transversal) line incident with this point and the function defined by
the intersection of two non-parallel lines are differentiable. We call the tangent
spaces of the horizontal, vertical and transversal lines through a point x ∈ N the
horizontal, vertical and transversal tangent spaces at x and we denote them T hN ,
T vN and T tN , respectively. The projection operators of the tangent bundle to the
horizontal and vertical distributions with respect to the direct sum decomposition
TN = T hN ⊕ T vN we denote by H:TN → T hN , V :TN → T vN . The
projection operators H and V are (1, 1)-tensor fields on N satisfying H2 = H ,
V 2 = V and H + V = I , where I is the identity operator. We denote by J the
(1, 1)-tensor field on TN defined by the following properties: J 2 = I , JH = HJ
and ker(J + I) = T tN .

Proposition 2.2. There exists a unique covariant derivation ∇ on the 3-net
manifold N which satisfies

∇H = ∇V = ∇J = 0,

and
T (HX, V Y ) = 0 for any vectorfields X, Y on N ,

where T (X, Y ) denotes the torsion tensorfield of the covariant derivation ∇.

Proof. Cf. Theorem 3.2 in [7]. 2

Definition 2.3. The covariant derivation described in the preceding
Proposition is called the Chern connection of the 3-net N .

It is well known that if we fix an origin O in the 3-net manifold
N , then a loop multiplication x ◦ y can be introduced on the horizontal
line L through O . This operation is defined by the projection maps
onto the lines, thus it is differentiable. Moreover N is diffeomorphic
to the direct product L × L, where the lines of the 3-net N have the
following form:

horizontal lines: L× {y0}, y0 ∈ L,

vertical lines: {x0} × L, x0 ∈ L,

transversal lines: {(x, y) : x ◦ y = z0, z0 ∈ L}.

From the other hand if there is given a differentiable loop L then
the lines of the preceding form in the product manifold L×L determine
a 3-net structure, which is called the canonical 3-net of the loop L and
is denoted by N (L).
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3. Extension of local loop isomorphisms

Proposition 3.1. Let L be a connected and simply connected ana-
lytical loop and U a connected neighbourhood of the identity e ∈ L.
Suppose that M is a connected analytical loop and f :U → V ⊂ M is a
bijective analytical map such that x, y, xy ∈ U implies f(xy) = f(x)f(y).
Then the map f can be extended uniquely to a global analytical loop
homomorhism F :L→M .

Proof. The mapping f × f :U × U → V × V is a local affine map with
respect to the Chern connections of the 3-nets N (L) and N (M). Since
L×L is connected and simply connected, the map f×f can be extended
to a unique global affine map Φ:L×L→M ×M (cf. Kobayashi-Nomizu
I. Theorem 6.1 in Chapter VI [4]). Since Φ preserves the parallel
translation with respect to the Chern connection and the tensor fields
H , V , and J associated with the 3-nets are parallel, they are preserved
by the map Φ. Since the tangent distributions of the foliations of a
3-net can be described uniquely by the tensor fields H , V , and J , it
follows that the map Φ preserves the foliations of the 3-nets N (L) and
N (M). The restriction of Φ to the horizontal line L×{e}, e ∈ L preserves
the loop multiplication, hence it determines the unique extending loop
homomorphism F :L→M of the map f :U → V ∈M . 2

Remark. Since the local map f is bijective and the loop L is simply
connected, it is isomorphic to the universal covering loop of M and
the extended map F : L → M corresponds to the universal covering
loopmorphism of L.

4. Moufang loops and Malcev algebras

Definition 4.1. A loop L is called Moufang loop, if it satisfies the
identity x(y(zy)) = ((xy)z)y .

Definition 4.2. A vector space m with a distributive multiplication
[·, ·] is called a Malcev algebra provided the following conditions are
satisfied:

[x, y] = −[y, x],

[[x, y], [x, z]] = [[[x, y], z], x] + [[[y, z], x], x] + [[[z, x], x], y]

for all x, y, z ∈ m (cf.[9]).

Definition 4.3. The tangent algebra l of an analytical loop L is the
tangent space TeL of L at the identity e equipped with the commutator
bracket operation defined by

[X, Y ] := [TeλxX, TeλxY ], x ∈ L, X, Y ∈ Te
where λx = (y 7→ xy) is the right multiplication map L → L and the
operation [·, ·] on the right hand side denotes the Lie bracket of vector
fields.
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Let L be an analytical Moufang loop. Then its tangent algebra
m=TeL is a Malcev algebra (cf. I. A. Malcev [6], E. N. Kuzmin [5]).

Theorem 4.4. Let m be a Malcev algebra. Then there exists an up
to isomorphism uniquely determined connected and simply connected
analytical Moufang loop L, whose tangent algebra is the given Malcev
algebra.

Proof. The existence of a Moufang loop to a given tangent Malcev
algebra has been proved by F. S. Kerdman in [3]. A simply connected
one can be found by the universal covering loop construction [2]. If two
connected and simply connected Moufang loops L and M have the same
tangent Malcev algebra, then they have to coincide in a neighbourhood
U ⊆ L, U ⊆ M of the identity element e ∈ U , since the local analytical
Moufang loop associated with a Malcev algebra is uniquely determined
up to local isomorphism (cf.[5]). It follows from Proposition 3.1 that
the identity map ι:U → U can be extended to a unique analytical loop
isomorphism. 2
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