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Holomorphic extension of unitary representations

Karl-Hermann Neeb

Introduction

Let H be a complex Hilbert space and π:G → U(H) a continuous
unitary representation of the Lie group G on H . In this note we will discuss the
problem of extending π holomorphically to a complex manifold which carries the
structure of a complex semigroup and which contains G as its group of units in
its boundary.

Example 1. A classical example for such a construction arises when G is a
compact Lie group and π is a finite dimensional unitary representation of G on
a complex Hilbert space. Then there exists a universal complexification of G ,
i.e., an embedding of G into a complex Lie group GC with the property that
every Lie group homomorphism of G into a complex group extends to GC . It
follows in particular that every unitary representation π:G → U(n) ⊆ Gl(n,C)
extends to a holomorphic representation of GC .

We will see in the following that this example is untypical in the sense
that one cannot hope in general that the complex manifold which serves as the
domain of the holomorphic extension is a group.

The starting point of the modern theory of holomorphic extensions of uni-
tary representations was Ol’shanskĭı’s observation that, if W is a pointed generat-
ing invariant cone in a simple Lie algebra g , G a corresponding linear connected
group, and GC its universal complexification, then the set SW = G exp(iW )
is a closed subsemigroup of GC ([14]). This theorem has been generalized by
Hilgert and ’Olafsson to solvable groups ([5]) and the most general result of this
type, due to Lawson ([7]), is that if GC is a complex Lie group with an antiholo-
morphic involution inducing the complex conjugation on gC = L(GC), then the
set SW = G exp(iW ) is a closed subsemigroup of GC . The class of semigroups
obtained by this construction is not sufficient for many applications in repre-
sentation theory. For instance Howe’s oscillator semigroup (cf. [6]) is a 2-fold
covering of such a semigroup, but it does not fit into any group.

In [9] we have shown that given a Lie algebra g , a generating invariant
convex cone W ⊆ g , and a discrete central subgroup D of the simply connected
group corresponding to the Lie algebra g + i

(
W ∩ (−W )

)
which is invariant

under complex conjugation, there exists a semigroup S = Γ(g,W,D) called the

Ol’shanskĭı semigroup defined by this data. This semigroup is the quotient S̃/D ,

where S̃ is the universal covering semigroup of S (cf. [4, Ch. 3]) and D ∼= π1(S)
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is a discrete central subgroup of S̃ . Moreover, the semigroup S̃ , also denoted
Γ(g,W ) can be obtained as the universal covering semigroup of the subsemigroup
〈exp(g + iW )〉 of the simply connected complex Lie group GC with Lie algebra
gC . We note that every Ol’shanskĭı semigroup S contains a dense semigroup ideal
int(S) which is a complex manifold and the restriction of the multiplication to
int(S) is holomorphic.

These results provide the domains for the holomorphic extensions. We
note that if W = g is a Lie algebra, then Γ(g,W ) is the simply connected
complex Lie group with Lie algebra gC .

A holomorphic representation of a complex Ol’shanskĭı semigroup S is a
weakly continuous monoid morphism π:S → B(H) into the algebra of bounded
operators on a Hilbert space H such that π is holomorphic on the interior int(S)
of S . Now one can think of representations of S as holomorphic extensions of
unitary representations of the subgroup U(S) = {s ∈ S: s∗s = 1} of unitary
elements in S .

I. Extension of general representations

One of the key examples of an Ol’shanskĭı semigroup is the upper half
plane C+ := {z ∈C: Im z ≥ 0} . With the parameters introduced above, we have
C+ = Γ(IR, IR+).

The following theorem is crucial for the whole theory of holomorphic
extensions.

Theorem I.1. (Classification of the holomorphic representations of C+ ) If
(π,H) is a holomorphic representation of C+ and A the self-adjoint operator
on H with π(t) = e−itA for all t ∈ IR , then A is bounded from above, and,
conversely, if A is a self-adjoint operator bounded from above, then the unitary
one-parameter group t 7→ e−itA extends to a holomorphic representation of C+

with ‖e−izA‖ = eIm zγ , where γ = sup Spec(A) .

Proof. [9] and [4, Ch. 9].

Let (π,H) be a holomorphic representation of G which extends holomor-
phically to the Ol’shanskĭı semigroup S = Γ

(
g,W,D

)
. Then one important con-

sequence of the preceding theorem is that all the self-adjoint operators idπ(X),
X ∈W must be bounded from above. A closer inspection of the situation shows
that this boundedness is uniform in the sense that there exists a norm ‖ · ‖ on
g such that sup Spec

(
idπ(X)

)
≤ ‖X‖. (cf. Lemma III.12 in [9]).

Now we consider the cone

Wπ := {(X, t) ∈ g⊕ IR: sup Spec
(
idπ(X)

)
≤ t}.

Let H∞ denote the space of smooth vectors for G in H , i.e., the set of
all v ∈ H such that the mapping G → H, g 7→ π(g).v is smooth. Then H∞
lies in the common domain of all the operators idπ(X), X ∈ g and therefore
the condition sup Spec

(
idπ(X)

)
≤ t means that 〈idπ(X).v, v〉 ≤ t‖v‖2 for all
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v ∈ H∞ . From this observation it follows easily that Wπ is a generating closed
convex cone in g] := g⊕ IR which is invariant under the adjoint action.

To get a better understanding for the meaning of Wπ , let G] := G×S1 ,
where S1 := IR/ZZ. Then we can extend the unitary representation π to the
representation

π]:G] → U(H), (g, t+ ZZ) 7→ eitπ(g).

Now π] is a continuous unitary representation and

Wπ = {X] ∈ g]: dπ](X]) ≤ 0}.

Note that
ker dπ] = L(kerπ]) = H(Wπ) := Wπ ∩ −Wπ

([4, Lemma 9.14]).

With these remarks in mind, let (π,H) be a holomorphic representation
of an Ol’shanskĭı semigroup S = Γ(g,W,D), considered as an extension of the
restriction to G := U(S)0 . Suppose that π |G has discrete kernel. Then either π]

has discrete kernel or g⊕ ker dπ] = g] . In the first case the cone Wπ is pointed
and in the second case Wπ ∩ g is a pointed generating cone and (Wπ ∩ g)⊕ IR+

is pointed and generating in g] .
This observation has two consequences.

Proposition I.3. If (π,H) is a continuous unitary representation with dis-
crete kernel which extends to an Ol’shanskĭı semigroup S = Γ(g,W,D) , then g]

contains a pointed generating invariant cone and h := H(W ) := W ∩ −W is a
compact Lie algebra.

Proof. The first assertion follows from the discussion above and for the second
assertion we refer to Lemma III.7 in [9].

We note that the condition that the Lie algebra g] contains a pointed
generating invariant cone has significant consequences for the structure of g and
g] respectively. In the following we call a Lie algebra g admissible if g] contains
pointed generating invariant cones. For the structure theory of such Lie algebras
we refer to Chapters II and III in [8].

Corollary I.4. If a continuous unitary representation (π,H) with discrete
kernel extends to a holomorphic representation of a complex group GC , then g
is a compact Lie algebra.

Proof. We apply Proposition I.3 with GC = Γ(g,g).

The following theorem is the main result on holomorphic extensions of
general representations. We note that if H(W ) is a compact Lie algebra, then

the results from Section I in [9] show in particular that G̃ ∼= U(S̃) holds for
the simply connected covering group of G . Hence π1(G) which we consider as

a subgroup of G̃ is a central subgroup of S̃ and therefore G ∼= U(S)0 holds
for S = Γ

(
g,W, π1(G)

)
. This means that G can be realized as the connected

component of the group of unitary elements in S .
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Theorem I.5. (The Holomorphic Extension Theorem) Let G be a connected
Lie group and (π,H) a unitary representation of G . Then π extends to a
holomorphic representation of the Ol’shanskĭı semigroup S = Γ

(
g,W, π1(G)

)

if and only if H(W ) is a compact Lie algebra and there exists a norm ‖ · ‖ on g
such that

sup Spec
(
idπ(X)

)
≤ ‖X‖ ∀X ∈W.

Proof. For the case where W is pointed and S is represented by contractions,
this result is contained in [4, Ch. 9]. The proof in full generality, i.e., the extension
to general representations and general Ol’shanskĭı semigroups is contained in
Section III of [9].

A holomorphic representation (π,H) of an Ol’shanskĭı semigroup S is
called a contraction representation if π(S) ⊆ C(H) := {A ∈ B(H): ‖A‖ ≤ 1}.
We formulate the version of Theorem I.5 for contraction representations which
actually is more a part of the proof than a corollary.

Corollary I.6. Let G be a connected Lie group and (π,H) a unitary repre-
sentation of G . Then π extends to a holomorphic contraction representation of
the Ol’shanskĭı semigroup S = Γ

(
g,W, π1(G)

)
if and only if H(W ) ⊆ L(kerπ)

and all the operators idπ(X) , X ∈W are negative.

In this form (for pointed cones and Hermitean simple groups) the holo-
morphic extension technique was used by Ol’shanskĭı in [14]. The case of solvable
groups is due to Hilgert and ’Olafsson ([5]). The case of simple Lie groups has
also been considered in [15]. For the case of the metaplectic representation we
refer to [6], [1], and [2].

II. Irreducible representations

From now on we assume that g is a (CA) Lie algebra, i.e., the group of
inner automorphisms of g is closed in the group Aut(g) of all automorphisms of
g . As we have seen in [9], this condition is a rather natural one since it entails
that every connected group G with L(G) = g is a type I group.

We say that a subalgebra a ⊆ g is compactly embedded if the group
generated by ead a has compact closure in Aut(g). We assume that g contains
a compactly embedded Cartan algebra t . Associated to the Cartan subalgebra
tC in the complexification gC is a root decomposition as follows ([4, Ch. 7]). For
a linear functional λ ∈ t∗C we set

gλC := {X ∈ gC : (∀Y ∈ tC)[Y,X] = λ(Y )X}

and
∆ := ∆(gC, tC) := {λ ∈ t∗C \ {0} : gλC 6= {0}}.

Then
gC = tC⊕

⊕

λ∈∆

gλC,
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λ(t) ⊆ iIR for all λ ∈ ∆ and σ(gλC) = gλC = g−λC , where σ(X) = X denotes
complex conjugation on gC with respect to g . Let k ⊇ t denote a maximal
compactly embedded subalgebra. Then a root is said to be compact if gλC ⊆ kC .
We write ∆k for the set of compact roots and ∆p for the set of non-compact
roots. The Lie algebra g is said to have cone potential if [Xα, Xα] 6= 0 holds for
all non-zero elements Xα in gαC for all α ∈ ∆.

Definition II.1. A subset ∆+ ⊆ ∆ is called a positive system if there exists
X0 ∈ it such that

∆+ = {λ ∈ ∆ : λ(X0) > 0}.

A positive system is said to be k-adapted if

λ(X0) > µ(X0) ∀µ ∈ ∆k, λ ∈ ∆+
p .

Let ∆+ ⊆ ∆ be a positive system of roots. For a subset M of a vector
space V we write cone(M) for the smallest closed convex cone containing M
and for a cone C in V the set C? := {ν ∈ V ∗: ν(C) ⊆ IR+} is called the dual
cone.

We define the cone

Cmin := Cmin(∆+) := cone{i[X,X] : X ∈ gλC, λ ∈ ∆+
p } ⊆ t.

Definition II.2. Let ∆+ ⊆ ∆ be a positive system.

(a) We set b := b(∆+) := tC⊕
⊕

α∈∆+ gαC .

(b) Let V be a gC -module and v ∈ V . We say that v is a primitive element of
V (with respect to ∆+ ) if v 6= 0 and b.v ⊆C.v .

(c) For a g -module V and λ ∈ t∗C we set

V λ := {v ∈ V : (∀X ∈ tC)X.v = λ(X)v}.

This space is called the weight space of weight λ and λ is called a weight of V
if V λ 6= {0} . We write PV for the set of weights of V .

(d) A gC -module V is called a highest weight module with highest weight λ (with
respect to ∆+ ) if it is generated by a primitive element of weight λ .

(e) A highest weight module V is said to be unitarizable if there exists a unitary
representation (π,H) of the simply connected Lie group G with L(G) = g such
that V is isomorphic to the gC -module HK of K -finite vectors in H (cf. [10,
Sect. III]), where k is a maximal compactly embedded subalgebra containing t
and K = exp k is the corresponding subgroup of G . In this case (π,H) is called
a highest weight representation of G .

For more details on highest weight representations we refer to Section II
in [10].
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Theorem II.3. Let S = Γ(g,W,D) be an Ol’shanskĭı semigroup, g a (CA)
Lie algebra containing a compactly embedded Cartan algebra, and (π,H) an
irreducible holomorphic representation. Then the following assertions hold:

(i) HK is an irreducible highest weight module of the Lie algebra gC .

(ii) For every s ∈ int(S) the operator π(s) is a trace class operator, i.e.,
π(intS) ⊆ B1(H) .

Proof. This is Theorem III.8 in [10], one of the main results of this paper.

We note that one can use the second part of Theorem II.3 to obtain a
rather satisfactory desintegration and character theory for Ol’shanskĭı semigroups
(Section IV in [10]).

The best known examples for representations which fit into this the-
ory are the irreducible representations of compact Lie groups, the holomorphic
discrete series representations of simple Hermitean Lie groups, the metaplectic
representation of the 2-fold cover Hn× Mp(n, IR) of Hn× Sp(n, IR), where Hn

denotes the (2n + 1)-dimensional Heisenberg group, and the oscillator repre-
sentation of the (2n + 2)-dimensional oscillator group. Other examples are the
ladder representations of the subgroups of Mp(n, IR) obtained by restriction of
tensor products of the metaplectic representations.

The classification

Theorem II.3 raises the problem to determine for a given Ol’shanskĭı
semigroup S the set Ŝ of all irreducible representations, i.e., the set of all those
highest weight modules of gC which are unitarizable. For the classification of all
unitarizable highest weight representations, or at least for the reduction to the
case of simple Hermitean Lie algebras which is due to Enright, Howe and Wallach
([3]), we refer to Section III in [11]. Modulo this classification, the following
theorem yields a classification of the irreducible holomorphic representations of
a given Ol’shanskĭı semigroup S .

Theorem II.4. (Characterization of the extendable highest weight represen-
tations) Let g be a Lie algebra with cone potential, G a corresponding connected
Lie group, and (π,H) an irreducible highest weight representation of G with
highest weight iω ∈ i intC?min with respect to the k-adapted positive system ∆+ .
Further let W ⊆ g be a generating invariant wedge with H(W ) compact and
S := Γ

(
g,W, π1(G)

)
. Then π extends to a holomorphic representation of S if

and only if

W ∩ t ⊆ (i∆p)
? = {X ∈ t: (∀α ∈ ∆+

p ) iα(X) ≥ 0}.

Proof. [11, Theorem I.26]. The proof of this result rests on such techniques
as the moment mapping for unitary representations (cf. [13]) and the convexity
theorem for coadjoint orbits (cf. [12]).
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The Gelfand-Räıkov Theorem

We conclude this survey with two results on the existence of sufficiently
many holomorphic representations for a given Ol’shanskĭı semigroup S .

Theorem II.5. (Gelfand-Räıkov-Theorem for Ol’shanskĭı semigroups) Let
S = Γ(g,W,D) be an Ol’shanskĭı semigroup. Then the irreducible holomorphic
representations of S separate the points of S if and only if H(W ) is a compact
Lie algebra and g is admissible, i.e., if g ⊕ IR contains pointed generating
invariant cones. In this case S has an injective holomorphic representation.

Proof. Theorem IV.12 in [11].

Theorem II.5. (Gelfand-Räıkov-Theorem for Contraction Representations)
Let S = Γ (g,W, π1(G)) be an Ol’shanskĭı semigroup with G = U(S)0 . Then
S has an injective holomorphic contraction representation, and the irreducible
holomorphic contraction representations separate the points.

Proof. Theorem IV.12 in [11]
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