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Symplectic convexity theorems

Joachim Hilgert*, Karl-Hermann Neeb, Werner Plank

0. Introduction

In this note we explain some of the key results of the article [9]. They
are generalizations of well known facts dating back up to seventy years. In 1923
Schur proved that the diagonal entries a = (a1, . . . , an) of a Hermitean n × n -
matrix with eigenvalues r = (r1, . . . , rn) are contained in the convex hull of Sn.r ,
where Sn is the symmetric group acting on Cn by permutation of coordinates.
31 years later Horn proved that each point of the convex hull can be obtained
this way. In 1973 Kostant published a seminal paper in which he interpreted
the Schur-Horn result as a property of adjoint orbits of the unitary group and
generalized it to arbitrary compact Lie groups. More precisely, he proved that
for an element X in a maximal abelian subspace t in the Lie algebra k of a
compact Lie group K one has

prt(AdK.X) = convW.X,
where prt: k→ t is the orthogonal projection (w.r.t. the Killing form) and W is
the Weyl group associated to the pair (kC, tC). In turn Atiyah and, independently,
Guillemin and Sternberg, in 1982 gave an interpretation of Kostant’s theorem as
a special case of a theorem on the image of the momentum map of a Hamiltonian
torus action. In that context one has a symplectic manifold (M,ω) and a smooth
action σ:G×M →M of a Lie group G on M which preserves the form ω . The
space C∞(M) carries a Lie algebra structure given by the Poisson bracket

{f, h} = ω(Xf ,Xh),

where the vector fields Xf and Xh correspond to df and dh under the iso-
morphism TM ∼= T ∗M coming from ω . Moreover σ induces a natural homo-
morphism σ̇ from the Lie algebra g of G into the Lie algebra V(M) of vector
fields on M . The action σ is called Hamiltonian if there exists a Lie algebra
homomorphism λ: g→ C∞(M) such that

σ̇(X) = Xλ(X) ∀X ∈ t.

The functions λ(X) are called Hamiltonian. Given λ one defines the moment
map Φ:M → g∗ via

〈Φ(m), X〉 = λ(X)(m) ∀X ∈ g.

* Supported by a DFG Heisenberg-grant.
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The Atiyah-Guillemin-Sternberg (AGS) theorem then reads: If M is compact
and T is a torus, then

Φ(M) = conv Φ
(

Fix(M)
)
,

where Fix(M) is the set of T -fixed points in M .

In Kostant’s situation the symplectic manifold is the adjoint orbit which
can be identified with a coadjoint orbit carrying a natural symplectic form. The
group is the maximal torus T in K with Lie algebra t and the action is the
coadjoint action. Then it is not hard to see that the corresponding moment map
is the natural map prt∗ : k

∗ → t∗ restricted to the coadjoint orbit. Some standard
Lie theoretic arguments show that for M = Ad∗(K).α the set Fix(M) coincides
with the Weyl group orbit of α .

Since complex flag manifolds can be viewed as certain compact coadjoint
orbits, the AGS-theorem proves convexity properties of complex flag manifolds.
On the other hand Kostant had proved analogous results for real flag manifolds.
In order to give a symplectic interpretation for those, Duistermaat in 1983 proved
a convexity theorem for fixed point sets of involutions τ on symplectic manifolds
which satisfy τ∗ω = −ω .

All the symplectic convexity theorems mentioned so far were proved
applying some Morse theory to a generic component function of the moment
map. At that point it was essential to assume that the symplectic manifold was
compact. Nevertheless, using Kostant’s theorem Paneitz in 1984 and ’Olafsson
in 1990 were able to prove convexity theorems which can be interpreted as
symplectic convexity theorems for certain non-compact coadjoint orbits (with
involution). It turns out that it actually is enough to assume that the moment
map Φ is proper, i.e., the inverse images of compact sets are compact. To prove
that, one first proves a local convexity theorem using a suitable normal form for
Hamiltonian torus actions.

The next step is to establish a very general principle (we call it the Lokal-
global-Prinzip) which shows that the local convexity theorem together with the
properness always gives rise to a global convexity theorem. The basic idea for the
proof of the Lokal-global-Prinzip is borrowed from the paper [3] by Condevaux,
Dazord and Molino.

This line of argument gives strengthened versions of the AGS-theorem
as well as the Duistermaat theorem. Moreover it has the advantage that in
order to derive Duistermaats theorem one no longer needs to essentially redo the
proof of the AGS theorem but only to establish the right local convexity theorem
and then apply the Lokal-global-Prinzip. When applied to coadjoint orbits the
strengthened convexity theorems, just as in Kostant’s case, yield an “abstract”
convexity statement. In order to give a “concrete” description of that convex
image one again has to use Lie theoretic arguments. The situation becomes
more complicated for non-compact coadjoint orbits because it is no longer clear
that the convex image is spanned by extreme points. In fact, it turns out that the
image of the moment map which is closed, convex and locally polyhedral is always
a sum of the convex hull of its extreme points and a convex cone which may be
interpreted as the cone of limit directions of the set. In terms of Lie theory the
extreme points come up as a Weyl group orbit whereas the limit cone is given by
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certain roots. As special cases one finds Paneitz’s and ’Olafsson’s theorems (cf.
[9]). The purpose of this note is to describe the Lokal–global–Prinzip and how it
can be used to prove general convexity theorems.

1. Closed convex sets

In this section we collect some facts on the geometry of convex sets which
are needed to prove the convexity theorems for non–compact manifolds.

Let V be a finite dimensional real vector space and C ⊆ V a closed
convex set. For x ∈ C we define the subtangent wedge

Lx(C) := IR+(C − x)

(cf. [8, Ch. I]). Note that this set deserves to be called a wedge since it is a closed
convex cone in V . It follows immediately from the definition that

C ⊆ x+ Lx(C) ∀x ∈ C.

We say that a closed convex set C is locally polyhedral if for every x ∈ C there
exists a neighborhood U such that U ∩ C = U ∩

(
x + Lx(C)

)
and Lx(C)

is polyhedral. We remark that one can show that the condition that Lx(C)
is polyhedral is superfluous. It follows from the condition that C is locally
polyhedral. For a closed convex set C we write C? := {ω ∈ V ∗:ω(C) ⊆ IR+}
for the dual cone.

Proposition 1.1.

(i) lim(C) := {v ∈ V :C + v ⊆ C} is a closed convex cone in V .

(ii) H(C) := {v ∈ V :C + v = C} is a vector subspace of V .

The cone lim(C) is the cone of all limited directions of C and the sets
c+H(C) are maximal affine subspaces contained in C . A subset F ⊆ C is said
to be extremal if tx+ (1− t)y ∈ F , t ∈]0, 1[ and x, y ∈ C implies that x, y ∈ F .

A face is a convex extremal set, an extreme point is a point e ∈ C such
that {e} is a face. We note that, if C is locally polyhedral, a point x ∈ C is an
extreme point if and only if the wedge Lx(C) is pointed. We write Ext(C) for
the set of extreme points of C . Note that Ext(F ) = Ext(C)∩F holds for every
face F of C .

We define the set Ẽxt(C) as the union of all faces of minimal dimension.

This is the set of the “most extremal points” of C . Note that Ẽxt(C) = Ext(C)
if and only if H(C) = {0} .

The following proposition shows that lim(C) is determined by the sub-
tangent cones in the most extremal points.

Proposition 1.2. Let C be a closed convex set. Then

(i) lim(C) =
⋂
x∈Ẽxt(C)

Lx(C) .
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(ii)

C = conv Ẽxt(C) + limC =
⋂

x∈Ẽxt(C)

(
x+ Lx(C)

)
.

Proposition 1.2 says that in order to calculate C it is enough to know
lim(C) and Ẽxt(C). Moreover it shows that in order to calculate lim(C), we
only have to know the subtangent cones Lx(C) in the most extremal points.
It follows in particular that the locally polyhedral set that is associated to any
local convexity data via the “Lokal-global-Prinzip” (cf. Section 3), we only have
to know the local convexity data for the most extremal points. If C is also
compact, then limC = {0} and C is the convex hull of the most extremal
points.

The following fact is an ingredient of the Local Convexity Theorem in
Section 2.

Lemma 1.3. Let α:V → V ′ a linear mapping of finite dimensional vector
spaces and C ⊆ V a polyhedral cone. Then α:C → α(C) is an open mapping.

2. Local convexity theorems

In this section we want to obtain local convexity results for the moment
mapping. For that purpose we describe the moment mapping locally in coordi-
nates. In Lemma 2.1 we find a local normal form for a Hamiltonian torus action,
and in Lemma 2.2 we use it to get the moment mapping in coordinates. With the
Duistermaat convexity theorem in mind we do this also for symplectic manifolds
with an antisymplectic involution.

Lemma 2.1. Let (M,ω) be a symplectic manifold, σ : T×M →M a Hamilto-
nian action of a torus T on M which is given by the Lie algebra homomorphism
λ: t → C∞(M) , and m0 ∈ M . Then there exist a T -invariant neighborhood
U ⊂ M of T.m0 , a subtorus T1 of T and a symplectic vector space V with the
following properties:

(i) T = T0 × T1, where T0 := (Tm0
)0 is the connected component of the

stabilizer Tm0
.

(ii) There exists a symplectic covering of a T -invariant open subset U ′ of
T1 × t∗1 × V ∼= T ∗(T1)× V onto U under which σ gets transformed into
the action

(T0 × T1)× ((T1 × t∗1)× V )→ ((T1 × t∗1)× V )

((t0, t1), (t′1, β, v)) 7→ (t1t
′
1, β, π(t0)v),

where π:T0 → Sp(V ) is a linear symplectic representation.

(iii) If, in addition, τ is an antisymplectic involution on M , i.e., τ ∗ω = −ω ,
τ(m0) = m0 , and all Hamiltonian functions λ(X) , X ∈ t are invariant
under τ , then the covering in (ii) can be chosen τ -equivariant, where τ
acts on T ∗(T1)× V by

τ.(t′1, β, v) = (t′1
−1
, β, τV .v),
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and τV is an antisymplectic involution on V .

Proof. We give a complete proof for this lemma because only a short sketch
is given in [9].

(i) Let m0 ∈ M and T0 := (Tm0
)0 denote the connected component of the

stabilizer Tm0
. This T0 is a subtorus of dimension l and there is another

subtorus T1 of dimension l′ = dimT − l , such that T ∼= T0 × T1 . Note that
Tm0

= T0(T1 ∩ Tm0
) with the finite group Γ := T1 ∩ Tm0

and the orbit T.m0 is
isomorphic to T1/Γ.

(ii), (iii) To treat (ii) and (iii) simultaneously, let K := T if we are in the
situation, where there is no τ . Otherwise let τ act on T by τ.t := t−1 and form
the semidirect product K := T × {1, τ} . To see that this leads to an action of
K on M , let X ∈ t . Then λ(X) ◦ τ = τ∗λ(X) = λ(X) by assumption. Hence
τ∗dλ(X) = dλ(X). If σ̇(X) denotes the corresponding Hamiltonian vector field
with iσ̇(X)ω = −dλ(X), then τ∗ω = −ω yields that τ∗σ̇(X) = −σ̇(X). We
conclude that τ(t.m) = t−1.τ(m) for t ∈ T . Hence we obtain an action of K on
M such that k∗ω ∈ {±ω} for all k ∈ K .

Choose a K -invariant Riemannian metric on M (cf. [6]). Let

B := {v ∈ (Tm0
(T.m0))⊥: ‖v‖ < ε}.

Then, if ε is small enough, the exponential function

Exp:B → Exp(B)

is a diffeomorphism (cf. [2, p.130]). We get a neighborhood U := K.Exp(B) of
m0 in M , which is K -invariant. Note that Exp(B) is a slice through m0 ([6,
p.155]), i.e.,

(i) K.Exp(B) ⊂ U
(ii) K.Exp(B) is an open neighborhood of K.m0 = T.m0

(iii) Km0
.Exp(B) = Exp(B)

(iv) k.Exp(B) ∩ Exp(B) 6= Ø⇒ k ∈ Km0
.

So we have a K -equivariant covering

T1 × B → U , (t1, v) 7→ t1.Expm0
v,

with respect to the action

(T0 × T1)× (T1 × B)→ (T1 × B)

((t0, t1), (t′1, b)) 7→ (t1t
′
1, t0b)

and τ.(t′1, b) =
(
t′−1
1 , dτ(m0)b

)
in case of (iii).

Let the finite group Γ act on T1×B by t0.(t1, b) = (t1t
−1
0 , t0b) and write

T1 ×Γ B for the set of Γ-orbits in T1 × B . Then T1 ×Γ B is isomorphic to U ,
and the map p:T1×B → T1×Γ B , (t1, b) 7→ Γ.(t1, b) is a surjective submersion.
This allows us to consider the symplectic form ω relative to the direct product
decomposition T1×B . Let dθ1, . . . , dθl′ be a basis of the vector space of invariant
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1-forms on T1 and b1, . . . , bl′′ a set of linear coordinate functions on B considered
as functions on T1 × B . We note that the functions bi are invariant under the
action of T1 and that they span a vector space of functions on T1 × B which
is invariant under the action of K . For this property it is esssential to choose
linear functions.

Now

ω(t1,b) =
l′∑

i,j=1
i<j

aij(t1, b)dθi∧dθj+
l′∑

i=1

l′′∑

j=1

νij(t1, b)dθi∧dbj+
l′′∑

i,j=1
i<j

µij(t1, b)dbi∧dbj ,

where l′ = dimT1, l
′′ = dimB and the aij , νij , µij are smooth functions on

T1 × B .

Let λ : t→ C∞(M) be the homomorphism corresponding to the Hamil-
tonian action. Then we have for ξ, η ∈ t1 :

ω(Xλ(ξ),Xλ(η)) = {λ(ξ), λ(η)} = λ([ξ, η]) = λ(0) = 0.

Hence the tangent space T (T1×{b}) is isotropic with respect to ω and therefore
aij = 0.

Since the action of T1 is Hamiltonian with respect to ω , we have that
σ∗t ω = ω for all t ∈ T1 , where σt(t1, b) = (tt1, b). Moreover, the invariance of
the functions bj shows that the 1-forms dbj are also invariant under T1 . Hence

ω(t1, b) = (σ∗t ω)(t1, b)

=

l′∑

i=1

l′′∑

j=1

(σ∗t νij)(t1, b)dθi ∧ dbj +

l′′∑

i,j=1
i<j

(σ∗t µij)(t1, b)dbi ∧ dbj

=

l′∑

i=1

l′′∑

j=1

νij(tt1, b)dθi ∧ dbj +

l′′∑

i,j=1
i<j

µij(tt1, b)dbi ∧ dbj

= ω(tt1, b),

shows that the functions νij and µij are constant on the T1 -fibers.

The 2-form ω now has the form:

ω(t1,b) =

l′∑

i=1

l′′∑

j=1

νij(b)dθi ∧ dbj +

l′′∑

i,j=1
i<j

µij(b)dbi ∧ dbj

Let

ω0
(θ,b) =

l′∑

i=1

l′′∑

j=1

νij(0)dθi ∧ dbj +

l′′∑

i,j=1
i<j

µij(0)dbi ∧ dbj,

and note that N := T1×{0} is a compact submanifold of T1×B which is invariant
under the K -action, and ω0 |N= ω |N . The group K is a compact group acting
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on T1 × B such that there exists a continuous homomorphism ε:K → {1,−1}
with

k∗ω = ε(g)ω and k∗ω0 = ε(g)ω0 ∀k ∈ K.
For the assertion on ω0 , we note that invariance under T1 holds trivially and
that the invariance under Km0

follows from the fact that ω0 corresponds to the
symplectic form ω(m0) on the tangent space Tm0

(M). As one easily checks,
the Darboux-Weinstein Theorem ([6, Section 22, p.155]) also applies in this
case and gives us a K -invariant neighborhood U ′ of N in T1 × B , and a K -
equivariant diffeomorphism f of U ′ into T1×B with f |N= idN and f∗ω0 = ω .
The K -equivariance of f now implies that U ′ = T1 × U ′B and that f(t1, b) =(
t1fT1

(b), fB(b)
)
, where fB :U ′B → B and fT1

:U ′B → T1 are smooth maps. Note
that f maps U ′B onto another section of the bundle (T1 × U ′B)→ U ′B .

We set b̃j := f∗bj = bj ◦ f and note that, according to the T1 -

equivariance, the 1-forms d̃θj := f∗dθj are still T1 -invariant and they are ex-
tensions of left-invariant 1-forms according to the direct product decomposition

U ′′ := f(T1 × U ′B) ∼= T1 × B′

with B′ := f(U ′B). Moreover, again by the K -equivariance, the functions b̃j
span a K -invariant vector space of functions on the T -space U ′′ . In these
coordinates we have with νij := νij(0) and µij := µij(0) that

ω(t1,b′) = f∗ω0(t1, b
′)

=

l′∑

i=1

l′′∑

j=1

νijf
∗dθi ∧ f∗dbj +

l′′∑

i,j=1
i<j

µijf
∗dbi ∧ f∗dbj

=
l′∑

i=1

l′′∑

j=1

νij d̃θi ∧ db̃j +
l′′∑

i,j=1
i<j

µijdb̃i ∧ db̃j .

Let W := Tm0
(B′) denote the tangent space of the slice B′ = f(B) in m0 .

Then Tm0
(U ′) ∼= t1 ⊕ W is a symplectic vector space and the decomposition

is invariant under Km0
. Hence the subspace V := t⊥1 ∩W is Km0

-invariant.
Moreover the restriction ωV of ω to V is non-degenerate since t1 is isotropic.
It also follows that W ′ := V ⊥ ∩W ∼= t∗1 because ωV provides a non-degenerate
pairing between W ′ and t1 . In case of (iii), we have τ(t1.m0) = t−1

1 .m0 for all
t1 ∈ T1 and τ∗ω = −ω which forces dτ(m0)w = w for all w ∈ W1 because this
subspace is invariant under τ and paired via ω with t1 .

This discussion shows that, after a linear change of coordinates on B ′ ,
we may assume that µij = 0 for i ≤ l′ or j ≤ l′′ and also that νij = 0 for j > l′ .
Now

ω(t1,b′) =
l′∑

i,j=1

νij d̃θi ∧ db̃j +
l′′∑

i,j=l′+1
i<j

µijdb̃i ∧ db̃j.

Next we define

b′i :=

l′∑

j=1

νij b̃j for i = 1, . . . , l′



130 Hilgert, Neeb, Plank

and this leads to

ω(t1,b′) =
l′∑

i=1

d̃θi ∧ db′i +
l′′∑

i,j=l′+1
i<j

µijdb̃i ∧ db̃j.

Shrinking U ′ , we may further assume that U ′B = Ut∗1
× UV . Now

ω(t1,β,v) = ω
T∗(T1)
(t1,β) + ωV

on T1 × U ′ and the action of T is given by

((t0, t1), (t′1, β, v)) 7→ (t1t
′
1, β, π(t0)v) ,

where π : T0 → Sp(V, ωV ) describes the action of T0 on V . In case of (iii), the
assertion on the action of τ follows from what we have already noted above and
the fact that the action of Km0

on V is linear.

It follows immediately from the normal form that the manifold Q of
τ -fixed points in M is a submanifold.

Now we can compute the image of the moment map locally.

Lemma 2.2. Let σ be the Hamiltonian action as in the lemma above and
π:T0 → Sp(V ) the corresponding symplectic action of the torus T0 on the
symplectic vector space (V, ωV ) . Then there exists a complex structure I on
V such that 〈X,Y 〉 := ωV (IX, Y ) defines a positive definite scalar product on
V . Then V =

⊕
α∈PV Vα , where Vα := {v ∈ V : (∀Y ∈ t0)Y.v = α(Y )Iv} and

PV := {α ∈ t∗0:Vα 6= {0}} . The moment map for σ is given by

Φ : T ∗(T1)× V → t∗1 × t∗0 ∼= t∗

(
(t1, β), v

)
7→ Φ(1, 0, 0) +

(
β,

1

2

∑

α∈PV
‖vα‖2α

)
.

If, in addition, τV is an antisymplectic involution τ on V which leaves
all the Hamiltonian functions λ(X)(v) := 1

2
ω(X.v, v) , X ∈ t0 invariant, then

τV is antilinear, i.e., it anticommutes with I , and it leaves all subspaces Vα
invariant.

Now Lemma 2.1 and Lemma 2.2 together with Lemma 1.3 yield the
following local convexity theorem.

Theorem 2.3. (The local convexity theorem for Hamiltonian torus actions)
Let σ:T×M →M be a Hamiltonian action of a torus T on a symplectic manifold
M and m0 ∈ M . Then there exist an arbitrarily small open neighborhood U of
m0 and a polyhedral cone Cm0

⊂ t∗ with vertex Φ(m0) such that the following
is true:

(i) Φ(U) is an open neighborhood of Φ(m0) in Cm0
.

(ii) Φ : U → Cm0
is an open map

(iii) Φ−1(Φ(u)) ∩ U is connected for all u ∈ U .

If, in addition, τ is an antisymplectic involution on M which leaves all
Hamiltonian function associated to the action of T invariant, then the asser-
tion (i) and (ii) of the proposition remains true for the manifold Q := {m ∈
M : τ(m) = m} of fixed points of τ and the same cones Cm , m ∈ Q .
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In general (iii) is false for the submanifold Q on M . This is due to the
fact that the vector space V +

α is a real form of the complex vector space Vα .
Hence the spheres in V +

α are disconnected if Vα is a one–dimensional complex
vector space.

3. The “Lokal-global-Prinzip” for convexity theorems

In this section we describe a general principle that allows to pass from
a local convexity theorem to a global one if the convex sets involved are locally
polyhedral.

Let X be a connected topological space and V a finite dimensional
vector space. A continuous map Ψ:X → V is called locally fiber connected if for
each x ∈ X there exist arbitrarily small neighborhoods U of x such that

(LC) Ψ−1
(
Ψ(u)

)
∩ U is connected for all u ∈ U .

If Ψ:X → V is locally fiber connected we define an equivalence relation
∼ on X by saying x ∼ y if Ψ(x) = Ψ(y) and x and y belong to the same

connected component of Ψ−1
(
Ψ(x)

)
. The topological quotient space X̃ := X/ ∼

is called the Ψ-quotient of X . The quotient map will be denoted by π:X → X̃
and the map induced on X̃ by Ψ by Ψ̃: X̃ → V . For x ∈ X we write
Ex := π−1(x) = {y ∈ X: y ∼ x} for the equivalence class of x .

Proposition 3.1. Let Ψ:X → V be a locally fiber connected map. Suppose
that Ψ is a proper mapping, i.e., Ψ is closed and the sets Ψ−1(v) , v ∈ V are
compact. Then the following assertions hold:

(i) The fibers Ψ−1(v) are locally connected.

(ii) Ψ̃−1(v) is finite for any v ∈ V .

(iii) For every x ∈ X there exists an open neighborhood Ux satisfying (LC)
such that in addition Ux is relatively compact and Ux intersects only
one component of Ψ−1 (Ψ(x)).

In the following let Ψ:X → V be a locally fiber connected map. A map
x 7→ Cx which associates to each point in x ∈ X a closed convex cone Cx with
vertex Ψ(x) in V is called local convexity data if for each x ∈ X there exists an
arbitrarily small open neighborhood Ux of x such that

(O) Ψ:Ux → Cx is an open map.

(LC) Ψ−1
(
Ψ(u)

)
∩ Ux is connected for all u ∈ Ux .

A convex cone is uniquely determined by its intersection with a neigh-
borhood of its vertex. Therefore the Cx are uniquely determined once the Ux
are fixed. In fact, more is true. If U ′x ⊆ Ux is an open neighborhood of x , then
Ψ(U ′x) still generates the same cone because of (O). Thus we actually have a
map x→ Cx which does not depend on the choice of the neighborhoods Ux .

Note here that the concept of local convexity data is not the most general
one might face in this context, since it does for instance not model a spherical
ball locally.
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We record some of the most essential topological properties of the space
X̃ .

Lemma 3.2. Let Ψ:X → V be a locally fiber connected map with local con-
vexity data (Cx)x∈X . Suppose that Ψ is proper. Then the following assertions
hold:

(i) Cx only depends on the equivalence class Ex of x , so we have a well
defined mapping π(x) 7→ Cπ(x) .

(ii) X̃ is a Hausdorff space.

(iii) If Uπ(x) is chosen as in (ii), then Ũπ(x) = π
(
Uπ(x)

)
is a neighborhood of

π(x) in X̃ such that

Ψ̃: Ũπ(x) → Cπ(x)

is a homeomorphism onto its open image.

We call a continuous map γ: [0, 1] → X̃ a regular curve connecting x̃0

and x̃1 if γ(i) = x̃i for i = 0, 1 and Ψ̃ ◦ γ is piecewise differentiable.

Now let Ψ:X → V and (Cx)x∈X be as in Lemma 3.2. Since X̃ is

connected and Ψ̃ locally is a homeomorphism onto a connected open subset of
a convex cone, any two points in X̃ can be connected by a regular curve. We
define d(x̃, ỹ) to be the infimum of the lengths l(Ψ̃ ◦ γ) of all the curves Ψ̃ ◦ γ
with γ a regular curve connecting x̃ and ỹ . Here the length of a curve [0, 1]→ V
is calculated with respect to an arbitrary but fixed Euclidean metric dV on V .
Obviously d is symmetric and satisfies the triangle inequality. Moreover it is
clear that

dV
(
Ψ̃(x̃), Ψ̃(ỹ)

)
≤ d(x̃, ỹ).

The local convexity data now implies that d actually is a metric defining the
topology of X̃ .

The next lemma is one place where the properness assumption enters
crucially.

Lemma 3.3. Let Ψ:X → V be a locally fiber connected map with local convex-
ity data (Cx)x∈X and dV a Euclidean metric on V . Suppose that Ψ is proper.

Then for any x̃ ∈ X̃ and any r ∈ IR+ the ball

B(r, x̃) := {ỹ ∈ X̃: d(x̃, ỹ) ≤ r}

is compact.

The fact that a ball is compact for any radius r ∈ IR is very important
for the proof of the next theorem, because we can take now any two points in a
compact ball.

Theorem 3.4. (The “Lokal-global-Prinzip” for convexity theorems) Let
Ψ:X → V be a locally fiber connected map with local convexity data (Cx)x∈X .
Suppose that Ψ is proper. Then Ψ(X) is a closed locally polyhedral convex subset
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of V , the fibers Ψ−1(v) are all connected, Ψ : X → Ψ(X) is an open mapping,
and Cx = Ψ(x) + LΨ(x)

(
Ψ(X)

)
holds for all x ∈ X .

Proof. We want to give a very rough sketch of the proof of the convexity of
Ψ(X). Fix two points x̃0, x̃1 ∈ X̃ . Then for any n ∈ IN, there exists a regular
curve γn connecting x̃0 and x̃1 such that

l(Ψ̃ ◦ γn) ≤ d(x̃0, x̃1) +
1

n
.

Then we obtain x̃ 1
2

as an accumulation point of the “midpoints” of the curves
γn . This point satisfies

d(x̃0, x̃ 1
2
) = d(x̃ 1

2
, x̃1) =

d(x̃0, x̃1)

2
.

By bisection we get a map n
2m 7→ x̃ n

2m
, which we can extend to a continuous

map γ : [0, 1]→ X̃ with

d(γ(t), γ(t′)) = d(x̃0, x̃1)|t− t′|

for t, t′ ∈ [0, 1]. This means that locally we have

dV (Ψ̃ ◦ γ(t), Ψ̃ ◦ γ(t′)) = d(x̃0, x̃1)|t− t′|,

which can only happen if Ψ̃ ◦ γ([0, 1]) is a straight line segment.

Theorem 3.5 is a very useful tool in proving a lot of convexity statement.
It splits the proof of a convexity result into a local part where one has to find
the appropriate convexity data and a global part which consists in proving the
properness of the map. Two examples are given in the next section.

The following corollary is used in the proof of the Duistermaat convexity
theorem.

Corollary 3.5. Let V be a finite dimensional real vector space and X ⊂ V a
closed connected subset such that for each x ∈ X there exists a neighborhood
Ux of x in V and a closed convex cone Cx ⊂ V with vertex x such that
Ux ∩X = Ux ∩ Cx . Then X is convex.

4. Hamiltonian torus actions

The following theorem is a strengthened version of the convexity theorem
proved by Atiyah (cf. [1]) and, independently, by Guillemin and Sternberg (cf.
[5]).
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Theorem 4.1. (The convexity theorem for Hamiltonian torus actions) Let M
be a connected symplectic manifold, T a torus, and µ:T×M →M a Hamiltonian
action of T on M such that the corresponding moment mapping Φ:M → t∗ is
proper. Then the following assertions hold:

(i) Φ(M) is a locally polyhedral convex set.

(ii) Φ : M → Φ(M) is an open mapping.

(iii) The inverse images of points in Φ(M) are connected.

(iv) Each extreme point f of Φ(M) is of the form Φ(x) for some T -fixed
point x ∈M .

Proof. This follows immediately from Theorem 2.3 and Theorem 3.5.

Note that in case the symplectic manifold is compact, Φ(M) is a convex
polyhedron.

Next we state a version of Duistermaat’s Convexity Theorem (cf. [4]) for
non-compact manifolds.

Theorem 4.2. (Duistermaat’s convexity theorem for non-compact manifolds)
Let (M,ω) be a connected symplectic manifold, σ : T ×M →M a Hamiltonian
action of a torus T on M which is given by the Lie algebra homomorphism
λ: t→ C∞(M) . Let further τ be an antisymplectic involution on M such that all
Hamiltonian functions λ(X) , X ∈ t are invariant under τ and Q the manifold
of τ -fixed points in M . Suppose that the moment mapping Φ:M → t∗ is proper.
Then, for every connected component Q′ of Q , we have

Φ(M) = Φ(Q′).

Proof. The proof of this theorem is based on Proposition 1.2 which says that
a locally polyhedral closed convex set is the intersection of polyhedral cones with
vertexes in the most extremal points. We note first that Corollary 3.5 implies
the convexity of Φ(Q′). Now the crucial point is the fact, that the polyhedral
cones in the most extremal points of Φ(Q′) are the same as the cones of Φ(M).
The set Φ(Q′) is the intersection of these cones, and Φ(M) is the intersection
of these cones and perhaps other cones. This implies Φ(M) ⊆ Φ(Q′) and hence
the claim.
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