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The Brauer algebra and the
Birman-Wenzl-Murakami algebra

Axel Schüler

1. Introduction

Knowledge of finite dimensional representations and their morphisms is a useful
tool in the study of classical semisimple Lie groups. Fundamental works in this
field were done by R. Brauer [B] and H. Weyl [W] in the thirties. Investigations of
q -deformed simple Lie groups lead to similar questions. The appearing algebras are
closely related with representations of braid groups. They were extensively studied
by V. Jones, J. Birman [BW] and H. Wenzl [We] in the eighties. In Sections 2
and 3 we recall the definition and the some properties of the Brauer algebra. In
Sections 4 and 5 we discuss the q -deformed version of this algebra, the so-called
Birman-Wenzl-Murakami algebra. In our discussion we restrict ourselves to the
orthogonal groups. The results for the symplectic groups are completely similar.
In Section 6 we show how the latter algebra occurs in classification of bicovariant
bimodules and differential calculi on quantum groups.

2. Brauer-Weyl Duality for Classical Simple Lie Groups

Let ρ:G → GL(V ) and τ :G → GL(W ) finite dimensional representations of the
semisimple Lie group G on vector spaces V and W , respectively. Recall that the
intertwining space of ρ and τ is the vector space

Mor(ρ, τ) = {T ∈ L(V,W ) : τ(g)T = Tρ(g) for g ∈ G}.

In case τ = ρ the space Mor(ρ, τ) is obviously an algebra. It is called the
centralizer algebra of ρ and is denoted by Mor(ρ). The Brauer-Weyl duality
establishes the relation between irreducible subrepresentations of ρ and properties
of the algebra Mor(ρ). To be more precise, Mor(ρ) is semisimple, the invariant
subspaces of V are in 1-1-correspondence with the right ideals of Mor(ρ), and the
irreducible subrepresentations of ρ are in 1-1-correspondence with the minimal
right ideals of Mor(ρ) .
Let G be a subgroup of the general linear group over the vector space V = CN ,
u:G → GL(V ) the fundamental representation (embedding) of G and let ρ =
u ⊗ · · · ⊗ u (f times). In this situation we write Bf (G) for Mor(ρ). Obviously,
Bf(G) is a subalgebra of L(V ⊗ · · · ⊗ V ). For π ∈ Sf , let Pπ denote the linear
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operator on the tensor space V ⊗f which permutes the order of vectors according
to π . It is easily seen that the operators Pπ belong to Bf (G). That is, we have

alg{Pπ : π ∈ Sf} = lin{Pπ : π ∈ Sf} ⊆ Bf (G) (1)

for all subgroups G of GL(V ). For the groups G = GL(N,C) and G = SL(N,C)
we have even equality in (1). This is a classical result of H. Weyl (1937).

Now let us consider the orthogonal groups G = O(N,C). We begin with the
special case f = 2. Since the fundamental representation u coincides with its
contragredient representation , the trivial representation is contained in u⊗u with
multiplicity one. Hence, the intertwining spaces Mor(u⊗ u, 1) and Mor(1, u⊗ u)
are one-dimensional. Non-trivial elements of these spaces are the linear mappings
B• = (brs) and C• = (crs) resp., where brs = crs = δrs for r, s = 1, . . . , N .
Composing both mappings we get an element of B2(G) = Mor(u⊗ u, u⊗ u), the
so-called trace operator E = C• ·B• . Let P denote the flip operator on the tensor
product, i.e. P (x⊗ y) = y⊗ x. The operators E , P , and the identity I generate
a three dimensional algebra: E2 = N · E , E · P = P ·E = E , P 2 = I .

Throughout we denote by Ti,i+1 ∈ L(V ⊗ · · · ⊗ V ) the operator
I ⊗ · · · ⊗ T︸︷︷︸

i,i+1

⊗ · · · ⊗ I , for any T in L(V ⊗ V ).

Now let f ≥ 2 be arbitrary. It is easy to see that for all T ∈ B2(G) the operator
Ti,i+1 belongs to Bf (G) for i = 1, . . . , f − 1. Hence,

alg{E12, Pπ : π ∈ Sf} ⊆ Bf(G) . (2)

Another classical result of H. Weyl states that for the group G = O(N,C) we
have again equality in (2). The same is true for the odd special orthogonal groups
G = SO(2n+ 1, C), but not for SO(2n, C).

3. The Brauer Algebra Df

We will first define the Brauer algebra Df over the field of rational functions C(x).
For f = 0 let D0 = C(x). For f > 0, a linear basis of the C(x) algebra Df is
given by graphs with f edges and 2f vertices, arranged in two lines of f vertices
each. In these graphs each edge belongs to exactly two vertices and each vertex
belongs to exactly one edge. Two examples for graphs in D4 are

a = b =

S
S
S
S
S
S

S
S
S
S
S
S

!!!!!!!!!!!!! .

It is easy to see that we have 2f−1 possibilities to join the first vertex with another
one, then 2f − 3 possibilities for the next one and so on. So the dimension of Df

is (2f − 1) · (2f − 3) · . . . · 3 · 1. To define the multiplication in Df , it is enough
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to define the product a b for two graphs a and b. This is done similarly as with
braids by the following rules.

1. Draw b below a.

2. Connect the i-th upper vertex of b with the i-th lower vertex of a.

3. Let d be the number of cycles in the graph obtained in 2. and let c be this
graph without the cycles. Then we define a · b = xd · c.

Example.

a · b = = x·
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We will call an edge horizontal if it joins two vertices in the same row.
Note that there are as many horizontal edges in the upper row as there are in the
lower one. Whenever a graph has no horizontal edges, it can be regarded as a
permutation π connecting the i-th upper vertex to the π(i)-th lower vertex. It is
easy to check that the multiplication of graphs is compatible with the composition
of permutations under this identification. Therefore it is obvious that Df contains
C(x)Sf as a subalgebra. Let ei and gi for i = 1, . . . , f − 1 denote the graphs

ei := · · · · · ·

i i+ 1

· · · · · ·gi :=

i i+ 1

, ,

S
S
S
S
SS

�
�
�
�
��

so these 2f − 2 elements generate the algebra Df . The following relations are
immediately clear from the above pictures.

Type 1 e2
i = x·ei ,

eigi = giei = ei ,

g2
i = 1 ∀ i = 1, . . . , f − 1 .

Type 2 eiei+1ei = ei ,

ei+1eiei+1 = ei+1 ,

eigigi+1 = eiei+1 = gi+1giei+1 ,

ei+1gigi+1 = ei+1ei = gigi+1ei ,

gi+1gigi+1 = gigi+1gi ∀i = 1, . . . , f − 2 .

Type 3 eiej = ejei ,
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eigj = gjei ,

gigj = gjgi ∀i, j mit |i− j| ≥ 2 .

The type 1.1 relations look like

e2
i = = x· = x·ei .

The type 2.3 relations may be given diagrammatically as follows:

eigi+1gi = = =

�
�
�
��
�
�
�
��

J
J
J
JJ

S
S
S
SS

J
J
J
JJ

J
J
J
JJ 








�
�
�
�
�
�

= gi+1giei+1 .

The diagrams for the type 3 relations are obvious. This list of relations is sufficient
to give a second definition of the Brauer algebra.

Definition. The Brauer algebra Df is the quotient of the free C(x) algebra
with 2f − 2 generators {ei, gi} by the two sided ideal generated by the relations
of types 1, 2 and 3.

Due to e2 = g1g2e1g2g1 , e3 = g2g3e2g3g2 etc. Df is already generated by the
single element e1 and the set {gi}. The two sided ideal in Df generated by e1

will be denoted by If . Then Df/If ∼= C(x)Sf . Let Df (x) be the C algebra with
unit which is defined similarly as Df where x is a fixed complex parameter. The
importance of the algebra Df stems from the following result of H. Weyl [W].

Proposition 1. Let E and P be the trace resp. the flip operators in L(CN⊗CN )
defined as above. Then the mapping ei 7→ Ei,i+1 , gi 7→ Pi,i+1 can be extended to a
representation

ρf : Df(N)→ Bf(O(N,C))

of the Brauer algebra into the centralizer of O(N,C).

Proposition 2. The representation ρf is surjective if and only if N ≥ 3 .

Proposition 3. The representation ρf is faithful if and only if N ≥ f . The
algebra Df(N) is semisimple if and only if N ≥ f − 1.

The first proposition goes back to H. Weyl [W], while the second and the third
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one are due to W. P. Brown [Br].

4. The Quantum Groups SOq(N)

Now we want to transfer the Brauer-Weyl duality to the q -deformed simple Lie
groups. In the remainder of this section we suppose q is not a root of unit. Let
A be one of the Hopf algebras for the quantum groups Bn or Dn as defined in
[FRT] by means of the matrices R̂ ∈ L(CN ⊗CN ) and C ∈ L(CN). Recall that A
is the quotient C〈uji : i, j = 1, . . . , N〉/J of the free algebra generated by the N 2

entries of the matrix u = (uij) by the two sided ideal J generated by the relations

R̂(u⊗ u) = (u⊗ u)R̂ (3)

and ut C u = uC ut = C . (4)

As usual we consider u = (uij) as the fundamental representation of A. Then, in

the language of representation theory (3) means that R̂ ∈ Mor(u ⊗ u). This is
the starting point for the analogy of Brauer-Weyl duality for the quantum group
A. The fact that A is a deformation of the classical Lie group is reflected in the
theory of representations . Since, by the above assumption q is not a root of unity,
the representation theory of the quantum group A is, roughly speaking, similar
to the representation theory of the corresponding classical group, cf.[Ro] and [L].
To be a little more precise, the tensor product representations u ⊗ · · · ⊗ u split
into irreducible subrepresentations exactly as their classical analogs, i.e. we have
the same dimensions and the same multiplicities as in the classical case. Thus, in
particular, Mor(u⊗ u) is three-dimensional. Hence the element R̂3 ∈ Mor(u⊗ u)
is a linear combination of I , R̂ and R̂2 . This is indeed true, since we have the
cubic relation, (see [FRT]):

(R̂− qI)(R̂ + q−1I)(R̂− q1−NI) = 0 .

The matrix R̂ fulfills another important relation, the so-called Yang-Baxter equa-
tion

R̂12R̂23R̂12 = R̂23R̂12R̂23 .

This relation ensures that the dimension of Mor(u⊗u⊗u) is indeed 15 as in the
classical case and not higher.

5. The Birman-Wenzl-Murakami Algebra Cf

Definition. The Birman-Wenzl-Murakami algebra Cf , BWM algebra for short,
is the quotient C(q, r)〈gi, ei : i = 1, · · · , f − 1〉/J of the free C(q, r) algebra with
unit and generators {gi, ei} by the two sided ideal J generated by the relations of
types 1′ , 2 and 3, where types 2 and 3 are as given above and type 1′ is defined
below.
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Type 1′ e2
i = x·ei , x = 1 +

r − r−1

q − q−1
,

eigi = giei = r−1ei ,

g2
i = 1 +Qgi −Qr−1ei , Q = q − q−1 ∀i = 1, . . . , f − 1 .

An equivalent definition of this algebra for f > 0 as a braid algebra can be
given as follows. We take as a linear basis of Cf the (2f − 1)· . . . ·3·1 braids
which we get from the graphs of the Brauer algebra Df when we always replace
@
@
@

�
�
� by

@
@
@
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�� . As usual we get the product of two braids by joining. The
reduction to basis elements can be obtained by taking into account the following
relations

4. = = 5. =

3. – = Q·( – )

1. = x· 2. = r−1· = r−1·
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The relations 4. and 5. are nothing but the Reidemeister moves 2 and 3 from knot
theory, see [K], the first Reidemeister move is slightly modified in relation 2. The
equivalence of the two definitions is given by the correspondence

ei 7→ · · · · · · , gi 7→ · · · · · ·
@
@
@@��

��

.
As in classical case we can rewrite the defining relation (4) with the tensors

B• = (brs) = , C• = (crs) = as follows:

B•u⊗ u = 1·B• , C•·1 = u⊗ uC• .
Obviously, K := C•B• is an element of Mor(u⊗ u). This matrix K satisfies the
identity R̂− R̂−1 = Q(Id−K), cf. relation 3. The following result due to N. Yu.
Reshetikhin [R] is the quantum version of Proposition 1.

Proposition 4. Set r = qN−1 . The mapping gi 7→ R̂i,i+1 , ei 7→ Ki,i+1 can be
extended to a representation

Cf(q, r)→ Bf (SOq(N))
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of the BWM-Algebra Cf(q, r) into the centralizer of SOq(N).

6. Application to the Classification of Differential Calculi

In this section we briefly indicate how the BWM algebra appears in order to classify
bicovariant bimodules and differential calculi on A. For this we first recall some
notations and some facts, see e.g. [S] or [Sch] for more details.
We suppose that (Γ, d) is a bicovariant differential calculus over one of the Hopf
algebras A for the quantum groups of type B or D. Let ΦL and ΦR denote the
corresponding left resp. right actions of A on Γ and let (ωij) , i, j ∈ I , with
I = {1, . . . , N} a basis of the vector space of left invariant forms in Γ. As shown
in [W1], there exist linear functionals f ab

rs
, a, b, r, s ∈ I , on A and elements v ab

rs
,

a, b, r, s ∈ I , of A such that the right module structure and the right comodule
structure on Γ are given by

ωrsa = (fxyrs ∗ a)·ωxy (5)

and ΦR(ωrs) = ωxy ⊗ vxyrs (6)

(We always sum over repeated indices.) The Theorems 2.4 and 2.5 in [W1] give a
complete description of bicovariant bimodules Γ in terms of these functionals f ab

rs

and elements v ab
rs

. Define a linear mapping T = (T abc
rst

) ∈ L(CN⊗CN⊗CN ) by

T abcrst := f bcrs(u
a
t ) .

Then it can be shown that T ∈ Mor(u⊗u⊗u), cf. [S]. Let D(T ), tr1
1(T ) and

M(T ) be defined by

D(T )abcrst := brxT
xab
sty c

yc (7)

tr1
1(T )bcst := bzxT

xbc
yst c

zy (8)

M(T )abcrst := bxy(R̂
−1)axrzT

ybc
vst b

zv . (9)

Using this notation the fact that the functionals f ab
rs

annihilate the ideal J defined
by (3) and (4) is reflected in the following equations

R̂12T234T123 = T234T123R̂34 (10)

T ·D(T ) = D(T )·T = I . (11)

In a similar way, the fact that the differential d annihilates the ideal J can be
expressed in terms of T by two other equations:

tr1
1(T ) = −I (12)

M(T )− T R̂23 = K12R̂23 − R̂−1
12 . (13)

Conversely, equations (10)–(13) give a complete description of an N 2 -dimensional
bicovariant differential calculus on the quantum group A.

The aim of this section is to write the three transformations D(T ), tr1
1(T )

and M(T ) in terms of the BWM algebra. For this we recall a crucial property of
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the matrix R̂ , see [FRT (1.10)], namely the relation

brxR̂
xa
sy
cyb = R̂−1 ab

rs
or graphically

@
@
@

��

��
=
@@

@@�
�
�

.

We conclude that the right hand sides of (7)–(9) belong to Mor(u⊗u⊗u) and
Mor(u ⊗ u) resp. In the braid algebras C3(q, r) and C2(q, r) the three transfor-
mations read as follows:

T , M(T ) = T, tr1
1(T ) = T

�
�
�
�
�� L
LL

A
AA

D(T ) =

That is, the four equations (10)–(13) needed to classify bicovariant bimodules and
bicovariant differential calculi can be lifted into the BWM algebra. This has been
an essential step in the classification problem investigated in [Sch].
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