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Self-similar periodic tilings on the Heisenberg group

Gotz Gelbrich

Communicated by H. Boseck

Abstract. We construct a tiling on the Heisenberg group G with the following
properties. A discrete cocompact subgroup of G acts freely and transitively on
the set of tiles. Moreover, an expanding endomorphism of G carries each tile
onto the union of % tiles, where k=4, and this is the least number for which
such a construction is possible. Our computations are basic for the generation
of arbitrary periodic self-similar tilings on G.

1. Introduction to tilings

Suppose that X is a complete metric space. A tiling is a locally finite family 7T
of non-empty subsets of X with the following properties:

(i) forevery A€ T, A=cl(int(A)) (tiles are regular-closed),

(ii)  int(A) Nint(B) = O for different tiles A, B € T (non-overlap condition),

i) U A=X (covering condition).
AeT

Let ' be a discrete cocompact subgroup of the isometry group of X. We say that
the tiling 7 is periodic under I' (or a I'-tiling) provided that for some tile A,

(iv) T ={v(A): veTl}.
The distinguished tile A is then called the prototile.

Furthermore, assume that ® : X — X is an expanding map (i.e. stretching all
distances by at least a factor ¢ > 1), such that ®T'd~! C I'. A T-tiling 7 is
self-similar iff

k
(v) for certain y1,...,v € I', ®(A) = U v(A).
=1

It follows that the elements v; form a complete set of right coset representatives

of ®I'¢~t C T,

If the map ® and the group elements ~+; are given then the tiling can be con-
structed as follows: one tile A is obtained as the attractor of the iterated function
system {®'y;: ¢ =1,...,k} (see HUTCHINSON [3]). It follows from a general-
ization of a theorem by BANDT [1] that the set A has non-empty interior, and
hence one can construct a tiling by iterated expansion and subdivision of this set
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(cf. [3]). The tiling consists of copies of A under the action of a subset I'c C I'.
We should mention that in general, I'y may not be a group.

Recently, self-similar lattice tilings have been investigated. They are of special
interest inspite of their relation to exotic number systems, Markov partitions, and
wavelets; for examples, see [2], and the references there.

STRICHARTZ [5] has constructed wavelets on Lie groups of “Heisenberg type” but
as a tiling framework, he used only one special type of tiling (“stacked tilings”
over cubes). In our paper, we will work out the algebraic base for general self-
similar periodic tilings of the Heisenberg group with respect to the subgroup of all
elements with integer co-ordinates.

2. The Heisenberg Group and its Metric

The Heisenberg group is the group G = R?>, R where ¢ : R — Aut(R?) is defined

by
@(Z)Zli H

In other words, & is the topological space R® with the multiplication formula
(v,y,2)o (2", ¢, 2y = (z+ 2",y +y + 2’2, 24+ 7).

A matrix representation of (G is given by

1 00
(x,y,z)—~ |« 1 0
y z 1

The inverse element of (z,y,z) is (z,y,2)™' = (—x, 22 — y, —2).
Let Ly,.: G — G be the left multiplication by (z,y,z). The derivative of this
map is the linear map

100
DL(L%Z) = z 1 0 : RS — RS
0 01

at every point of (5.
A metric g : G — (T*G)®? is left-invariant if for any (z,y,2),(2',y,2') € G and
any two vectors v, w € Ty .nG,

g(x/7y/7zl)(v7 w) = gL(.r,y,z) (xlvylvz/)(DL($7yvz)U7 DL(L%Z)U))

is fulfilled. This means that the metric is determined by the choice of the scalar
product at the identity of the group. Assume gy = I. Then we have

g($7y7z)(v,w) = gO(DL(Ly’Z)—w,DL(x7y7Z)—1w)
< (U17U2 - ZU17U3) ) (w17w2 - zwl,w3)>

= (14 22)v1w1 — z(v1wy + vawy ) + Vawy + vaws,
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so the matrix form of the metric is

The volume of a subset A C G is therefore

Vol, (A) = / et gy da dy dz = / dr dy dz = Volayelidean(A)-
A A

3. Endomorphisms of the Heisenberg group

Now we compute the general form of continuous endomorphisms ® : G — G.
Assume ®(z,y,2) = (£(x,y, 2),n(x,y,2),((x,y,2)). Then the homomorphy con-

dition,
O(z,y,2)0 (', y,2") = ®((z,y,2) o (2, y, 2")),
yields
e+ y+y +a'2,242) = Loy, 2) + L2y, <)
e+ y+y +az242) = nle,y2)+n@y, )+ @Y, (2., 2)
(ot 2y ty +amet ) = (ey2) + 0y )
Firstly we compute ¢. Denote e; = (1,0,0), es = (0,1,0), es = (0,0,1). For the

three one-parameter subgroups {te; : t € R} we obtain

E((s +t)ei) = &(sei) + E(ter),
and it follows that
E(te;) = &it
with real parameters &;, 1 = 1,2,3. It follows that

{(x,y,2) =£&((2,0,0)0(0,y,0)0(0,0,2)) = &(x,0,0) 4 £(0,¥,0) + £(0,0, 2)
=&z + Ly + &2,

Moreover,
E(2',2'2,2) = £((0,0,2) 0 (2,0,0)) = £(0,0,2) + £(2',0,0)
= £(2',0,0) 4+ £(0,0,2) = £((2',0,0) 0 (0,0, 2)) = £(2,0,2) ,
hence & = 0. Performing the same computation for ( we obtain
f(xv Y, Z) = 511' + 532
C:(l',y,z) = §1$ + §3'Z

for all (z,y,z) € . Now we compute 5 for the generating one-parameter groups.
Obviously,

1n(0,y,0) = ny
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for some real number 7y. For the groups {te;} and {te;} we have

(s +1)ei) = nlse:) +nlte) + &Gst (1= 1,3),

so we look for a continuous function f which satisfies the functional equation

Fls+1) = J(s) + f(1) + est

with some constant ¢. By induction we obtain

mz—m

2

ct?

Flmt) = m f(t)+

for all natural numbers m and arbitrary real t. Assume f(1) = a. Then for ¢t = 1
the formula yields

oy =St (a=S)e )

2 2

for x € IN. For t = 1/n, n a positive integer, and m = n we have

1 2 1

() ()5

n n 2 n?
which shows that (%) holds for © = 1/n. Now let m be an arbitrary natural
number and ¢ = 1/n, then the formula is true for all rational numbers = > 0. By

0= 7(0) = fla—2) = flz) + fl—a) - ca’

and the continuity of f we see that (%) holds for all @ € R. Hence,

n(2,0,0) = %ﬁwu(m_g;ﬁ)w

77(07072) = &;ﬁZZ + (773 - %) <

for certain constants 7y, 7ns. Finally, the condition

®(0,0,2) 0o ®(x,0,0) = ®(x, 2z, 2)

implies
n2 = €16 — &G

Now one checks that the formula

D(z,y,2) = ({(z,y, 2),n(x,y, 2), (2, y,2))
with
{(x,y,2) = L1 + &32

n(x,y,z) = %la? + (771 - %) w4 St 4 (773 - %) 2+ &GGrr + (GG — &Gy
((2,y,2) = G + (32
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indeed defines an endomorphism of . The derivative of this endomorphism is

D®x,y,z) =

&1 0 &3
GGr 4Gz +m — 560 &l — &G &Gr + &z + s — 563G
G1 0 (s

Since we would like to construct self-similar tilings we must specify the conditions
for ® to be expanding. This is the case iff D® is expanding at every point. We
have

D = Loy @ Lx,y,2)

and hence

D®o = DLyt DOy, 2) DLy, 2),

so the expansivity of ® depends only on the choice of the scalar product at the
identity. Since DLx,y,z) and DLg,,.)-1 are isometries with respect to any
left-invariant metric. But gg can be chosen in such a way that D®, is expanding
iff all eigenvalues of D®( are outside the complex unit circle. Obviously, this is

fulfilled iff the linear map with the matrix l SRS ] is an expansion for some

G G

metric in R2.

4. The subgroup Z? xZ and an example for a tiling

Consider the metric space (¢ with the discrete group I' = Z?* x Z consisting of all
elements of (G with integral coordinates, acting on G by left multiplication. This
group is cocompact since one can easily verify that it holds T'o [0,1]> = G.

It is obvious that an endomorphism of G preserves I' iff all its parameters are in-
tegers. Moreover, the volume growth of ® must be the same as the combinatorial
growth factor; this means k = |det D®|. But det D® = (&(3 — £3¢;)?, hence the

minimal number of pieces a tile can have is 4.

Now we would like to construct a tile with 4 pieces. Let ® be the endomorphism
with parameters & = —& =G =G =1,and 11 =13 =0, so
x?—ax— 2z + z

2

q)(x,y,z):(x—z, —:L'Z—I—Zy,:z;—l—z).

For the right coset representatives take the group elements v = (0,0,0), 72 =
(1,0,0), vs =(0,1,0), and v4 = (1,1,0).

Notice that the set of coset representatives has a “bundle structure” in the following
sense. For the group I' there exists an exact sequence

0—7Z=1{(0,1,0)) - T = Z*—0,
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where Z? is generated by the images of (1,0,0) and (0,0,1). The corresponding
part of this sequence for the image of ¢ is

1
0—>2Z—><I>(F)—>[1

—1
] Z? — 0.
1
The sets {(0,0,0),(1,0,0)} and {(0,0,0),(0,1,0)} consist of coset representatives
for the components contained in Z? and Z, respectively.
The set of all v;’s is obtained as the product

{(0,0,0),(1,0,0)} 04{(0,0,0),(0,1,0)}.

As a consequence, we obtain a “bundle” of tilings. We can construct two tilings,
namely the wild twindragon tiling in Z? (the “basis”), and the tiling by intervalls
(related to the dual number system) on R (the “fibre”). The latter is obtained
simply since @ preserves the y-axis. For the twindragon tiling, the expansion is
the superposition of ® and the usual projection to the (x,z)-plane. The entire
tile in G consists of continuum many line segments, glued together over the twin-
dragon with varying heights.

Fig. 1. Tiling by “wild twindragons”. The expansion
maps every tile onto a gray tile and its right white
neighbor.
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Fig. 2. A reptile on the Heisenberg group.
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