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 1994 Heldermann VerlagSelf-similar periodic tilings on the Heisenberg groupG�otz GelbrichCommunicated by H. BoseckAbstract. We construct a tiling on the Heisenberg group G with the followingproperties. A discrete cocompact subgroup of G acts freely and transitively onthe set of tiles. Moreover, an expanding endomorphism of G carries each tileonto the union of k tiles, where k=4 , and this is the least number for whichsuch a construction is possible. Our computations are basic for the generationof arbitrary periodic self-similar tilings on G .1. Introduction to tilingsSuppose that X is a complete metric space. A tiling is a locally �nite family Tof non-empty subsets of X with the following properties:(i) for every A 2 T , A = cl(int(A)) (tiles are regular-closed),(ii) int(A) \ int(B) = � for di�erent tiles A;B 2 T (non-overlap condition),(iii) SA2T A = X (covering condition).Let � be a discrete cocompact subgroup of the isometry group of X . We say thatthe tiling T is periodic under � (or a �-tiling) provided that for some tile A,(iv) T = f
(A) : 
 2 �g.The distinguished tile A is then called the prototile.Furthermore, assume that � : X ! X is an expanding map (i.e. stretching alldistances by at least a factor c > 1), such that ����1 � �. A �-tiling T isself-similar i�(v) for certain 
1; : : : ; 
k 2 �, �(A) = kSi=1 
i(A).It follows that the elements 
i form a complete set of right coset representativesof ����1 � �.If the map � and the group elements 
i are given then the tiling can be con-structed as follows: one tile A is obtained as the attractor of the iterated functionsystem f��1
i : i = 1; : : : ; kg (see Hutchinson [3]). It follows from a general-ization of a theorem by Bandt [1] that the set A has non-empty interior, andhence one can construct a tiling by iterated expansion and subdivision of this setISSN 0940{2268 / $2.50 C
 Heldermann Verlag



32 Gelbrich(cf. [3]). The tiling consists of copies of A under the action of a subset �0 � �.We should mention that in general, �0 may not be a group.Recently, self-similar lattice tilings have been investigated. They are of specialinterest inspite of their relation to exotic number systems, Markov partitions, andwavelets; for examples, see [2], and the references there.Strichartz [5] has constructed wavelets on Lie groups of \Heisenberg type" butas a tiling framework, he used only one special type of tiling (\stacked tilings"over cubes). In our paper, we will work out the algebraic base for general self-similar periodic tilings of the Heisenberg group with respect to the subgroup of allelements with integer co-ordinates.2. The Heisenberg Group and its MetricThe Heisenberg group is the group G = R2�'R where ' : R! Aut(R2) is de�nedby '(z) = " 1 0z 1 # :In other words, G is the topological space R3 with the multiplication formula(x; y; z) � (x0; y0; z0) = (x+ x0; y + y0 + x0z; z + z0):A matrix representation of G is given by(x; y; z) 7! 264 1 0 0x 1 0y z 1 375 :The inverse element of (x; y; z) is (x; y; z)�1 = (�x; xz � y;�z).Let L(x;y;z):G ! G be the left multiplication by (x; y; z). The derivative of thismap is the linear map DL(x;y;z) = 264 1 0 0z 1 00 0 1 375 : R3! R3at every point of G.A metric g : G ! (T �G)
2 is left-invariant if for any (x; y; z); (x0; y0; z0) 2 G andany two vectors v;w 2 T(x0;y0;z0)G,g(x0;y0;z0)(v;w) = gL(x;y;z)(x0;y0;z0)(DL(x;y;z)v;DL(x;y;z)w)is ful�lled. This means that the metric is determined by the choice of the scalarproduct at the identity of the group. Assume g0 = I . Then we haveg(x;y;z)(v;w) = g0(DL(x;y;z)�1v;DL(x;y;z)�1w)= h (v1; v2 � zv1; v3) ; (w1; w2 � zw1; w3) i= (1 + z2)v1w1 � z(v1w2 + v2w1) + v2w2 + v3w3;



Gelbrich 33so the matrix form of the metric isg(x;y;z) = 264 1 + z2 �z 0�z 1 00 0 1 375 :The volume of a subset A � G is thereforeVolg(A) = ZA qdet g(x;y;z) dx dy dz = ZA dx dy dz = Voleuclidean(A):3. Endomorphisms of the Heisenberg groupNow we compute the general form of continuous endomorphisms � : G ! G.Assume �(x; y; z) = (�(x; y; z); �(x; y; z); �(x; y; z)). Then the homomorphy con-dition, �(x; y; z) � �(x0; y0; z0) = �((x; y; z) � (x0; y0; z0));yields�(x+ x0; y + y0 + x0z; z + z0) = �(x; y; z) + �(x0; y0; z0)�(x+ x0; y + y0 + x0z; z + z0) = �(x; y; z) + �(x0; y0; z0) + �(x0; y0; z0)�(x; y; z)�(x+ x0; y + y0 + x0z; z + z0) = �(x; y; z) + �(x0; y0; z0):Firstly we compute � . Denote e1 = (1; 0; 0); e2 = (0; 1; 0); e3 = (0; 0; 1). For thethree one-parameter subgroups ftei : t 2 Rg we obtain�((s + t)ei) = �(sei) + �(tei);and it follows that �(tei) = �itwith real parameters �i , i = 1; 2; 3. It follows that�(x; y; z) = �((x; 0; 0) � (0; y; 0) � (0; 0; z)) = �(x; 0; 0) + �(0; y; 0) + �(0; 0; z)= �1x+ �2y + �3z:Moreover,�(x0; x0z; z) = �((0; 0; z) � (x0; 0; 0)) = �(0; 0; z) + �(x0; 0; 0)= �(x0; 0; 0) + �(0; 0; z) = �((x0; 0; 0) � (0; 0; z)) = �(x0; 0; z) ;hence �2 = 0. Performing the same computation for � we obtain�(x; y; z) = �1x+ �3z�(x; y; z) = �1x+ �3zfor all (x; y; z) 2 G. Now we compute � for the generating one-parameter groups.Obviously, �(0; y; 0) = �2y



34 Gelbrichfor some real number �2 . For the groups fte1g and fte3g we have�((s+ t)ei) = �(sei) + �(tei) + �i�ist (i = 1; 3);so we look for a continuous function f which satis�es the functional equationf(s+ t) = f(s) + f(t) + cstwith some constant c. By induction we obtainf(mt) = mf(t) + m2 �m2 c t2for all natural numbers m and arbitrary real t. Assume f(1) = a. Then for t = 1the formula yields f(x) = c2 x2 + �a� c2�x (�)for x 2 IN . For t = 1=n, n a positive integer, and m = n we havea = f �nn� = n f �1n�+ n2 � n2 c 1n2which shows that (�) holds for x = 1=n. Now let m be an arbitrary naturalnumber and t = 1=n, then the formula is true for all rational numbers x � 0. By0 = f(0) = f(x� x) = f(x) + f(�x)� c x2and the continuity of f we see that (�) holds for all x 2 R. Hence,�(x; 0; 0) = �1�12 x2 +  �1 � �1�12 ! x�(0; 0; z) = �3�32 z2 +  �3 � �3�32 ! zfor certain constants �1; �3 . Finally, the condition�(0; 0; z) � �(x; 0; 0) = �(x; xz; z)implies �2 = �1�3 � �3�1:Now one checks that the formula�(x; y; z) = (�(x; y; z); �(x; y; z); �(x; y; z))with�(x; y; z) = �1x+ �3z�(x; y; z) = �1�12 x2 + ��1 � �1�12 �x+ �3�32 z2 + ��3 � �3�32 � z + �3�1xz + (�1�3 � �3�1)y�(x; y; z) = �1x+ �3z



Gelbrich 35indeed de�nes an endomorphism of G. The derivative of this endomorphism isD�(x; y; z) =264 �1 0 �3�1�1x+ �3�1z + �1 � 12�1�1 �1�3 � �3�1 �3�1x+ �3�3z + �3 � 12�3�3�1 0 �3 375 :Since we would like to construct self-similar tilings we must specify the conditionsfor � to be expanding. This is the case i� D� is expanding at every point. Wehave � = L�(x;y;z)�1 �L(x; y; z)and hence D�0 = DL�(x;y;z)�1 D�(x; y; z)DL(x; y; z);so the expansivity of � depends only on the choice of the scalar product at theidentity. Since DL(x; y; z) and DL�(x;y;z)�1 are isometries with respect to anyleft-invariant metric. But g0 can be chosen in such a way that D�0 is expandingi� all eigenvalues of D�0 are outside the complex unit circle. Obviously, this isful�lled i� the linear map with the matrix " �1 �3�1 �3 # is an expansion for somemetric in R2.4. The subgroup Z2�Zand an example for a tilingConsider the metric space G with the discrete group � =Z2�Zconsisting of allelements of G with integral coordinates, acting on G by left multiplication. Thisgroup is cocompact since one can easily verify that it holds � � [0; 1]3 = G.It is obvious that an endomorphism of G preserves � i� all its parameters are in-tegers. Moreover, the volume growth of � must be the same as the combinatorialgrowth factor; this means k = jdet D�j. But det D� = (�1�3� �3�1)2 , hence theminimal number of pieces a tile can have is 4.Now we would like to construct a tile with 4 pieces. Let � be the endomorphismwith parameters �1 = ��3 = �1 = �3 = 1, and �1 = �3 = 0, so�(x; y; z) =  x� z ; x2 � x� z2 + z2 � xz + 2y ; x+ z! :For the right coset representatives take the group elements 
1 = (0; 0; 0), 
2 =(1; 0; 0), 
3 = (0; 1; 0), and 
4 = (1; 1; 0).Notice that the set of coset representatives has a \bundle structure" in the followingsense. For the group � there exists an exact sequence0!Z= h(0; 1; 0)i ! �!Z2! 0;



36 Gelbrichwhere Z2 is generated by the images of (1; 0; 0) and (0; 0; 1). The correspondingpart of this sequence for the image of � is0! 2Z! �(�)! �11�11� Z2! 0:The sets f(0; 0; 0); (1; 0; 0)g and f(0; 0; 0); (0; 1; 0)g consist of coset representativesfor the components contained in Z2 and Z, respectively.The set of all 
i 's is obtained as the productf(0; 0; 0); (1; 0; 0)g � f(0; 0; 0); (0; 1; 0)g:As a consequence, we obtain a \bundle" of tilings. We can construct two tilings,namely the wild twindragon tiling in Z2 (the \basis"), and the tiling by intervalls(related to the dual number system) on R (the \�bre"). The latter is obtainedsimply since � preserves the y -axis. For the twindragon tiling, the expansion isthe superposition of � and the usual projection to the (x; z)-plane. The entiretile in G consists of continuum many line segments, glued together over the twin-dragon with varying heights.���������	
�Fig. 1. Tiling by \wild twindragons". The expansionmaps every tile onto a gray tile and its right whiteneighbor.
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�Fig. 2. A reptile on the Heisenberg group.References[1] Bandt, C., Self-similar sets 5. Integer matrices and fractal tilings of Rn,Proc. Am. Math. Soc. 112 (1991), 549{562.[2] Gelbrich, G., Crystallographic reptiles, Geometriae Dedicata 51 (1994),235{256.[3] Hutchinson, J. E., Fractals and self-similarity, Indiana Univ. Math. J. 30(1981), 713{747.[4] Strichartz, R. S., Self-similarity on nilpotent Lie groups, in: E. L. Grinberg,Ed., Geometric Analysis, Contemporary Math. 140 (1992), 123{157.Fachbereich MathematikUniversit�at GreifswaldFriedrich Ludwig Jahn-Str. 15aD-17487 Greifswaldgelbrich@math-inf.uni-greifswald.d400.deReceived July 5, 1994and in �nal form November 9, 1994


