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Introduction

The unitarizable highest weight representations of simple Lie groups
have been classified in an algebraic manner more than ten years ago (cf. [34],
[5], [16], [17], [6]). Nevertheless, no uniform analytic way of constructing these
representations is known. Pioneering work in this direction has been done by
Rossi and Vergne [33]. Other approaches are given for example in [7], [4], [18]
and [27].

It is our goal to construct the unitary highest weight representations in
an analytic fashion which is based on the orbit method. The coadjoint orbits
we want to use are the orbits of convex type. These are the coadjoint orbits
which are contained in a proper generating cone invariant under the coadjoint
action. The basic idea is that unitary highest weight modules can be extended
to contraction representations of certain complex semigroups having the original
group as a kind of Shilov boundary. This leads to a one sided boundedness for
the spectrum of the operators given by the derived representation. Following
the idea that the spectrum of the representation has a close connection to the
spectrum of its classical counterpart, i.e., the range of the Hamiltonian functions
on the coadjoint orbit, one is led to the consideration of coadjoint orbits of
convex type. This connection has been studied in detail in [24]. So far we are
only able to carry out the program for nilpotent orbits. In that case it results in
analytic realizations of all highest weight modules whose lowest K -types are one
dimensional.

For the construction of the representations one proceeds in several steps.
The first step is to use the detailed knowledge of the geometry of nilpotent orbits
of convex type to construct a polarization of a suitable open dense subset of the
orbit. This subset is in its own right a coadjoint orbit for a subgroup Q,.q for
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which the polarization is invariant. The next step is to construct a Hilbert space
and a representation of ()yeq following the scheme of geometric quantization.
This Hilbert space turns out to be a space of holomorphic functions on a Siegel
domain of the second kind. It is a key observation that this Hilbert space can
be reinterpreted as a space of holomorphic functions on a Siegel domain of the
third kind on which the big group acts. The last step is to identify the resulting
representation of (Q,.q as the restriction of a highest weight representation by
comparing the reproducing kernels coming from the construction with the ones
predicted by the general realization theory given in [25]. The first step is de-
scribed in the present paper. The two others are dealt with in [14] and [15]. The
paper is organized as follows:
I. Cayley homomorphisms of reductive Lie algebras
II. (Hi)-homomorphisms and invariant cones
ITI. The classification of the nilpotent orbits of convex type
IV. The fine structure of the Jacobson-Morosow parabolics
V. Moment maps
VI. The symplectic geometry of O and My
VII. Examples

We explain the contents in a little more detail. In Section I we estab-
lish some refinements of well known results on sls-triples which will be used
to describe the geometry of conjugacy classes of real nilpotent elements. The
main point is to keep track of the Cartan decompositions when studying homo-
morphisms between real reductive Lie algebras. Homomorphisms preserving the
Cartan decomposition are called Cayley homomorphisms. In the case of quasi-
hermitean Lie algebras, which are characterized by the fact that there exists a
complex structure on p induced by a central element of £, one can also consider
(H7)-homomorphisms. These are Cayley homomorphisms preserving also the
complex structure on the p-parts. Quasihermitean Lie algebras are singled out
as the class of algebras which admit generating Ad-invariant convex cones with
compactly embedded edge. The key results of Section II describe how invariant
cones behave under (Hp)-homomorphisms. We show that this description can
be used to see that nilpotent elements of convex type correspond to sls-triples
which are at the same time (H;)-homomorphisms. The Sekiguchi correspon-
dence between nilpotent orbits and K¢-orbits in pc ([32]) then yields a bijection
between nilpotent orbits of convex type and Kc-orbits in pT™ Up~.

In the third section we use the results of Section II to give a complete
classification of the nilpotent orbits of convex type in a hermitean simple Lie
algebra g. It turns out that there are exactly 2r 4+ 1 such orbits, where r is
the real rank of g and each invariant cone in g contains r 4+ 1 such orbits. The
ordering of the orbits lying in an invariant cone via inclusion of closures is linear.
Using the Sekiguchi correspondence, we see that the nilpotent orbits lying in a
fixed cone correspond to Kc¢-orbits in p* which have been classified by Muller,
Rubenthaler and Schiffmann in [22].

Section IV gives a detailed account of the structure of the parabolic
subalgebras associated to sly-triples which arise from nilpotent orbits of convex
type via the Jacobson-Morosow Theorem. These structural results are mostly
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based on the work of Koranyi and Wolf ([19], [36]). Our presentation follows
Satake’s book [29] from which we extract and reorganize all the material we will
need in this and the papers [14,15].

The structure of the Jacobson-Morosow parabolics then leads to a series
of natural moment maps between various subalgebras. A closer inspection of
these maps restricted to coadjoint orbits shows the existence of an open dense
submanifold M of the nilpotent orbit which is a symplectic homogeneous space
in its own right and is later shown to admit an invariant polarization. We show
in particular that an invariant polarization for the whole group exists only in
very special cases (when the orbit of convex type is maximal and G/K is a tube
domain).

In Section VI we provide explicit information on the symplectic geometry
of the nilpotent orbit and the manifold M. In particular we show that M has
a symplectic potential and determine an invariant complex polarization for M.
The final section contains various examples illustrating the theory.

As a standard reference we use [29]; several of the results there we
reinterpret and strengthen to suit our point of view, in particular with our
application to nilpotent orbits of convex type in mind.

I. Cayley homomorphisms of reductive Lie algebras

Definition I.1.  Let (g,6) and (g, 6) be two reductive Lie algebras with a fixed
Cartan involutions. A homomorphism k: g — ¢ is called a Cayley homomorphism
if kol =0ok. |

Let g=¢+p and g = [y p be the Cartan decompositions associated
to # and 6. Then k:g — g is a Cayley homomorphism if and only if one has
k(€) Ct and k(p) Cp.

The following lemma which is a generalization of a theorem of Mostow
([21, Th. 6]) shows that the inclusion of a semisimple Lie algebra into a reductive
one can always be made a Cayley inclusion if one chooses the Cartan involution
on the bigger algebra in an appropriate way.

Recall that a subalgebra h of a Lie algebra g is called compactly embedded
if the group of inner automorphisms of g generated by e*d? is relatively compact

in Aut(g).

Lemma 1.2. Let g be a semisimple Lie algebra and g C g a reductive subalgebra
with the Cartan decomposition g =€+ p such that 3(g) is compactly embedded.

Then there exists a Cartan decomposition g =8¢+ p with EC € and p C p.
Proof. First we use Mostow’s Theorem ([21, Th. 6]) to see that there exists

a Cartan decomposition g = [ P extending the Cartan decomposition of the
commutator algebra g’ = [g,g]. Let 6 denote the corresponding involution.

Set a = 35([9,9]). Then a C g is a f-invariant, and hence reductive,
subalgebra which intersects g in 3(g). The orthogonal (w.r.t. the Killing form)
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projection p:g — [a,a] commutes with 0 and its restriction to a is a surjective
homomorphism with kernel 3(a). Therefore p(g(g)) is a compactly embedded
abelian subalgebra of [a,a]. Using [10, Ex. VI.A.8(ii)], we now find a Cartan
decomposition a = &, + pg such that 3(g) € p(3(g)) + 3(a) C €&, and ps C [a, q].

On the other hand we have the Cartan decomposition a = (¢Na)+(pNa). Since
Cartan decompositions of a are conjugate under inner automorphisms, there
exists v € (e249) with y(€,) = €Na and v(p,) = pNa. In particular this implies

v(3(g)) C &

Now (¢) = v(3(g)) + (ENg') C € and y(p) = p C P since p C [g,g]
shows that the Cartan decomposition of v(g) induced by that of g is compatible

with the Cartan decomposition of g. Hence g = v~ 1(&) + v 1(p) is a Cartan
decomposition of g satisfying the requirements of the lemma. |

In this paper we will primarily be concerned with Cayley inclusions of
s[(2,R) into some reductive Lie algebra g. So let go := s[(2,R) and

ae(h 5) = (n) (3,
= (o) o=(40)

[U,T) =2H,[U, H| = —2T,[H,T] = 2U, |H, X] = 2X,[H,Y] = —2Y, [X, Y] = H.

Then

Every triple (H, X,Y) of elements in a Lie algebra g satisfying the above com-
mutation relations is called an sl;-triple. We fix the Cartan decomposition
go = o + po with &g = RU and po = RT + RH on gg. An sly-triple on
which the Cartan involution of g agrees with this involution will be called a
Cayley triple.

Given a reductive Lie algebra g and an element X € g we call X
nilpotent if it belongs to the commutator algebra [g,g] and is nilpotent there
(in the usual sense). Then a trivial extension of the Jacobson-Morosow Theorem
(cf. [35, Prop. 1.3.5.3]), says that a non-zero element X in a reductive Lie algebra
g is nilpotent if and only if it is part of an sly-triple (H, X,Y). Using Lemma
1.2 and the fact that the Cartan involutions on g are conjugate, we see that the
adjoint orbit of a nilpotent element in g always contains an element X which
belongs to a Cayley triple (H, X,Y).

Fix a Cayley triple (H, X,Y) in g = £+p and choose a maximal abelian
subspace a of p containing H. Then we have a system ¥ = (g, a) of restricted
roots and there is a positive system X1 such that u(H) > 0 for all yp € XT.
This means that we declare a Weyl chamber containing H in its closure to be
the positive one. Let g" be the root spaces and set n = ZHGEJF g*. Then
[H, X] = 2X implies that

X € Z g’ Cn.
w(H)=2
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Recall that the restriction of the adjoint representation to s = RH + RX +
RY is completely reducible and each irreducible summand is determined by a
highest weight vector which is annihilated by X and an eigenvector for H. The
corresponding eigenvalue is a non-negative integer and gives the isomorphy class
of the simple s-module. Accordingly we decompose g = gl% + gl'! + ... into
isotypic s-submodules. In particular we see that ad H is diagonalizable with
integer eigenvalues. Thus the action of H on g gives a grading of g via

gladH;k):={Z eg:|H, Z|=kZ}, keLZL.
We set

q:=Y g(adH:j), (:=g(adH;0), and u:=)Y glad H;j).
>0 >0

Then we have

Z g, [= Z g, and u= Z g,

w(H)>0 p(H)=0 p(H)>0

and therefore g is a parabolic subalgebra of g with Levi decomposition q =
[+u. We call it the Jacobson-Morosow parabolic associated to the Cayley triple

(H,X,Y). Note here that a different choice of X% with u(H) > 0 for p € XF
leads to the same parabolic.

Proposition 1.3.  Let (H,X,Y) be a Cayley triple, q = [+ u its Jacobson-
Morosow parabolic and s = RH + RX +RY . Then

(i) 3g(H) M3q(X) =34(s).

(ii) The centralizer 34(X) of X in g is contained in q and given by

Zg(X) = 3u(X +5g Zﬁg(adH,g) ) =5(X +Zﬁg(adﬂ,g)
320 >0

(iii) 3u(X) = Zj>0 dg(ad H;j) (X) = 39(X) N [gv X]
Proof. (i) Assume that Z € 34(X)N34(H). The general representation theory
of s[(2,R) applied to the representation on g then shows that also [Z,Y] =0 so
that Z € 34(s).
(ii) We note first that obviously

3u(X) +3g(5> - 3g(X) ng.

For the converse we remark that the subalgebra 34(X) is invariant under ad H .
Therefore we assume that Z € 34(X) Ng(adH;j). If j = 0, part (i) shows
Z € 34(s). If j >0 we have Z € u by definition. So it only remains to exclude
the case j < 0. To that effect we only need to remark that 34(X) consists of
highest weight vectors of the representation of s[(2,R) on g with respect to the
Cartan subalgebra RH and the corresponding weights are all non-negative.

(iii) The first equality follows immediately from the proof of (ii) and the second
from (ii) and the theory of s[(2, R)-representations applied to the representation
on g. ]
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Remark I.4. Suppose that g is semisimple. For Z € 34(X) the linear map
ad X ad Z is nilpotent since ad X is is nilpotent and commutes with ad Z. Let
B be the Killing form of g. Then B(X,Z) = tr(adXadZ) = 0 so that X
and 34(X) are orthogonal under the Killing form. The non-degeneracy and the
invariance of the Killing form show that 34(X) = [X, g]*, where + denotes the
orthogonal complement with respect to the Killing form. Thus we have

Xeéu(X>:3g(X)m39(X)J_- u
Lemma 1.5. Let (H,X,Y) be a Cayley triple in g and q = [4+u its Jacobson-

Morosow parabolic. Suppose that (H', X,Y') is another sly-triple in g. Then
there exists a Z € 3,(X) such that

22 m—H and 42y =Y’

Proof. [3, Ch. VIII, §11, no. 1, Lemme 4] [

Remark 1.6. It follows from Lemma I.5 that the Jacobson-Morosow parabolic
of a Cayley triple (H,X,Y’) only depends on the X -part of the triple. ]

Theorem 1.7.  Let G be a connected real reductive Lie group and (H,X,Y)
be a Cayley triple in the Lie algebra g of G. We set s = RH + RX + RY and
denote the Levi decomposition of the corresponding Jacobson-Morosow parabolic
subgroup by QQ = UL. Then

(i) Zu(X) =exp (3u(X)).
(il) Za(X) = Zu(X)x Zg(s).
(ili) Za(X) CQ.

Proof. (i) The connectedness of Zy(X) follows from the fact that U is a
unipotent algebraic group and that all algebraic subgroups of unipotent groups
are connected. Since u is nilpotent and hence U is exponential, (i) follows.

(ii) It is clear that Zy(X) and Zg(s) are contained in Zg(X). The action of
eBH on 7 (X) and Zg(s) shows that these two groups have trivial intersec-
tion. Moreover it is clear that Zy(X) is normalized by Zg(s). Thus it only
remains to show that Zg(X) C Zy(X)Zg(s). To this end we let g € Zg(X).
Then (H,X,Y) and (Ad(g)H, X,Ad(9)Y) satisfy the hypotheses of Lemma 1.5
so that one can find a Z € 3,(X) with e*ZH = Ad(g)H and e*?Y = Ad(g)Y
which implies exp(—Z2)g € Zg(s). This proves the claim.

(iii) Let g € Zg(s). Then g normalizes [ = ker(ad H) and also

w= Y sad 1:)).

5>0

Thus ¢ normalizes q and hence is in @ (cf. [35, Th. 1.2.1.1]). Since Zy(X) C
U C @ holds by definition, the assertion follows from (ii). n
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Remark I.8. Theorem 1.9 shows in particular that the adjoint orbit Ox =
Ad(G).X of X has a bundle structure with compact base space G/Q and fibre
isomorphic to Q/Z(X). More precisely we have

Ox 2 G/Za(X) = G xq (Q/Za(X)),

where G'x¢ (Q/ZG (X)) is the fiber product with respect to the right action of @
on G via translation and the left action of @ on Q/Z¢(X) also via translation.m

II. (H;)-homomorphisms and invariant cones

We call a reductive Lie algebra g quasihermitean if it contains only com-
pact or hermitean simple ideals. In this section g always denotes a quasiher-
mitean reductive Lie algebra and G a simply connected group with L(G) = g.

Definition II.1.  (cf. [29]) Let g be a reductive quasihermitean Lie algebra.
An element Hj € g is called an H-element if 34(Hy) = kerad Hy is a maximal
compactly embedded subalgebra of g and Spec(ad Hy) = {0,4,—i}. The pair
(g, Hp) is called a reductive Lie algebra of hermitean type.

Let (g, Hp) be a reductive Lie algebra of hermitean type and set ¢ :=
kerad Hy. Then p := [Hp,g] is a uniquely determined complement for ¢ and
g = t+p is a Cartan decomposition. Note that 3(g) C €. In the complexification
gc, the endomorphism ad Hy is diagonalizable and we obtain

gc=p +tc+p,

where p* is the +i-eigenspace of ad Hy . [ ]

Note that 1U is an H-element in s[(2,R). In view of this example we
should rather speak of U-elements, but we stick to Satake’s notation since we
will have to refer to [29] on various occasions.

Remark I1.2. Let g=3(g) Dgo D g1 D ... D gk, where 3(g) is the center, g
is the maximal compact semisimple ideal, and gi,...,gr are the non-compact
simple ideals. Then an element H .+ H 0+Z§:1 Hj is an H -element if and only if
Hy =0 and H; is an H-element in g;. It follows in particular that the number
of H-elements associated to a fixed Cartan decomposition in the commutator
algebra [g,g] is 2% since every simple hermitean Lie algebra contains exactly
two H -elements associated to a fixed Cartan decomposition. ]

We recall some basic facts about invariant cones (cf. [11, Ch. III] and
[23]): As was mentioned in the introduction, quasihermitean reductive Lie alge-
bras are precisely the class of reductive Lie algebras that admit invariant cones
having the maximal compact ideal as largest vector subspace. More precisely,
closed convex cones W with non-empty interior, invariant under inner automor-
phisms and such that W N (=W) is the largest compact ideal in the algebra.
Quasihermitean Lie algebras admit compactly embedded Cartan subalgebras.
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Fix a quasihermitean Lie algebra g and a compactly embedded Cartan subal-
gebra t in g. Then there exists a unique Cartan involution 6 on g such that
t is contained in the corresponding maximal compactly embedded subalgebra £
of g. Let A = A(gc,tc) be the root system associated to the pair (gc,tc). A
root o is called compact if the corresponding rootspace g¢ is contained in £¢
and non-compact otherwise. We write Ay, for the set of compact roots and A,
for the set of non-compact roots. A positive system AT of the root system A is
called t-adapted, if the set A;' of positive non-compact roots is invariant under
the Weyl group W, of the pair (£ t). Such positive systems always exist. Given
a t-adapted positive system we define two convex cones in t via

Cin = cone{i[X, X]: X € g&,a € A;’},
where cone(E) denotes the smallest closed convex cone containing F, and
Cmax = {X € t: (Va € A}) ia(X) > 0}.

Then Cl,, is actually contained in Cl,.x. Invariant cones in g are uniquely
determined by their intersections with t and each Wg-invariant cone between
Chin and Cax occurs as such an intersection. In particular, there is a minimal
invariant cone Wy, with Chin = Whin Nt and a maximal invariant cone Wiax
with Chax = Whax N t.

Proposition 11.3.  Let h be a quasihermitean reductive Lie algebra.

(i) For each H -element Hy € g there exists one and only one mazximal
invariant cone Wiax(Hp) containing Hy .

(ii) Each mazimal invariant cone contains an H -element.

Proof. (i) Let t be a compactly embedded Cartan algebra containing Hy.
Then we have € = 34(Hp) and «(Hy) € {i,—i} for all & € A,. Therefore we
find a £-adapted positive system with ia(Hg) > 0 for all @ € A, This means
that Hy € int Clhayx € int Wiax. The uniqueness follows from the fact that the
interiors of two different maximal invariant cones are disjoint.

(ii) It suffices to show that Cia.x contains an H-element. But that is an

immediate consequence of the structure of quasihermitean reductive Lie algebras
(cf. [11, T1T)). ]

Remark I1.4.

(i) The choice of a maximal cone and the choice of an H -element are equiv-
alent once one has fixed a compactly embedded Cartan algebra t. More
precisely, we find that there is a unique H -element in [g, g] in each max-
imal invariant cone contained in t. In particular a reductive quasiher-
mitean Lie algebra containing k simple hermitean ideals contains exactly
2% maximal and minimal cones.

(ii) In the proof of Proposition II.3 we used that for non-compact quasiher-
mitean Lie algebras the choice of a £-adapted positive system also implies
the choice of an H-element Hj € t (modulo the center) by asking that
ia(Ho) > 0 for all a € A}. Conversely Al for a €-adapted positive
system is fixed by the choice of an H -element in t.
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(iii) The definitions show that Cl,, contains the corresponding H -element
whenever it is contained in the commutator algebra of g.

(iv) The choice of a maximal cone determines the projection of Hy onto the
commutator algebra. [ ]

We will write Winax(Hp) for the maximal cone containing H, if we
want to stress the relation with Hy. Similarly we write Wi (Hp) for the
corresponding minimal cone.

Note here that we have compiled various examples in Section VII.

Definition II.5. (cf. [29]) Let (g, Ho) and (g, Ho) be two reductive Lie
algebras of hermitean type.
(a) A homomorphism k:g — g is called an (H;)-homomorphism if

koad Hy = adﬁoom

(b) A homomorphism x: g — § is called an (Hs)-homomorphism if x(Hg) = Hy.
It is clear that this implies in particular that s is an (H;)-homomorphism. =

Remark I1.6. (a) Note that the (H;)-condition is equivalent to the condition

that the complex linear extension k:gc — gc satisfies k(tc) C te and k(pT) C
pT. It is also equivalent to the condition that & is a Cayley homomorphism with
the additional property that r |,:p — p is complex linear with respect to the

complex structures J = ad Hy |, and J = ad IT[O h;.

(b) Compositions of (Hp)-homomorphisms yields (H;)-homomorphisms. n

Proposition I1.7.  Let (g, Hy) and (g, ?IO) be two reductive Lie algebras of
hermitean type and k:g — g an (Hy)-homomorphism. Then K(Wmin(HO)) C

Wmin(g()) .
Proof. Since ITIO € 3(%) , we may choose compactly embedded Cartan algebras

t and t of g and g with Ho € t and Hy € T such that K(t) gAf Let pig — t
resp. p;:ﬁ — t denote the orthogonal projection onto t resp. t. Then

Cmin(Hp) = cone ({pt(i[Y, X]):X € p+})

and

C’min(ffo) = cone ({p(i[X, X]): X € p*}).

Therefore r(t) C t and s(p*) C pT imply #(Cumin(Ho)) C Comin(Hp) and hence
the claim. |

Lemma IL.8. Let g and g be two reductive quasihermitean Lie algebras of
hermitean type with H -elements Hy and Hqy and k:g — g a Lie algebra homo-
morphism. Write p;, Py and Py for the projection onto the center, the sum
gn of all non-compact simple ideals, and the commutator algebra of g. Then the
following are equivalent:

(1) k is an (Hy)-homomorphism.
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(2) Py © K is an (Hy) -homomorphism with respect to the H -element
v (o) € 7.
(3) py, ok is an (H1) -homomorphism with respect to the H -element Py, (Hy)
of gn .
For (Hz)-homomorphisms the conclusions (1) = (2) = (3) hold.
Proof. (1) = (2) = (3): Suppose that  is an (H;)-homomorphism. Then
(2) follows from the fact that the projection py is an (Hz)-homomorphism and
(3) from the fact that the projection Py, }5,:5’ — @p is an (Hs)-homomorphism.
The same argument applies if x is an (Hs)-homomorphism.

(3) = (1): Let g. be the sum of all compact simple ideals in g. For X € g we
write k(X) =Y; + Y2 with Y; € g, and Y5 € g,,. Then (3) implies

[Ho, (X)) = [Ho, Ya] = p; (x([Ho, X])).

On the other hand [Hy, X| C [g,g] is a split element, which shows that
p; (k([Ho, X])) = 0 and pEC(K([HO,X])) = 0. Therefore [Hy, k(X)] = k([Ho, X)),
i.e., k is an (H;)-homomorphism. n

If W is a closed convex cone in a finite dimensional vector space, we
write H(W) := W N (=W) for the edge of the cone W .

Proposition I1.9.  Let g and g be two reductive quasihermitean Lie algebras
and k:g — g a Lie algebra homomorphism. Consider the following conditions:

(1) There exists a maximal invariant cone Winax C g such that m—l(’vaaX)
is generating in g and k(3(g)) is compactly embedded.

(2) There exist H-elements Hy € g and Hy € § such that r is an (Hy)-
homomorphism and Wmax = Wmax(ﬁ0>-
Then the implication (1) = (2) holds and (2) = (1) holds if g is semisimple
without compact factors or if k is an (Hz)-homomorphism.

Proof. Before we prove both implications, we make some reductions. Let
Whax € @ be the maximal cone associated to an H-element H, € g, and set
W = k' (Whax). Let R := Py O, where ry is the projection onto the

semisimple ideal §,. Then &' (Wiax) = £ (Wiax) and x(3(g)) is compactly
embedded in g if and only if ﬁ(g(g)) is compactly embedded in g, . According
to Lemma I1.8, we may therefore w.l.o.g. assume that g = g,, is semisimple and
a sum of hermitean simple ideals. Note that this implies in particular that the
cones Wi, are pointed. -

It is clear that kerx C H(W). Further the fact that Wi,.x is pointed
yields that kerx = H(W). Write g = kerx @ b, where b is a complementary
ideal. Then W = ker k4 (W Nb) is generating if and only if W' Nb is generating.
Moreover £(3(b)) = £(3(g)) and « is an (Hp)-homomorphism if and only this
holds for k|p. Hence it suffices to assume that s is injective, i.e., that g is a
subalgebra of g.

(1) = (2): Let Wiax be as in (1). We assume that g C g = g,,. Then (1)

means that the cone W = g N Whax is a pointed generating invariant cone in
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the reductive Lie algebra g. According to the theory of invariant cones (cf. [23,
III]), there exists an H -element Hy in g such that

(IL.1) Winin (Ho) € W C Winax (Ho).

Let ¢ := kerad Hy and 6 the associated Cartan involution of g. Since
K is injective and, according to our assumption, the image of 3(g) is compactly
embedded, it follows from Lemma 1.2 that there exists a Cartan involution 0 of
g extending 6.

We conclude in particular that & C t. Therefore we find a compactly
embedded Cartan algebra t of £ which is contained in a compactly embedded
Cartan algebra t of €. We choose t-adapted positive systems A+ and A+ such
that p™ and pT are the sum of the non-compact positive root spaces. Then
(IL.1) implies that

Cmax:Wmaxmt:WﬂtgWmaxﬂt:Cmax-

If a € A; is a positive non-compact root, then «|; is zero or a non-compact root

and i« is non-negative on the generating cone émax N t. Since no non-compact
root changes its sign on iCl,x, it follows that i« is non-negative on Clay, i.€.,
that ial € A U{0}.

On the other hand pc C pc, so that every root « in A; is the restriction
of a root in 5;' According to the above argument, every root 3 € Ap with
a = [ ]¢ must be contained in A; . Hence p™ C p™ and similarly p~ C p—
whence £ is an (H;)-homomorphism.

(2) = (1): Suppose that (g, Hy) — (g, Ho) is an (H;)-homomorphism. We may
assume that g C g =g,.

(a): Let us first assume that g is semisimple. Then 3(g) = {0} and we

only have to show that W = gn Wmax is generating. Let t C £ be a compactly
embedded Cartan algebra of g. Since t C £, there exists a compactly embedded
Cartan algebra t of g contained in £ and containing t. It is clear that each
element of the root system A of g may be obtained as the restriction of an
element in A, the root system of g. The (H;)-condition implies that A; is

obtained by restricting elements of 3;; Therefore Cpin C 5’min C émax yields

Wmin - Ad(G)len g g N Wmax =W.

Since g is semisimple without compact factors, the cone Wy, is generating, so
that W is also generating.

(b): Now we assume that x in an (HQ) homomorphism and that g
is not necessarily semisimple. Then k(Hy) = HO € int Wmax because g =
gn. Therefore Hy € int K_l(Wmax) and it follows in particular that the cone

m_l(WmaX) is generating. That x(3(g)) C ¢ follows from the assumption that
is an (H1)-homomorphism. u
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Theorem II1.10. Let g be a quasthermitean semisimple Lie algebra and
Whax € @ a mazimal invariant cone. Then the following are equivalent:

(1) X is a nilpotent element contained in Wiax -

(2) There exists an H -element Hy in g with Winax = Wiax(Ho) and a Cay-
ley triple (H,X,Y) defining an (Hi)-homomorphism (sl(2,R), sU) —

(gv HO) .
Proof. (1) = (2): First we use the Jacobson-Morosow Theorem (cf. [35, Prop.
1.3.5.3]) to find an sly-triple (H,X,Y). Let s:sl(2,R) — g denote the corre-
sponding inclusion homomorphism and s its image. Then n_l(Wmax) = WiaxNs
contains the element X . Therefore this is a non-zero closed convex pointed in-

variant cone in s, hence Wy .x Ns = Wmax(%U ). Now we use Proposition I1.9

to see that there exists an H -element f[o € g and an H -element %fj € s such

that the inclusion of s is an (Hj)-homomorphism, Wy Ns = Wmax(%fj ), and

Winax = Wmax(ﬁO)- Since all H-elements in Wy, N's are conjugate under in-
ner automorphisms, there exists v € (242} with v(U) = U. Then Hy := ~(H,)
is H-element in g with the same maximal cone and (s,2U) — (g, Ho) is an
(H1)-homomorphism.

(2) = (1): It is clear that X is nilpotent and X € Wiy, € Wiax follows from

Proposition I1.7. [ ]

In view of [32, Th. 1.9], one has a bijection between the set of all nilpotent
orbits in g and the set of all nilpotent Kc-orbits in pc, where K¢ = (e?dtc),
More explicitly, this correspondence is obtained by assigning to a nilpotent
element X belonging to the Cayley triple (H, X,Y’) the Kc-orbit of the element

1
X = (X +Y —iH) € pe.

We will refer to this bijection as the Sekiguchi correspondence. We identify the
orbits in pc corresponding to the nilpotent orbits in Wi ax.

Theorem 11.11.  For a nilpotent orbit Ox C g we have:

(i) Ox is of convex type if and only if O is contained in pTUp.

(ii) Ox is contained in Wiax if and only if O is contained in pt.
Proof.  Since the orbit O_x corresponds to the orbit of 1(—X —Y —iH) =

— X, it follows that X € pT is equivalent to (—X)~€ p~. Therefore it suffices
to prove (ii).

If X is contained in Wy,.., then we use Theorem II.10 to obtain a
Cayley-triple defining an (H;)-homomorphism &: (s((2,R), +U) — (g, Hy). Put
g1 :=sl(2,R). Then pj = C(X+Y —iH) and since the complex linear extension
of k maps p; into p* (cf. Remark IL6), it follows that X € p*.

If, conversely, X € pT, then X € p~, so that the complex linear
extension of xk maps pf into pT. Using Remark I1.6, we see that x is an
(H1)-homomorphism (g1, 1U) — (g, Hy). m

For later applications we provide a proof of Exercice I1.8.1 in [29].
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Lemma IL.12. Let p: (g, Ho) — (§, Ho) be an (Hi)-homomorphism of semi-
simple Lie algebras of hermitean type. Then p is an (Hy)-homomorphism with
respect to the H -element Ad(g).Hy, g € G if and only if g € Za(p(g))K.

Proof. First let g € Za(p(g))l? and g = xk, where k € K and = €

Za;(p(g)). Let H| = Ad(g).Hy = Ad(z).Hy. Then the corresponding Cartan
decomposition is given by

¥ :=Ad(x).t and p’:=Ad(z).p.
Since Ad(x) centralizes p(g), we have p(¢) C & and p(p) C p’. Moreover

ad (Ad(g).ﬁfo) op=ad Ad(x).ﬁo) op

i.e., p is an (Hy)-homomorphism with respect to Hy and Ad(g).Hp.
If, conversely,

ad (Ad(g).Ho) o p = poad Hy,

then we may w.l.o.g. assume that ¢ = expY with Y € p since G = exp(p) K.
Then

ad ((eady).?fo) op=poadH,.

This leads to p(8) C Y ¢, hence to e 2dY p(¢) C €, so that [35,
Lemma 1.1.3.7] implies that [Y, p(€)] = {0}. Similarly e=24Y . p(p) C p implies
[Y, p(p)] = {0}, whence Y € 3E(p(g)). This completes the proof. n

ITI. The classification of nilpotent orbits of convex type

In this part we introduce the subject proper of this paper, the nilpotent
orbits of convex type. We restrict our attention to simple hermitean Lie algebras
so that we can identify g and its dual g* via the Killing form B. Note right
away that the more general considerations from Section I come to bear even here
when we have to study various subalgebras.

Definition III.1. Let g be a finite dimensional Lie algebra. A linear func-
tional w € g* is said to be of convex type if the coadjoint orbit O, = Ad*(G).w
is contained in a pointed closed convex cone. [ ]
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From now on we fix a simple hermitean Lie algebra g and identify g and
g* via the Cartan Killing form of g.

As in Section I we let go := sl(2,R) and fix the elements H, X,Y, T, U.
Moreover, we shall freely use the notation from Section I. Recall also that
(5[(2,R), %U ) is a simple Lie algebra of hermitean type. In this case we have
pt = C(T ¥4iH) and the invariant cone Wyax = Wiin containing U contains
X in its boundary.

We have seen in Theorem I1.10 how one can sharpen the Jacobson-
Morozow theorem for nilpotent elements of convex type. This result shows that
every ray RTX contained in the nilpotent orbit Ox in the boundary of the
invariant cone Wy .« can be obtained as

lim e'*#(RTU) = RT X,

t—o00
where (H, X,Y) is an sly-triple and U = X —Y . Moreover, this can be arranged
in such a way that U € ¢, H,T € p holds for a Cartan decomposition of g and
T = —JH = —[Hy, H] with respect to the complex structure J = ad Hy|, on p.

Definition III.2. Let g and g be Lie algebras. Two Lie algebra homomor-
phisms p1, p2: g — g are said to be orthogonal if the images commute with each
other. In this case we can define the homomorphism

pr+p2g—8, X pi(X)+pa(X)

which is called the commutative sum of p1 and ps.

Note that the commutative sum of two (H;)-homomorphisms between
reductive Lie algebras of hermitean type is again an (H;)-homomorphism with
respect to the same H -elements. [ ]

Lemma II1.3. Let a C p be a maximal abelian subspace. Then s := a+ Ja +
[a, Ja] = sl(2,R)", where r = dima is the real rank of g. Moreover s can be
obtained as the range of an (H;)-homomorphism s((2,R)" — g.

Proof. Using a system of r strongly orthogonal roots (cf. [29, p.109]), one
obtains r orthogonal (H;p)-homomorphisms k1,...,k,:5[(2,R) — g such that
a=> " Ru;(H). Then

Ja = [H(),C(] = iR/{j([U, H]) = iRKb(T)

=1
and

[a, Ja] = ET:R/{J'(U).

Therefore the assertion follows from the fact that s is the range of the (Hy)-
homomorphism k1 X ... X k.:5[(2,R)" — g. ]

The crucial conclusion we draw from the preceding lemma is the follow-
ing.
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Proposition IT1.4.  If k:sl(2,R) — g is an (Hy)-homomorphism, then there
exists an (Hy)-homomorphism

p:sl(2,R) — sl(2,R)"

and an (Hy)-homomorphism k:sl(2,R)" — g such that k =k o p.

Proof. First we extend Rx(H) to a maximal abelian subspace a of pg.
Then r(sl(2,R)) = Re(H) + RJk(H) + Rs(U) and 2U = [JH,H]. Let s =
a+ Ja+ [a,Ja] be as in Lemma III.3. Then s = s[(2,R)" and the inclusion
s — g is an (Hj)-homomorphism. It is also clear that the corestriction of ,
p:5l(2,R) — s is an (Hj)-homomorphism. This proves the assertion. ]

Corollary ITII.5.  FEvery nilpotent orbit of convex type meets the range of the
(Hy)-homomorphism k:s — g.

Proof. In view of the fact that different subalgebras s are conjugate under
Ad(K), this follows by combining Proposition I11.4 with Theorem II.10. u

Remark III.6. Theorem II.10 and Corollary III.5 have an interesting inter-
pretation in terms of hermitean symmetric spaces. Since (H7)-homomorphisms
g — g correspond to strongly equivariant holomorphic maps of the hermitean
symmetric spaces G/K — G/K (cf. [29]), Theorem I1.10 shows that nilpotent
orbits of convex type correspond to embeddings of the complex unit disc into
G/K and Corollary II1.5 shows that every embedding of a unit disc can be ex-
tended to an embedding of an r-dimensional polydisc. ]

Proposition II1.7.  Let H;,T;,U;, j=1,...,r denote the basis elements of
sl(2,R)" corresponding to the basis elements in the simple sl(2,R)-factors and
set U =370 Uj.
(i) Let p: (sl(2,R),3U) — (sl(2,R)", 3U") be an (H,)-homomorphism.
Then

p(U) =) \U;
j=1
with )\j S {0, 1}.
(ii) Conversely, for each collection A1,..., A\, with X\; € {0,1} there is an
(Hi)-homomorphism p: (sl(2,R), 3U) — (sl(2,R)", sU") with p(U) =
> i1 U
(ili) Let t:=3"5_ RU;. Then e2dt qcts on the set of (Hy)-homomorphisms
(sI(2,R),1U) — (sl(2,R)", 2U") by conjugation and the conjugacy class
of p is determined by the r-tuple (\1,...\.) € {0,1}". In particular
there are 2" et -conjugacy classes.
Proof. (i) According to Proposition I1.7, p(U) = Z§:1 A;jU; is contained in
the cone Wmax(%U’"), and therefore A\; > 0 for j = 1,...,7. This element
leaves the subspace RH; + RT; invariant and acts on it with the spectrum
{£X;2i}. Hence p(H) and p(T) are contained in ZAj:1(RHj + RTj) and
therefore [H,T] € RU yields that A\; =1 whenever \; # 0.
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(i) Given Y %, A\;U; we set

r

= iAJUjv H' = iAme T = NT;
j=1 j=1

j=1
and note that these three elements define an (H;)-homomorphism
p: (5[(27R)7 %U) - (5[(27R)r7 %Ur) , via p(U) = U/,,O(H) = Hl,,O(T) =T

(iii) It follows from the above arguments that there exist exactly 2" (Hj)-
homomorphisms

p: (sl(2,R), 3U) — (sl(2,R)", 3U")

with p(H) C Z;Zl R*H;. Since the image of H under an (H;)-homomor-
phism is necessarily is contained in E)\jzl(RHj + RTj) it follows that each

(H1)-homomorphism is e*d! conjugate to such an (H;)-homomorphism. On

the other hand it is clear that (Hp)-homomorphisms with different (A1,...,\,)
cannot be edt-conjugate. This implies the claim. ]

Proposition II1.7 shows that we can define an invariant m(p) := [{j: \; =
1}|, called the multiplicity (cf. [29, p.111]) for any

p: (sl(2,R),1U) — (sl(2,R)", 1U").

Let x: (sl(2,R), 3U) — (g, Ho) be an (Hi)-inclusion. Then, according to Propo-
sition II1.4, it factors over an (H;)-inclusion

p: (sI(2,R), 3U) — (sl(2,R)",3U").

Proposition IT1.8(i) below shows that we may define the multiplicity m(x) to be
the multiplicity of p.

Proposition II1.8.  Let (g, Hy) be a simple Lie algebra of hermitean type with
real rank 1.

(i) The multiplicity m(p) of an (Hy)-inclusion p: (sl(2,R),1U) — (g, Ho)
does not depend on the choice of the (Hy)-inclusion of sl(2,R)" in g
over which it factors.

(ii) The Ad(G)-conjugacy classes of (H1)-homomorphisms
(sl(2,R),2U) — (g, Ho)

are classified by their multiplicity m(p) .
(iii) The Ad(G)-conjugacy classes of (Hy)-inclusions

p- (5[(27R)a %U) - (gaHO)
coincide with the Ad(K)-conjugacy classes of (Hy)-inclusions

p: (sI(2,R), 3U) — (g, Ho).
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Proof. (cf. [29, p.111]) (i): Let s and s; be two copies of s[(2,R)"” which are
(Hy)-inclusions over which p factors. Choose maximal abelian subspaces a and
a; of s Np and 51 Np containing p(H). The centralizer gy := ker(ad p(H)) of
p(H) in g is @-invariant and hence a reductive subalgebra. Since a,a; C p N go
and g has real rank r, we see that a and a; are maximal abelian also in pNgg.
Thus we can find k € exp(t N go) such that Ad(k)a = a;. According to Lemma
I11.3,
s=a+Ja+[a,Ja], s =a;+Jas + [a1, Jaq]

and Ad(k) commutes with J. Therefore Ad(k).s = s1. Note that k € expt
now implies that Ad(k):s — s; is an (H;)-isomorphism. Let i be the ideal
complement of the largest ideal of s contained in gy and similarly i; for s;.
Then Ad(k).i=i;. Since the dimension of i is three times the multiplicity of p
calculated using s, the claim follows.
(ii), (iii): We show first that m(p) = m(Ad(g) o p) holds whenever Ad(g) o p
is an (H;)-homomorphism. Let s = s[(2,R)" be such that p factors over the
embedding of s. Assume that Ad(g) o p is an (H;)-homomorphism. Then
p:sl(2,R) — g is an (H;)-homomorphism with respect to U and Ad(g)~*.Hy.
The ideal of s generated by the image of p is moved by Ad(g) into the ideal
generated by the image of Ad(g) o p in Ad(g).s. Hence the dimensions of
these ideals are the same and we see that both homomorphisms have the same
multiplicity.

In view of Lemma I1.12, g € KZg(p(sl(2,R))). Let g = kexp(Y) with
k € K and [Y,imp| = {0}. Then Ad(g) o p = Ad(k) o p and Ad(k).s is a
subalgebra such that Ad(k) o p factors over Ad(k).s. This proves (iii).

It now suffices to show that if m(p) = m(p’), there exists k € K with
Ad(k) o p = p’. Since the maximal abelian subspaces a C p are conjugate
under K, we may w.l.o.g. assume that both p and p’ factor over the inclusion
of s 2 5l(2,R)". Let at C a be a Weyl chamber. Then we may also assume that
p(H),p' (H) € at. Let 71, ..., denote the strictly orthogonal roots and assume
that v1 > 72 > ... > 7, in the ordering corresponding to the Weyl chamber.
Write p(H) = >77_; AjH;. Then Ay > X2 > ... > A, and \; € {0, 1}. Therefore

p(H) = 2521 H;, where k = m(p) is the multiplicity. Since m(p) = m(p’) by
assumption, it follows that p = p’. |

We turn to the classification of the nilpotent orbits lying in an invariant
cone Wi.x. Note first that there exist exactly 2" nilpotent orbits lying in the
cone Wpax(3U7) in the Lie algebra s[(2,R)". If g is simple hermitean, then
it contains exactly 2 conjugacy classes of H -elements. If p:sl(2,R) — g is an
(H1)-homomorphism with respect to some Hy and H|) is another H -element,
then there exists ¢ € G with Ad(g).Hy = H| or Ad(g).Hy = —H|,. Hence it
suffices to consider those (Hp)-homomorphisms which are associated to a fixed
H -element Hj.

Theorem II1.9. Let g be a simple hermitean Lie algebra of real rank r and
Whax @ mazximal invariant cone. Then Wiy contains exactly v + 1 nilpotent
orbits Ogp,...,0,. They satisfy

{0} =0, C0O,C...CO,
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and they are contained in Wiy, -

Proof. We fix an H-element H, contained in Wy, a maximal abelian
subspace a C p together with the associated subalgebra s = s[(2,R)" (cf.
Lemma III.3), and a Weyl chamber a* C a. Suppose that 73 > ... > v, is
the corresponding order on the strictly orthogonal roots corresponding to s.

Let Ox C Wpax be a nilpotent orbit and p: (sl(2,R), 3U) — (g, Ho)
the corresponding (H;)-homomorphism (cf. Theorem I1.10). We may w.l.o.g.
assume that p(H) € a®t. Then p(H) = Z§:1 H; and m(p) = k. In view of
Proposition II1.8, this proves that every nilpotent orbit Ox in Wy can be
obtained by an sly-triple (H,X,Y) as above. Hence there exist at most r + 1
different nilpotent orbits in Wi,.x which are given by X* := Z§:1 X;. Since
XFk=1 € Oy follows from the fact that the nilpotent orbits in s[(2,R) contain
0 in their closure, we see that Oxr-1 C Oxx .

It remains to show that Oxr # Oxwr-1. Suppose that both orbits
coincide. Then it follows from Lemma 1.5 that both are contained in conjugate
sly-triples. Then the associated (H;)-homomorphisms must have the same rank
which is impossible since k # k — 1 (Propositions II1.7, ITL.8). n

Remark III.10. A second way to prove Theorem III.9 is to show that the
dimension of the centralizers of X% =0, X!, ..., X" are mutually different. This
can be done by considering the s-module structure of g (cf. Section IV). We will
come back to this context when we study parabolics associated to the nilpotent
orbits. |

Corollary ITI.11. A simple hermitean Lie algebra g contains exactly 2r + 1
nilpotent orbits of convex type. [ ]

Remark III.12. We have observed in Theorem II.11 that the nilpotent or-
bits contained in Wy, correspond to Kc-orbits in pT under the Sekiguchi

correspondence. These orbits have been classified by Muller, Rubenthaler and
Schiffmann in [22]. |

IV. The fine structure of the Jacobson-Morosow parabolics

In this section we study the special structure of Jacobson-Morosow
parabolics associated to (Hj)-embeddings of s[(2,R) into some simple Lie al-
gebra of hermitean type. So fix an (H;)-embedding : (s[(2,R), U) — (g, Ho)
and write s® for its image in g. Further we write H., X, Yy, U, T, for the
respective images of H, X,Y,U,T under k. For the s[(2,R)-module g defined
by k we have the isotypic decomposition

(IV].) g — Q[O}N _|_ g[l}»ﬁ _|_ g[Q}N

(cf. [29, p.90], Section I). The decomposition (IV.1) shows that the Jacobson-
Morosow parabolic of the Cayley-triple (Hy, X4, Yy) is

(IV.2) U + Vi + 3 (Hy)
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with U, = g(ad H,;2) and V., = g(ad H;1). In particular it follows that U,
and V, commute. The space V,; may or may not be trivial.

Proposition IV.1.  (cf. [29, p.112]) Suppose that V,, # {0}. Then
(i) the representation of 34(H,) on Vi is irreducible and faithful, and
(i) Vi, Vi] =U, . u

The spaces gl and gleverl= = gl0l= 4 gl2l« are subalgebras of hermitean
type with H -elements Hy— %U,i and Hy, respectively (cf. [29, p.92]). Decompose

glevenls — @59@)
j=0
(

with 50”) the largest compactly embedded ideal and s

glevenls in ideals

(k)
J
for 7 > 0. Further we order the ideals in such a way that @j‘;; 55-&) C gl% and

simple non-compact

55.”) Z gl% for j > s, .. Now we set

_ ()
(IV.3) gie=» 8"

Proposition IV.2.  (cf. [29, p.94])
(i) g1,k is of hermitean type with H -element Ho — 31U, .

(ii) Ej';so,ﬁﬂ 55.”) is of hermitean type with H -element 1U, . |

Consider the partial Cayley transform c, = ¢'% 247 It satisfies

(IV4) Ck(Uﬁ) = _iHn, CH<HI€) = _iUH7 CH<TH) = Tfi‘
We set
(IV.5) go.r =8N, (BN Z Sgﬁ))c)-
J=So,xt+1
Proposition IV.3.  (cf. [29, p.96]) 34(Hx) = 91,5 D 92,5 - m

Proposition IV.4.  (cf. [29, Th. II1.2.3, Prop. 111.4.4])
(i) The representation of g2, on U, is faithful and irreducible.
(i) g1,, acts trivially on U, .
(iii) Let G be a connected Lie group with Lie algebra g and Gs . the analytic
subgroup of G corresponding to g, . Then the orbit
Q= Ad(Gg,H).Xﬁ

is an open convexr cone in U, which is selfdual with respect to the eu-
clidean inner product (- |-) on g defined by

(IV.6) (X |Y)=—B(X,0Y).

The group Ady, (Ga,.) coincides with the identity component of the lin-
ear automorphism group G(§2) of the cone Q. ]
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Proposition IV.5.  (cf. [29, pp. 92, 102, 103, 112])
(i) 6c2 =c20.

K

(ii) I, := ic20|y, leaves V, invariant and defines a complex structure on
this space.

(iii) ad(Ho — 3Ux)|v, = 1.

(iv) (v,v") = —4B(v,c2v') = —=X(X, | [v,v]) defines a symplectic form on

Vi .
(v) (sp(Vs), 31.) is a simple Lie algebra of hermitean type.
(vi) The adjoint action of g induces an (Hsz)-homomorphism gy . — sp(Vy).

(vii) The adjoint action of g induces a homomorphism g2, — gl(Vy, 1),
where gl(Vy, I;) denotes the complex linear endomorphisms of V. with
respect to I, . [ ]

We define a skew symmetric bilinear form A, on V, for any u € U, via
1
(IV.7) Ay(v,v') = —Z(u | [v,2']).

and a bilinear map A:V, xV,, — U, by A(v,v') = —[v,v']. Consider the group
(IV.8) Sp(Ve, A) = {g € GI(V,): A(g.v, g.v") = A(v,v")}

and its Lie algebra sp(V,, A). Then it is clear that Sp(V,, A) C Sp(V.), where
V.. carries the symplectic form provided by Proposition IV.5(iv). But more is
true:

Proposition IV.6.  (cf. [29, p.132])
. . . . 1
(i) sp(Vs, A) is of hermitean type with H -element 51, .

(ii) The adjoint action of g induces an (Hz)-homomorphism
g1,k — HP(VK, A)

(iii) The real bilinear forms A,I on V. given by (v,v") — (u | A(v, Iv')) are
symmetric for all u € U, and positive definite for all u € Q. [ ]

For the remainder of this section we assume that g is simple hermitean of
real rank r and the sls-triples are the r ones occurring in the proof of Proposition
ITI.7. More precisely, we fix a Cartan decomposition g = € 4+ p, an H -element
Hj € 3(%), and a maximal abelian subspace a C p and then view a+ Ja+ [a, Ja
as the range of an (H;)-homomorphism sl(2,R)" — g, where J = ad(Hy)|p (cf.
Lemma III.3).

We write ¥ for the set of restricted roots in a*. Then, according to
a theorem of Moore, ¥ is a not necessarily reduced root system of type (C)
(G/K of tube type) or of type (BC,) (cf. [29, p.110]).

Let ~1,...,7, denote the strictly orthogonal roots. Then v; = 2¢; and
) is given by

Y={£2e;,+(e; £ gj):1<i<j<r} type (C)
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n
e Y={tej,+2j,*(e;i £¢;): 1 <i<j<r} type (BC,).
As fundamental systems we choose
YT ={p1, ...} :={e1 —€2,...,6021 —€r,2¢,} type (C,)
and

YT ={p1,...,pr}:={e1 —€2,...,60-1 —€r,&,} type (BC,),
respectively. With respect to the ordering fixed by this choice of a fundamental
system we have y; > ... > 7,.

Let Hi,...,H, € a denote the coroots for the roots ~;, i.e., v;(H;) =
20;;. The elements H; span a. We have seen in the last section that the elements
H* := Hy + ...+ Hj, belong to Cayley triples (H*, X* Y*) associated to the
nilpotent orbits Oyr of convex type, where X* = X; + ...+ X;,. Now we set
s¥ .= RHF4+RX*4+RY* and U* := XF—Y* T* .= X¥4+Y*. The corresponding
(H;)-homomorphisms will be denoted by ki. To simplify the notation we will
gllx instead of gl/l=r and similarly for glv*") and other notations involving x. In

this situation we have a lot of additional information on the Jacobson-Morosow
parabolic of (H*, X* Y*). We begin with a closer look at 34(H¥).

Lemma IV.7. Let u€ X", Then p(H*) € {0,1,2}. More precisely we have
(i) w(H*) =0 if and only if u belongs to the following list:
€ — &j 1 <3<k,
€ — Ej k<i<y,
g +¢; k<i<y,
2¢; k<1,
€; k < i.
Here of course the last line only occurs if ¥ is of type (BC,.).
(i) w(H*) =1 if and only if it belongs to the following list:
gitej 1 <k<j, €i,1 < k.
(iii) pw(H*) =2 if and only if it belongs to the following list:
gi+ej1<g <k, 2e;,1 < k.
Proof. Let 1 <i < j<r. Then we calculate
k k
(51—53‘)(Hk>:z5is—z5js:{(l) fori <k <y
s=1 s=1

otherwise

and

0 fork<i<y
1 fori<k<y
2 fori<j<ek.

(Ei +€J)(Hk) = 2515 +Z5j5 = {

Moreover, for 1 < i < r we have

g (H") = i&'s _ {1 fori <k
s=1

0 otherwise.

Now the claim follows by inspection. ]
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Consider the subsets
Yk,+) = X Nspan{p; € T:£(k - j) <0}
S(kg) = {n € B u(H®) = j}
of ¥. Note that 3, 4y and X, ) are the two root systems that one obtains

from ¥ by first deleting px from the Dynkin diagram of ¥ and then forming
two root systems from the two remaining connected components.

(IV.9)

Proposition IV.8.
(i) X4 is a root system of type (C(._py) if X is of type (C;).
(ii) X(k,4) is a root system of type (BC(,_py) if ¥ is of type (BC,).
(iii) A system of fundamental roots for Y 1y is {frq1,- - fr}-
(iv) Xk,—) is a root system of type (Ax_1).
(v) A system of fundamental roots for X, —y is {pt1,. .. flk—1}-
(B +) +Z)) NZ=0.
) (B ) + Er2)) N2 = 0.
) Let p€X. Then u(H*) =0 if and only if pn € Btke+) UB(k,—) -
Proof. An inspection of the list in Lemma IV.7 yields that

E(k,—) = {:l:(é?i — €j):i <7< /{7}

vi
V11

(viii

which is a root system of type (Ax_1), whereas
Yh4) = 1265, £(es £g5):k<i<j<r} isof type (Ci_p))
or
E(k,—i—) = {:f:Ej, :|:28j, :|:(6i + €j)t kE<i<j< 7‘} is of type (BC(r—k:)>
depending on the type of ¥. The remaining claims now follow easily by inspec-
tion. ]
Remark IV.9. The dual base of {p1,...,u.} is {H',..., H"} if ¥ is of type
(BC,). Itis {H',...,H" ', 1H"} if ¥ is of type (C,). n
Set
A(k,—) = span{Hy,..., Hp} N (H"*  and A(k,4) ‘= span{Hg1,..., H.}.
Proposition IV.10.
(i) a,—) =span{H", ..., H"}*.
(i) aw,4+) =span{H",..., HF}+.
Proof. This follows from
span{H’: k < j <r}* =span{Hy1,..., H,, H*}*
=span{H;:1 < j < k}n(H")*

and ‘
span{H’:1 < j < k}* =span{H;:1 < j < k}*

=span{H:k+1<j<r}.
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Proposition IV.11.  Let p € ¥, +) and m = 3¢(a). Then
(i) wlag,s)={0}.
(i) [g", 67" C age) +m.
Proof. (i) This follows immediately from Proposition IV.8, Remark IV.9 and

Proposition IV.10.
(ii) Let p € ¥4y, Z € gt, Z' € g7# and B the Killing form on g. Then

B(H,(2.2')) = B(H, 2], Z') = u(H')B(Z, Z)
which is zero for 1 < j < k. Thus
[0", 07" Cm+span{H’:1 < j <k} =m+agy).
For p € ¥,y we argue similarly and find
(0", 97" Cm+span{H’: k< j<r}r =m+ag, . u

Lemma IV.12. Let g +) be the subalgebra of g generated by the root spaces
g with p € E(k,i) .
(i) g(,+) is simple and 6 -invariant with restricted root system X +).
(i) gk,4) and gu,—y commute. In particular, being simple, they intersect
in {0}.
(ili) g(r,+) Na = agp,+) is mazimal abelian in g, +) NP.
(iv) We set €, 1) == ENGr ) and n( 4y == nNg 1) = Zuezﬁ,i) g". Then

Bk,t) = Ee, ) + Ak, 1) T 0k, 1)

1s an Iwasawa decomposition.

Proof. (i) It is clear that g +) is f-invariant and hence reductive. Therefore

we can write
S
+
O(k,+) = @ b3
Jj=0

with a compact factor h(jf and non-compact 6-invariant simple factors f)f,
J = 1,...,5. Then the restricted root system for g +) is the disjoint union
of the restricted root systems for the h;, 7 > 1. On the other hand we know
from Proposition IV.10 and Proposition IV.8 that

Ok, 4) S M+ Age,4) + Z g".
HEX (&, +)

Therefore the restricted root system for g +) is Xz +). Thus there can only
be one non-compact simple factor which we denote by h*. But h* contains all
the root spaces gt with u € X +). Thus it coincides with g +). This proves

(i)
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(ii) It follows from Proposition IV.8 that the root spaces of g, +) commute with
the root spaces of g(; ). Thus all of g(; ) commutes with g ).

(iii) Consider the algebra Ei = 0+ g(k,+)- It is f-invariant, hence reductive,
and a is maximal abelian in Hi N p. Since any maximal abelian subspace of
b* Np respects the decomposition into simple factors (plus the center), we see
that at := aNg,+) is maximal abelian in g +) Np. From Proposition IV.11
we know that ai C a( +). Conversely, the real rank of g +) coincides with the
dimension of a( 4+y. Thus ar = ag, ).

(iv) This follows immediately from (i) and (iii). u

Theorem 1IV.13. Z,g(Hk) = ﬁm @ﬁg’k, where ﬁm = O(k,4) D my, ﬁg’k =
RH* @ 9(k,—)> and mp Cm = 33(&).

Proof.  We note first that 34(H") is #-invariant hence reductive in g. Thus

we may write
3(H") = @ b;
j=0

with a compact factor ho and non-compact @-invariant simple factors b;, j =
1,...,s. Then the restricted root system for 3,(HF) is the disjoint union of the
restricted root systems for the h;, 7 > 1. On the other hand we know from
Proposition IV.8 and Lemma IV.12 that

30(H") =RH" & (m + (g(k,1) ® 9(,—)))-

But m leaves each root space g invariant, so g ) and g, —) are ideals in
3q(H¥). Therefore the restricted root system for 34(H¥) is a disjoint union of
Y(k,+) and X _y. Thus there can only be two non-compact simple factors and
these have to be g, 1) and g, —). Now consider bho. It is contained in 34(a)
since a = RH" + A(k,4) + Ok,—)s Ok,+) € Bk,+) and H* is central in 59(Hk).
Therefore the compact part my := € N hy is contained in m. The non-compact
part p N by is contained in a and hence the claim follows. [ ]

We will show below (Remark IV.19) that g, = gi k-

Proposition 1V.14.

(1) (k4 C g1 = 3q(5").

(ii) 3q(H") C glovenls

(iii) H; € g* for 1 <j <k.
Proof. (i) Since X; € g° we have [X;,g] C gtt?. If p € X4y and
1<j<k,then p+2¢; ¢ ¥ so that [X*,g*] =0, ie., g* C 34(X*). Therefore
the algebra g(; 1) which is generated by these root spaces is also contained in
35(X*%). Now Proposition 1.3 implies the claim.
(ii) This follows immediately from the definitions.
(iii) H; belongs to the s*-submodule RH; + RX; + RY; C g which is equivalent
to the adjoint representation of §* and hence in gl . ]
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Proposition IV.15. g 1) is an ideal in glevens
Proof. Note first that

gleverle = 54 (H*) + g(ad H*; 2) + g(ad H"; ~2)

and g(ad H*; —2) = fg(ad H*;2). Since O(k,+) is a f-invariant ideal in 30(HF),
it suffices to show that [gx +), g(ad H*;2)] = {0}. But that follows from Propo-
sition IV.8(vii) since
glad H*;2) = Z gh. n
HEX (k,2)

(k)

Recall from the beginning of this section that sy’ is the maximal com-
pactly embedded ideal in gleve*ls and the 5§ ) for j > 0 are non-compact simple
ideals such that @j":’{ 5§-k) C g% and 5§k) Z gl%% for j > S0,k- In particular
this implies that the 5§k) for 1 < j < s, are non-compact simple ideals of
35(H*) which are contained in 34(s*). Thus Theorem IV.13, Proposition IV.14
and Proposition IV.15 show that s,; =1 and 5&1:) = g(k,+)- We write 5 for
P 50

i>19%

The following proposition extends Proposition IV.2.

Proposition IV.16. ([29, Prop. II1.1.3, 111.1.5]) The following pairs are
reductive Lie algebras of hermitean type:

(i) (30("), Ho — 5U").

(i) (glevels, Ho).

i) @, 30

(iv) (50 D gk, 1) Ho — 3U%). n

Remark IV.17.
(i) Let 5(k) = g% N5*) and note that 5(() ) ¢ 3700 (U). Then 5( ) is com-

pactly embedded in gl®v®"* | hence by Proposition IV. 16(iii) annihilated
by Hy. Thus it is contained in €.

(ii) We have the following decompositions
~(k
(a) g% =5 @ gy @5y
even k =
(b) glevenle = 56 @ gy B

(c) 5F) = gék) @ g2l i
Proposition 1V.18.
(i) 30(U%) =5 @ g1y @ (£NFW).
(i) 3gc(H*) = (05" @ gpr1)) e @ (ENEH)e
(iii) 39(H") =55 @ g1y @ (anc; (€N5H)e).

Proof. (i) In view of Remark IV.17, we only have to show that 34(U*) is

contained in gleve"ls . But this is clear since U* acts as an injective mapping on
1k
gtk

(ii) and (iii) are an immediate consequence of (i) and ¢, (H") = —iU”. n
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Remark IV.19. Now we can identify g1, and g2 5 in terms of our root data.
We have g; = 5ék) ® G(k,4)- It is shown in [29, p.113] that

g2 =RH* @ O(k,—) = 02,k

(cf. Th. IV.13). Combining this with Theorem IV.13 and Proposition IV.18, we

see that sék) =my, and

g1,k =Mk D G(k,4) = 91,k u

Remark IV.20. 34, (XF) = €4 ) =t = E(()k), where the first equality
follows from [29, Th. I11.2.3] and the second is [29, Lemma III.2.2]. n

In our special situation it is also easy to determine whether we can apply
Proposition IV.1.

Proposition IV.21.  (cf. [29, p.112]) Vi, = {0} if and only if k =r and X is
of type (C.). u

Proposition 1V.22. Let q; = I + ug be the Jacobson-Morosow parabolic
for the Cayley triple (H*, X* Y*) and denote the generalized Heisenberg algebra
U + Vi by bi. Then

(i) qx is a maximal parabolic in g.
(i) [Un, Vi + Uk + 801, 4+)] € [Ur, br + g1.%] = {0}.

Proof. (i) g is the only root in T which does not vanish on H*.
(ii) Proposition IV.8, (IV.1), and Proposition IV.15. [

Proposition IV.23.
(1) 3a(X"%) =50, (X"%) + 50, (XF).

(i) 30, (X*) = 50" @ 0s) @5y = 014 @ o

(1) u, (XF) = .
Proof. (i) This claim follows from the fact that 34(X*) is invariant under
ad H* and Proposition 1.3.
(ii) 31, (X*) = g1k ® 2 by Proposition IV.4 and 5(()1:) DOk, +) @E(()k) =g1 Dby
follows from Remark IV.19 and Remark IV.20.
(iii) This follows from Proposition IV.22. u

Lemma IV.24. The map ad(X*): 0Uy, — pok 45 a bijection.

Proof.  The representation theory of s[(2,R) shows that ad(XF¥) is injective
on the eigenspaces of ad H* for negative eigenvalues and in particular on 64, .
Moreover, also by s[(2,R)-representation theory, we have [Uy, 0Ux] C [
and therefore
adX’“(QZ/{k) - 9[2} Nl = Po i

(cf. Proposition IV.23).
Now the assertion follows from dimps j = dimif, which in turn follows
from the fact that the map go — Uy, Y +— [V, X¥] is surjective with kernel £ ;. .m



HILGERT, NEEB, ®RSTED 211

Remark IV.25. The argument in the above proof even yields
ok = Uy, + pao. i + U u

For later use we record some facts concerning the transformation prop-
erties of the various spaces we encountered so far under the Cayley transform.

Proposition IV.26. (cf. [29, p.95))
(i) tc(c2;—1) C g2l
(i) pe(c2;—1) C gl
(iii) ¢ induces a bijection E@(ci, 1) — EC(Ci; 1).
(iv) ¢ induces a bijection pc(ci;1) — pe(ci;l).
)

(v

cx induces a bijection tc(ci; —1) — pe(c; —1). n

Let I,; denote the complex structure in V,; (Proposition IV.5). Then we
write VT for the +i-eigenspaces of the complex linear extension of I, to (V. )c.

Proposition 1V.27.
ORA(CADET Ml S

(i) ex(Vi) =p* ngll.

(i) cr(pf g+ Vi + Ue)c) = e ((pd N3ge(s™) + Vi + Ui)c) = p

(iv) ex(Vy +0V) =tcnght,

(V) Ci ( ggkﬂp ) —Ck((CHk (pﬂg(h_))(@:ﬁcﬂgg}k.

(vi) cx((Brp)c+ (Vy +0VE) + (g2,1)c) = tc.
Proof. (i) [29, p.97], (i) [29, p.101], (iii) [29, p.104], (iv) [29, p.105], (v) [29,
p.96], (vi) [29, p.104]. =

Remark I'V.28. 3¢(s") = EN(Mr D, +) Ok, —)) = t1,x+E2x = [NE, according
to Remark IV.17 and Proposition IV.18. Thus we have

e (tc) = (Er) @ Mk @ gr,—) ORH") .+ V7 + 0V
(cf. [29, p.104]). u
Proposition IV.29.  3,.(X*)N clzl({f(c) = 3. (s") + V.
Proof. According to Remark IV.28 and Proposition IV.23, we have
soc(XP) Mgt (be) = (o) ©mi @ Eem))c + YV =ec(s") + V. m

V. Moment maps

In this section we fix k € {1,...,r}, the corresponding nilpotent orbit
Or = Ad(G).X* and all the other entities depending on k (cf. Section IV). We
will be interested in the following chain of subalgebras:

(V.1) U — b — drred = X gok — qr = bl — g,
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where b := U, + V) and the corresponding chain

! * & * o * P * Py *
(V.1') g L AT AL G 4 U

— — — —

of restriction maps. In order to make this system of moment maps and its
encoded symplectic information available for our study of Oy, we transfer it to
g using the Killing form B and the Cartan involution 6. We start with a few
general observations: For the moment let g be a real semisimple Lie algebra with
Cartan involution # and Killing form B. Then g has an inner product (- | -)
defined by

(X]Y)=-B(X,0Y) VX,Y €g.

Moreover we have two linear isomorphisms ¢:g — g* and ¢:g — g* defined by
(p(X),Y)=B(X,Y) VXY eg

and
(p(X),Y)=(X]Y) VXY eg.

Then ¢ = —1 o6 and 1) is G-equivariant, where G acts on g via the adjoint
and on g* via the coadjoint action. This shows that

(V.2) (Ad(¢9)X |Y) = (X | Ad(0(g)"1)Y) VX, Y €g,9€G.
This equation implies
(V.3) Ad*(g)op=poAd(0(g)").

Now let b C g be a subspace. Then we may view b* as a subspace of g*
extending £ € b* to g by 0 on

bt ={Y cg (VX €h) (X |Y)=0}.

A simple calculation shows b* = ¢(b). Let pp:g — b be the orthogonal
projection w.r.t. (- | ). It is clear that py is selfadjoint w.r.t. the inner product.
Now suppose that N C G is a subgroup such that Ad(N) leaves b invariant.
Then the selfadjointness of p, and equation (V.2) show that the map

po: N xb—b, (n,X)—nX:=ppoAd(dn)(X)

is a group action. Let ®,:g* — b* be the restriction map. We define a group
action

po: N x b* = 0" (n,f)—n.f:= P, 0Ad"(n)(f).

Then one easily checks

(V.4) e(n.X) =n.o(X).
and
(V.5) Dy o =wopyp.

Proposition V.1. Let N C G be a subgroup and a C b subspaces of g.
Suppose that a and b are Ad(N)-invariant. Then

(i) a* and b* are Ad" (0(N)) -invariant.
(ii) ®4:b* — a* is equivariant w.r.t. the actions pe= and pq .
(iii) pa:b — a is equivariant w.r.t. the actions py and pg.

Proof. This follows from the above by a simple calculation. |
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Now we return to our special situation and note that using ¢ we can
replace (V.1") by

(V.1") g % oqr PP dkrea PP¢ b P Uy
The kernels of the respective projections are given by the following proposition.

Proposition V.2.

(i) qz = 0by.

(il) Aprea DAk = 91k -

(i) b N dkred = G2,k -

(iv) (U)"Nby =V
Proof. (i) by is nilpotent, hence B vanishes on by X hr. On the other
hand 0h; and [, are sums of different root spaces a, respectively and therefore
orthogonal w.r.t. B. This shows “ O 7 and equality follows for dimensional
reasons.
(ii) g1, and go are orthogonal which shows “ D ”. Equality follows again by
counting dimensions.
(iii) This follows from parts (i) and (ii).
(iv) Again one uses that different root spaces are (- | -)-orthogonal. n

For the following we recall the parabolic subgroup @ of G associated to
the parabolic subalgebra q;. We write Qr = Hyx Ly, for the Levi decomposition
of Qi and G1 1, Gar, Hi and Qreq for the analytic subgroups corresponding
to g1k, 92k, Dk and greqa respectively. We also recall from [35, Lemma 1.2.4.5]

that Qk = ZK(Q)(Qk)O-

Proposition V.3. Pqx>Pks Py, and puy, are Qy-equivariant w.r.t. the p-
actions.

Proof. The only thing that remains to be checked is that g,.q is invariant
under Q. Since greq is an ideal of q, it is invariant under (Qg)o. Moreover
b is invariant under @)y, so that is suffices to show that gs j is invariant under
Zk(A). We have go, = RH* @ g, ). The element H* is fixed by Zx(A),
and since all the real root spaces are Zy(A)-invariant, the same holds for the
subalgebra g(;, ) which is generated by certain real root spaces (Lemma IV.12).m

Next we consider the G-orbit O} of X* in g. Note first that
Ad(G). X" = pg(G, XF)

since G is f-invariant. In order to take advantage of the above equivariance
properties, we use the Bruhat decomposition of G w.r.t. Q:

(VG) G = U kawer == U HkLkmwQHk,
wWEW(Z) wEW ()

where W(X) 2 Nk (a)/Zk(a) 2 {—1,1}"x S, is the Weyl group of the restricted
root system ¥ and m,, a representative of w in Ng(a). We do not claim that
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(V.6) is a disjoint union. Now @Hj stabilizes X* in the pg -action and the

element w = ((e1,...,&,),0) € {=1,1}" x S, acts on X* = ZJ 1 X, via
k
wXh= )" XU(J) + > 0X,g).
je{1,..., je{1,...,
€o<j>*1 Eom——l

Thus we have
qu(w-Xk> Z XU(J)

The group Gij acts trivially on U, and since the root space g** is one-
dimensional, it is pointwise fixed by Zx(A). So, in view of @ = QreaG1,xZK (A)
and Proposition V.3, we obtain

(V7) qu Ok U qu Qk red, )7

7=0
where X% = 0.

Remark V.4.

(i) Recall the open cone ) from Proposition IV.4 and its automorphism
group G(Q). It follows from [29, Th. II1.2.3] that U} is a euclidean
Jordan algebra with unit X* and Jordan frame (X;....,X}). Here by a
Jordan frame we mean a maximal set of pairwise orthogonal idempotents
whose sum is the unit element.

(ii) Part (i) allows us to apply [7, Prop. IV.3.1] to Q. It says in particular
that
B k
O = G(%)o. X7
§=0

and characterizes G(Q)o.X7 as the set of elements Y € Q) whose rank
(in the Jordan algebra sense) is j. u

Lemma V.5.

() pay (Li X7) = G(Q)o X7,

(i) pg,(exp(X'),X) =X+ [0X",X] € X + 1 forall X, X' €Uy.

(iil) pq,(exp(Y),X 4+ Z) = X + [0Y, X|+ (Z + [0V, [0Y, X]]) € X + Vi, + Iy

forallY € Vi, X €Uy and Z € |,

Proof. (i) Since Lj is f-invariant we see that Ad(0Ly). X’ C U so that
par (Li, X7) = Ad(Ly). X7 which in turn is equal to G(€2)o.X” since the groups
Zk(A) and Gy fix X*.
The assertions (ii) and (iii) follow from the eigenspaces decomposition of ad(H*)
and the fact that different root spaces are (- | -)-orthogonal. m

Similarly we find
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Lemma V.6.
(1) qu,red<Lk7Xj) = G(Qk)OX]
(ii) qu’red(exp(X’),X) =X+[0X,X]eX + g2k forall X, X' elUy.
(111) qu,red<exp(Y)7X + Z) = X + [9Y7 X] + (Z + %qu,red<[9Y7 [0Y7 X]])) e
X+Vi+gor forallY € Vi, X €Uy, and Z € goy, .

Proof.  The only thing we still have to note is that [#X’, X] € goj for all
X, X’ € Uy,. But that follows from [29, (3.41)]. n

The action pg, .., Will be the one we use primarily. Therefore we abbre-
viate it by pr: Qk,red X Gk,red — Gk,red- Similarly, we write py for pq, ., -

Lemma V.7.
)y, (L, X7) = G(Q)o. X7,
(ii) pp, (exp(X’), X) =X forall X, X' € U,.
(iii) pp,(exp(Y), X) =X +[0Y, X] € X +Vy, forallY € V), and X € Uy, . m

=

Lemma V.8.
(1) P (Lis X7) = puiy (G2, X9).
(i) pu, (exp(X’), X) =X for all X, X' € Uy.
(iii) py, (exp(Y), X) =X forall Y €V}, and X € Uj,. n

Proposition V.9.
(1) Pee (Or) = Q-
(ii) The set Oy, = pa:(Qk) N Ok = Ad(0Qpreq)-X* is open and dense in
Ok .
Proof. (i) According to Lemma V.8 and equation (V.6) we have in view of
Remark V.4

k
pu, (Or) = pu, (pg(G, XF)) = U Go . X7 = Q.

3=0

(ii) The formula follows from (i), (V.7), and Lemma V.8. Moreover it is clear
that the set is open in Oy, since {2 is open in U . To show that it is also dense it
suffices to show that the open Bruhat cell B = Q0 H}, satisfies py, (pg([)’, Xk)) =
Q. But that is clear since 0H}, fixes X* and

puk(Pg(Qkan» :Puk(Qkan> :puk(LkvXk) :Qk u

We want to gain more insight into the geometry of Oy via the study of
the fibers and images of the various moment maps. We will essentially restrict
ourselves to the dense open subset of O given in Proposition V.9.

Proposition V.10.
(1) Py (X) N (Ui + Vi) = X + Vi C Dy, (Or) for all X € Q.
(i) P, (Ok) 2 Qg + Vi
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(iii) pp, (Of) = Qi + Vi
Proof. (i) Since py, is Qp-equivariant, the fibers of py, are permuted by
Q. In particular we have

Py, (X) = Lpy (XF)

for X = 1.X*. Thus it suffices to prove the claim for X = X*.

According to Lemma V.7, we have to show that ad(X*):0V, — Vy is
surjective. But that follows immediately from s[(2)-theory applied to the sls-
triple (H*, X% Y%).

(ii) follows directly from (i).
(iii) Again the inclusion “ D7 is clear and for the converse we calculate

Q. + Vi © Py, (O Moy, (%)) =, (O). =

Lemma V.11. Let Y € Vi and Y € Vi be the uniquely determined element
with ad(X*)0Y =Y . Then

pr(O) N (XF+Y +gok) = XP +Y + pr(ad(0Y)2XF) + ad(X*)0U,.

Proof. According to Lemma V.6 and the Bruhat decomposition (V.6) any
element of p(O) N pzjkl (X*) can be written as

XF 40X, X*] +[0Y, X*] + pe([0Y, [0Y", X*]))

with X’ € U, and Y’ € V, since pg is equivariant w.r.t. the p-actions. But
this element gets mapped to X*+[0Y’, X*] under py, , i.e., its hx-component is

XF 40", X*). If [0Y', X*] =Y, then Y/ = —Y . On the other hand [0 X", X*]
does not effect the py, projection and can be varied freely. [ ]
Proposition V.12.  The fibers of the map

P, Pk(Ok) = Py, (Of) = Qe + Vi

are affine spaces of dimension dimUy,. More precisely, for Z € py(Oy,) with
pu, (Z) = X we have

pr(O}) Ny, (Py, (Z)) = Z + ad(X)0Uy.

Proof. As in the proof of Proposition V.10, we may restrict ourselves to the
case X = X*. Then Z € X*+Y + g2 and according to Lemma V.11, the fiber
in question is given by

X* +Y + pr(ad(0Y)2X%) + ad(X 50Uy, = Z + ad(X*)0U,.

The statement about the dimension now follows from Lemma IV.24. n
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Remark V.14. dim O, = 2dimU; + dim V.. In fact, we calculate
dim Oy = dim g — dim 34(X")
= (dim [, + 2dimuy) — (dim 3, (X*) + dimuy,)
= (dim [, — dim 31, (X*)) + dimuy,
= dim Uy, + (dim Vi + dim Uy,)
= 2dim U + dim V.

Now we consider the diagram

Op P py,(Op) =y

lpk Tpuk
pe(OL) % pp, (OF) = Qi+ Vi

It clearly commutes and the dimension of the manifolds involved are
dim O, = 2dim Uy, + dim Vy,
dim Q. = dim U,
dim(Qg + Vi) = dim Uy + dim Vg
dim pg (O},) = 2dim Uy, + dim Vy,

Thus pg: O), — pr(0;,) is a surjective submersion of equidimensional manifolds.
In fact, more is true:

It follows from (V.4) that we can use the map ¢:g — g* to transport
the natural G-invariant Poisson structure on g* over to a Poisson structure on
g which is invariant under the py action. Therefore the symplectic leaves of g
are precisely the G-orbits w.r.t. pg. Similarly we introduce a @y req-invariant
Poisson structure on qj reqa for which the symplectic leaves are the Q) req-orbits
W.I.t. pg, .q- Lhen @ is a Poisson isomorphism and the map py is a Poisson
morphism since @, ., is one. Therefore the G-orbit Oy and the Qf req-orbit
pr(0O},) are symplectic submanifolds of g and g red, respectively. Moreover O}
is a symplectic submanifold of Oy.

Proposition V.15. The map pi: O, — pr(O}) is a symplectic diffeomor-
phism.

Proof. We first recall that pp is Qg rea-equivariant w.r.t. the p-actions.
Moreover Qred acts transitively on both O; and pg(O)) and the symplectic
structures are both Q) reqa-invariant. Finally the map py can be viewed (via ¢)
as the moment map of the Qj red-action on O . Thus [9, p.185] implies that
pr: O, — pr(0;) is a symplectic covering. To conclude the argument we note
that the stabilizers of X* in Qprea w.r.t. the pg and thep,, ., actions agree,
whence the equivariance shows that the fibers are trivial. [ ]

Since the symplectic manifold pg(O;) will play an important role in this
paper we abbreviate it by M, and denote its symplectic form by w*).
Note that Proposition V.15 obviously implies that also

Pai: Or = Pq,(Or)  and  pripq, (Or) — pe(Oy)
are symplectic diffeomorphisms.
The above results on the structure of Oy should be compared to
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Proposition V.16. O, Nbhr = Q.

Proof. Since Oy is of convex type, we know that it is contained in a proper
generating closed convex invariant cone W C g. In particular it contains X% €
Uy and therefore its G(€y)g-orbit Q. We apply [14, Lemma 1.14] to W N by
and find that W Nh, = Q.

Let ¢; := X; = X9 — X971 for j = 1,...,r. Then (ci1,...,cx) is a
Jordan frame in U . Suppose that Y € O N Q. Then there exists an element
g € G(Q)o and j € {0,...,k} such that ¢.Y = X7 (Remark V.4). Since
pu:Ga — G(Q)o is surjective, we conclude that Y € O;, hence that j = k
and therefore that Y € G(Q)0.X* = Q. Thus Ox NU, = Q.. [

Remark V.17. The proof of Proposition V.16 even shows that the nilpotent
orbits of convex type O; with j > k do not intersect by and that for j < k the
intersection consists of the set of all elements of rank j in the closed cone €2 .m

V1. The symplectic geometry of O, and M,

In this section we give details concerning the symplectic structure of Oy,
and its various projections. We start with a few general facts on the symplectic
structure of coadjoint orbits.

Lemma VI.1. Let H be a Lie group and f € h*. Then the following state-
ments are equivalent:

(1) f vanishes on the Lie algebra Yy of the stabilizer Hy of f under the
coadjoint action.

(2) The left invariant 1-form a'f) on H defined by f is the pullback of an
H -invariant 1-form oY) on the coadjoint orbit Oy = Ad*(H).f under
the orbit map s:H — Oy, h— h.f := Ad*(h).f.

Proof. If such an of) exists, then it has to satisfy

(%) o/} (h.(ad”(X).f)) = (f,X) Vhe H,Xeh

since the orbit map s is H -equivariant. So, if (1) holds, the formula
ol (ad*(X).f) = (£, X)

actually defines a linear functional ay on T¢(Of) = ad*(h).f. Since

(VL1) Ad*(h) oad®(X) = ad"(Ad(h).X) o Ad"(h)

and

(f; X) = (Ad"(n).f, Ad(h) X),

we can move this form around with the H-action to define a 1-form o) on O f
via (%). It follows from its invariance that this form is smooth and has a'/) as
its pullback under s. This proves (2).

Conversely, suppose that (2) holds. Then X € h; shows ad*(X).f =0
so that (%) implies (f, X) =0, i.e., (1). u
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Consider the canonical Poisson structure on the dual h* of a Lie algebra
h. Given f € h* the cotangent space TJ}“(P)*) is identified with h and the Poisson
tensor Ay at f is given by

AF(X,Y) = (f,[X.Y]) VYX,Y €.
Therefore the associated bundle map
A:T*(5") 2 b* x h — T(h*) = b* x b~

is given by
N (f, X) = (f, —ad™(X).f)
and we also write Aﬁf (X) = —ad"(X).f for this fact. The characteristic distri-
bution {Cy C T¢(h*): f € h*} is given by
Cr = AL (Tr(h%)) = ad”(h).f.

We denote the annihilator of Cy in T7(h*) = h by AnnCy and note that
AmnCy =ker A} = {X € h:ad*(X).f =0} = by.

Thus we have a canonical isomorphism C} = b /b¢. The map Aﬁf induces an
isomorphism £y: C; — Cy and one has a symplectic form wy on Cy defined by

wr(a,b) = Ag(£;'(a), £;1(b)), Va,be Cy.
This means that the corresponding symplectic form on C; is given by

Of (X +h7,Y +bs) = (f,[X,Y]).

The symplectic forms wy for f in a coadjoint orbit of h form the H -invariant
symplectic form wf) on that orbit which turns it into a symplectic leaf of the
Poisson manifold h*.

Lemma VI.2. Let H be a Lie group and f € b*. Suppose that by C ker f.
Then the form oY) constructed in Lemma V1.1 satisfies

(i) o (ad*(X).f") = (', X) for all f' € Of.
(ii) —2dalf) = W),
Proof. (i) Let f’ = h.f. Then, using (VIL.1), we calculate

o (ad*(X).f) = a} (ad”*(X).(h. 1))
= ol (h7" (ad* (X)(h.f)))
= o (ad"(h71.X).f)
= (f,h LX)
= (. X).
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(ii) We recall the orbit map s: H — Oy from Lemma VI.1. The definitions show
that
(S*w(f))l(X7 Y) = <f= [Xa Y]>

Since s is a submersion, it suffices to show that s*(daf)) = d(s*alf)) = s*w(f).
On the other hand the H -invariance shows that we have to test d(s*a!f)) and
s*wf) only against left invariant vector fields, i.e., elements of b:

2d(s*a D) (X1, X5) = X1.0(X3) — Xo.( X)) — ([ X1, X2))
= —o([X1, Xo]) = —(f, [X1, X2]).

This proves the lemma. ]

Now we consider a semisimple Lie algebra g with Cartan involution 6
and Killing form B. We retain the notation from Section V and transport the
Poisson structure from h* to h via ¢:h — h*. Here T%(h) gets identified with
h* and hence the Poisson tensor on f is given by

Ax(a,b) = (o(X),[¢" " (a), " (B)]), VX €b,a,beb*.
Lemma VI1.3. The bundle map
ART*(h) =2 b x b* — T(h) =2 x b
associated to A is given by
A(X, f) = (X, —ad(X) (0~ ' (f)))), VX €b,feb”
Proof. Let a,b€ h* and X € h. Then we calculate

(A% (a),b) = Ax(a,b)

From Lemma VI.3 it is clear that
(VI.2) Cx = ad(0h)X = ad(X)0h.

We will write Cxp for Cx when we want to emphasize the subalgebra b for
which we consider the Poisson structure. The annihilator AnnCx p of Cxp in

Tx(h) =bh" is

AnnCy = ker A% = {f € h*:0 C ker (ad*(X).f)}.
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Proposition VI.4. Let (p™H)*:p* — (b*)* = b denote the dual map of
o l:p* — b. Then we have (¢~ 1)* o Agﬁo(X) = Afix o .
Proof. For febh* and Y € b we calculate

(fs A% 0 p(Y) = Ax(o(Y), f)
= (p(X), [V, (N)])
= (—ad"(Y)(p(X)), 0~ (
= (A} ) (V)07 ()
= (f. (¢~ )*OA (X)( ))-
]

Proposition VI.4 implies that ¢* induces an isomorphism ¢*: Cyx) —
Cx and ¢ an isomorphism ¢: AnnC,,x) — AnnCx . In fact, we have a commu-
tative diagram with exact lines
0 —  AmnCx — b* & Cx — 0
Ty fe | Te*
0 — AHHC¢(X) — f) Aw_()f) C¢(X) — 0

which then gives a commutative diagram

C% tx Cx

—

Tp , Te*
Coxy 290 Cux)

where  is the map induced by ¢ on C:;(X) =b/AnnC,x) .

Lemma VL5. A% op=ad(X)of=—0oad(0X).
Proof. Ay o@(Y)=—ad(X) (0(¢7"(¢(Y)))) = ad(X)(0(Y)). .

Proposition VI.6.  The symplectic form wx on Cxy is given by
wx (ad(X)0Y,ad(X)0Z) = —B(X,0[Y, Z]), VX,Y,Z €.

Proof.
wy (ad(X)0Y,ad(X)0Z) = Ax ({5 (ad(X)0Y), (" (ad(X)0Z))

x (03 (W 0 o) 03 (M 0 0(2)) )
((Y) 4+ AnnCx, o(Z) + AnnC)
= A(p(X) (Y + ADHCQP(X), Z + AnnCcp(X))

= {p(X), 1Y, Z])
= (X | Y, Z])
= —B(X,0]Y, Z)).

A
Ax
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Lemma VI.7. Suppose that X € g is nilpotent. Then the functional ¢(X) €
g* wvanishes on gox) =1{Y € g:ad"(Y).o(X) = 0}.

Proof. Let Y € g. Then (p(X),Y)=-B(X,0Y). If Y € g,(x), then for all
Z € g we have
0= (ad™(YV).¢(X), Z2) = (p(X),[Z, Y1)
= —B(X,[0Z,0Y]) = —B([X,0Z],0Y).
But the Jacobson-Morosow Theorem says in particular that there exists a 7 € g
with X = [X,0Z]. Therefore (¢(X),Y)=—-B(X,0Y) =0 forall Y € g,(x). ®

Proposition VI.8. Let X € g be nilpotent and wX) the symplectic form
on Ox = Ad(G).X induced by the canonical symplectic form w®X) on the
coadjoint orbit O,xy = ¢(Ox) = Ad"(G).o(X). Then there exists a G-

invariant 1-form o) on Ox defined by
o) (ad(X)0Y) = B(X,0Y)
such that —2daX) = w(X)
Proof. According to Lemma VI.7 and Lemma VI.2 there exists a form a(#(X))
on Oy x) with —2daX) = (X)) " Then (¥ is the pullback of a(¥(X))

under ¢. A simple calculation shows that ¢(ad(X)0Y) = —ad™(Y)p(X) so the
claim follows from

o (= ad (V)p(X)) = —(p(X),Y) = B(X,0Y) .

We note here that we cannot expect to be able to prove an analogue of
Proposition V1.8 for the H -orbits since the centralizer b, x) of p(X) for X € b
in h may not be contained in g,(x) and the conclusion of Lemma VI.7 depended
on the Jacobson-Morosow Theorem which is not available for non-semisimple
algebras.

Now we return to our special situation and apply the preceding results

to O and M.

Lemma VI1.9. ka’g = CXk’thed = bk + P2 k-
Proof. This can be derived from Proposition V.15 by calculating the Qp red-
orbit of X*. We give a more direct argument: sly-theory shows that the image
of ad(X*):g — g is

Cxr g =br+ [Xk, OUL] = b + 2.k C Qi red
(Lemma IV.24). u

It is obvious now that py, (Cx» 4) = bx and py, (Cxr 4) = Us.

Proposition VI.10. The symplectic form w® on My, is exact. More
precisely, there exists a Q rea -invariant 1-form a® on My with —2da®) =
w® and

o) (ad(X™)0Y) = B(X*,0Y)

for all Y € qj red -

Proof. This follows immediately from Proposition V.15, Proposition VI.8 and
Lemma VI.9 by taking pullbacks. ]
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Lemma VI.11.
(1) Lyk(XF):=(Us)c+ V]j is a Lagrangian subspace of (Cxx g, ..)C-
(i) L£_ x(X*) = (pas)c + Vy, is a Lagrangian subspace of (Cxk q, ...)C-

Proof. For dimensional reasons it suffices to show that wyr vanishes on the
two subspaces. Let X € (Uy)c, Y+ € VF and Z € (pax)c. Then we find

)?, ?i, Z € (k. red with
X =ad(XF)0X, Y*=ad(XH)Y*, Z=ad(X*)0Z.

Then X € (), Y* € VE and Z € (Up)c. Now the claim follows since the
below commutator spaces all belong to the orthogonal complement of X* w.r.t.
the Killing form B.

e, 6] € ey [, VETCVE, VE V] = {0},

[Ur, U] = {0}, [Us, V1 ={0}, Ve, Vil = {0} u

Recall that Qg rea acts transitively on Oj and Mj. The stabilizer of
X% in Qk,red 18 K2 . Note that Ky leaves both Lagrangian subspaces from
Lemma VI.11 invariant (the p-action of K5 coincides with the adjoint action).
Since the Poisson structure is @y req-invariant we can define two @}, ycq-invariant
Lagrangian distributions L4 , on M, using the action py.

Using the semidirect product structure of @ = Hix L, we obtain
additional information on the form «(®):

Consider the diffeomorphism

v:Hp X Q. — My, (h, X) — pr(h, X).
The Qf-action on Hy x ) induced from pj; via v is given by the formula
(h,1).(W,X) = (hIW'1I7Y,1.X), Vh,h' € Hg,l € Ly, X € Q.
Pulling back o®) to Hj, x Q; via v yields an invariant form on Hj x Q; and
since the action of Hy on Hj X € simply consists of left translation in the fist
argument, it is given by elements of h; on the Hj-orbits. We identify T™H;
with Hk X b;‘; and T*(Hk X Qk) with (Hk X Qk) X ([);: X L{,j)

Proposition VI.12.
(i) The derivative of v at (1,X) € Hy x Qi is given by

dyax) (X' +Y, X" = X" —ad(X)0(X'+Y') VX', X" €Uy, Y’ € V.
(ii) The pullback form v*a'¥) is given by
") (XY XT) = (o(X), X') + o) (X)
7T Yn,x) 7 = \wa), Ox ;

forall X', X" e Uy, Y' € V.
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Proof. (i) follows immediately from
1
Y(expY'exp X', X) = X —ad(X).0(X' +Y') + §pk(ad(9Y')2.X)

for Y € V., and X', X € U, which in turn is an immediate consequence of
Lemma V.5.
(ii) We calculate

Vg o (X + Y, X") =y ap )y (X + Y7, X")
=7 O‘E?X)(X/ +Y', X")
(a0 (X +Y, X))
X" — ad(X)0(X' +Y"))
X") = B(X,0(X'+Y"))
X") - B(X,0X")
X") + (p(X), X').

= ol
= al¢(
= al¢(
= al¢(
i (
||

We now turn to the study of polarizations. Let h be a Lie algebra and
f € b*. Recall that a subalgebra b(f) of h¢ is called an algebraic polarization if

(cf. [2, p.54])
(a) b(f)+b(f) is a subalgebra of b¢.
(b) b(f) is maximal isotropic in hc w.r.t. the form (X,Y) — (f,[X,Y]).

Y]
Note (cf. [37, p.103]) that the maximality implies that (hs)c C b(f).
Moreover an isotropic subalgebra containing b is maximal iff

dime (b(f)/(bs)c) = dimc (he/b(f))-

Let f € qj ,0q be the linear functional given by

(VL.3) flu+tv+X)=—(X*|u), Yu€ly,ve Vi, X € gas

Lemma VI.13. The subalgebra b(f) := (Ux)c +V, + (b2.x)c is an algebraic
polarization of f € qy eq-

Proof. It is clear that b(f) 4+ b(f) = (Ur)c + Vk)c + (b2.x)c is a subalgebra.
Since [E21,V, ] C V. , it is also clear that b(f) is a subalgebra of (qired)c-
Moreover

6(f),6(f)] C (ban)c + Vi + [Bok,Us]c C f+

because €25 C (qi)s implies f([f2,%,Ux]) = {0}. This means that b(f) is
isotropic. Obviously we have (qxred)s = 2,5 C b(f). So to prove maximality,
we simply have to check that it has the right dimension. Since (qg reda)c/b(f) =
(VF + (g2.2)¢) /(e2x)e and b(F)/(@usea N (a)r)c 2 (Ui)e + Vi » the assertion
follows from dimif, = dim gy — dim €, ; which in turn follows from the fact
that go acts effectively on Uy, with go 5. X* = Uy and tay = (ga)xr (cf.
Proposition 1V.4). u
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Remark VI.14. Suppose that V;, = {0} (Proposition IV.21). Put b :=
(g2,r + 0U,)c. We claim that b is an algebraic polarization in f, considered
as an element of g*.

Since b = b, it is clear that b + b is a subalgebra of gc. Moreover
[b,b] C g5, + 60U, C ker f shows that b is isotropic. Since

dim(bNg) —dimgy = dimgy , — dimé , = dim¥, = dimg — dim(b N g),
it follows that b is maximal isotropic, hence an algebraic polarization in f. =

Theorem VI1.15. If Vi # {0}, then f € g* has no algebraic polarization for
g.
Proof. For the sake of simplicity we omit the indices k£ in the following proof,
f.i. we write go instead of ga ) etc.

Suppose that b C gc¢ is a polarization in f. We recall that

gr =8 +g1 +0V+0U.

In view of the fact that b is maximal isotropic, it follows that (g¢)c C b.

It suffices to show that b = g¢. First we claim that go C b.

As a gi-module the quotient gc/(gf)c is isomorphic to (p2)c® Ve ®Uc .
The subspace (p2)c @ Uc is annihilated by g; and the action of g; on V¢ is
effective because V is an irreducible module for gy + g2 (cf. Proposition IV.1).
Let m:gc — gc/(g¢)c denote the quotient map. Then 7(b) is a g;-submodule
and therefore

m(b) = (m(b) N Ve) + (w(b) N (Uc + (p2)c))-

The natural symplectic form on gc/(gf)c is given by

(Y + (8p)c Z + (a5)c) — F([Y, Z)).

Hence V is orthogonal to py +U . Therefore the fact that b is maximal isotropic
shows that 7(b) N V¢ and m(b) N (Uc + (p2)c) are maximal isotropic.

If 7(b)N (Uc+ (p2)c) C (p2)c, then counting dimensions therefore shows
that 7(b)N (Uc+(p2)c) = (p2)c, hence that po C b which in turn implies go C b.

Suppose that 7(b) N (Uc + (p2)c) € (p2)c. The kernel for the map-
ping addX induced by ad#X on gc/(gf)c is given by (p2)c + Ve and since
ad 0X:U — po is bijective (Lemma IV.24), the same holds for adfX . Thus our
assumption and the invariance of 7(b) under adfX yield w(b) N (p2)c # {0},
e, b0 (pa)e # {0).

Since go = RH @ g/, where g} is a simple real Lie algebra (Lemma
IV.12, Theorem IV.13]), the €;-fixed elements in (p3)c are CH and the effective
submodule is (p5)c, where p} := g Npa. Now we use the €s-invariance of b to
see that

b (p2)c = (6NCH) @ (bN (p3)c).
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Hence one of the two summands must be non-zero. If the first one is non-zero,
then H € b and we can decompose b into ad H eigenspaces

b = 0Uc + Ve + (g1)c + (b N (g2)c) + (6N Ve) + (b NUg).

If go € b, then bN(p2)c = CH and consequently bNUc has codimension 1 since
b is maximal isotropic. Then we apply the injectivity of ad 6 X:U — p, a second
time to conclude that dimi/ = dimpy < 2. Now p, is at most one-dimensional,
so that p,, = {0} and therefore go = RH C b. This proves that go C b if H € b.

Next we assume that b N (p2)c = bN (p5)c # {0}. The element X is
orthogonal to b with respect to the form (Y, Z) — f([Y, Z]) since f([X,Z]) =
B(0X,[X,Z]) = B([0X,X],Z) = —B(H,Z) and therefore X € b because b is
maximal isotropic. Thus [X,0X] = H € b, a contradiction.

Taking all these cases together, we have proved that go C b. Hence

b=0Uc+0Vc+ (g1)c + (g2)c + (6N V).

Next we use the fact that b+ b is a subalgebra invariant under complex

conjugation, so that it can be written as hc for h := (b 4+ b) N g. Then the
subalgebra h C g satisfies

U460V +g1+gCHCOU+0V+gr+go+V
and therefore
(VI.4) h=0U~+6V+g1+g2+ (VNh).

In view of Proposition IV.1, the (g1 + g2)-module V is simple, hence hNY =V
holds because it is non-zero. Finally [V,V] = U (Proposition IV.1) contradicts
(VL4). n

So far we have seen that f has no algebraic polarization for g if Vi # {0}
and that b = (g2 + 60U )¢ is a polarization if this is not the case. In [14] we will
construct representations by applying the orbit method to the polarization in
Lemma VI.13. The representations associated to the polarization in Remark
VI.14 have been studied in [31] and also in [30].

The notion of algebraic polarization is closely related to the notion of
strongly integrable complex polarizations (in the terminology of [37, p.92]) which
is defined in terms of Lagrangian distributions.

Lemma VI.16. The Lagrangian distributions L4 on My are involutive.

Proof.  Consider the derivative 9: qj req — Cxr of the orbit map

sk, red

Qk,red - Mk? q = qu:,red (q7 Xk)

at the identity. According to [8, p.235|, it suffices to show that the preim-
ages of L4 1(X*) in gk rea under the complex linear extension dc: (qx red)c —
(Cxk qp.eq)c 18 @ subalgebra of (qk,rea)c. But from Lemma V.6 we see that

5(X)=—ad(X*) o0 VX € g red-
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Moreover Lemma IV.24 together with [29, I11(3.27)] shows that
O(go,) = U,  OUL) =P, dc(Vi) =V
Since 05 ' (0) = (E2,1)c we find
Oc (Lo (XF) =V + (g2.0)c

and
5c (Lo k(X)) = Un)e + Vi + (B2)c
which proves the claim in view of Proposition IV.5(vii). u
Consider
Dy = Ei,k N E N T(M}Q
and

Ex =L+ Lir) NT(My).

Since Dy x(q.X*) = ¢.D+ 1 (X%), we see that D4 j, are distributions and hence
the distributions L4  are complex polarizations in the sense of Woodhouse (cf.
[37, p.92] and note that the definition of a polarization in [8] is weaker). Similarly
we see that &4 j are distributions. We recall that the polarization L4 j is called
strongly integrable if €4 j is involutive.

Proposition VI.17.

(1) Ly is strongly integrable iff Vi, = {0}.

(ii) L_  is strongly integrable.
Proof. = We use the same reasoning as in the proof of Lemma VI.16 but for
&4 1 instead of L4 ;. In fact, we see that

S EL k(X)) = Ve + g2 and 5 (E_ k(XF)) = by + €2 s
Since Vi + @21 is a Lie algebra iff Vi, = {0} whereas by + €5, always is a Lie
algebra, the claim follows. [ ]

Recall that integrable real distributions of a real manifold are the same
as real foliations.

Proposition VI.18.

(i) The leaves of the foliation E_ j, are precisely the fibers of py,: My — Q.

(ii) The leaves of the foliation D_ j are precisely the fibers of py,: My —

O+ Ve
Proof. (i) Let F = p&kl (X*)NMy,. Then Hy, acts transitively on E (Lemma
V.6) and for any q € exp(Uy) exp(Vy) we have
Tq_Xk (E') = q.TXk (E) = q.(pg,k + Vk) = q.g_’k(Xk) = 5_,k(q.Xk).

This shows that E is an integral manifold for £_ ;. Since G permutes the
fibers and £_ ) is Go ) invariant by definition, this proves the claim.
(ii) According to Proposition V.12, the fiber through Z € My, is Z 4 ad(X)0U;
with X = py,(Z). In particular the fiber D over X* is X* + py ) and the
tangent space Txx (D) is pajr = D_ ,x(X%). As in the proof of (i), now the
invariance of D_ ;, and the equivariance of py, prove the claim. [ ]

We denote the space of leaves of D_ j, by My /D_ ;, and note that it is
just Qp + V. Similarly the space of leaves of £_ j gets identified with 2.
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Remark VI.19. The polarization £_ j is non-positive in the sense of [37,
p.91]. In fact, the symplectic vector space £_ ,(X*)/D_ 1 (X*) is isomorphic to

V). with the symplectic form wgf,z |V xv, - But Proposition VI.12 shows that
x (k) Y V") = ~* (k) Y. Y".0) = Xk Yy y"
YVwxr (YY) =7 ax (Y, Y], 0) = (o(X7), Y, Y"])
= _B(ka Q[Y/7YH]) = _4/1)("€ (Y/7YH>7

where Ax (Y, Y")=-H(X |[Y',Y"]) (cf. [29, p.101] ). Since AxrIy+ iAxr is
positive definite (cf. [loc.cit.]), the claim follows. n

VII. Examples

Let K=R,C,H and E a K-left vector space endowed with a positive
definite hermitean form (- | -), i.e.,

(wlw)=(wl|v), Av|w)=Mv|w) and (v|w)=(v]w)A

and (v |v) >0 for all v # 0. The standard form on K" is

(z|y) = ijyj'
j=1

We write U(E) for the group of K-linear isometries of F.
In addition to (- | -) we consider a non-degenerate skewhermitean form

B(,-),ie.,

B(v,w) = =B(w,v), AB(v,w)=B(A,w) and B(v,\w)= B(v,w)\.

Here the standard forms are
(1) K= Ra E= Ran B(‘,Ev y) - E?:l(xjyj—kn - x]—Fnyj)
(2) K=C,E =CPt, B(z,y) =1 <Z§:1 Ty — Z?i—zﬂ xj§j>
3) K = HE = H*, B(z,y) = Z?:1 x;JY;, where 1,Z,J,K are the

standard basis for H.

We write U(B) for the group of t-linear B-isometries of E. The Lie
algebras corresponding to the groups introduced above will be denoted by u(FE)
and u(B).

Consider the endomorphism ¢p € Endg(E) defined by

(VIL1) B(v,w) = (¢ppv | w)
as well as the transpose operations * and § for (- | -) and B(-,-). Then we have

(VIL.2) uB) ={X e gl(E): X* = —-X}
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and

(VIL3) os=—s, XP=p5'X*0s, k=5

In the standard cases, where elements of Endg(FE) are given by right multipli-
cation of matrices on row vectors we have

(1) pp= (_(LL 10”) and u(B) = sp(n,R).

@ pe=iy ) ) and u®) = uipo)

(3) pp=J1, and u(B) =s0*(2n).

For each X € u(B) we have a symmetric real bilinear form Bx on F
which is given by

(VIL.4) Bx(v,w) = —B(X.v,w).

We set

(VIL5) Wp :={X € u(B): Bx positive semidefinite}
and

(VIL.6) Winax.8 := {X € u(B): (Vv € E)B(v,v) =0 = B(X.v,v) <0}.

Then Wi C Whax s are closed convex cones which are invariant under
conjugation by elements from U(B). We assume that

(VIL7) 0% = —id.

Then ¢p € Wp, so that the cones Wi and Wi« 5 are non-trivial.

Note that (VIL.7) is true for the standard cases. It follows from (VIIL.7)
that § and * commute. In fact, up to a renormalization of B the two conditions
are equivalent. From this it follows that %cpg is an H -element of the quasiher-
mitean reductive algebra u(B). To see this, note that u(B) is invariant under x*
and 0(X) = —X™ defines a Cartan involution on u(B). Therefore the centralizer

(VIL.R) ¢(B) :=u(B) Nu(FE)

of g in u(B) is a maximal compactly embedded subalgebra of u(B). Then the
equality

(VIL9) (adpp)’X = —2(X* + X) VX € u(B)

proves the claim.
The complex structure on

(VIL.10) p(B) = {X e u(B): X* = X}
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is simply given as multiplication by ¢z.
For v € E let P, be the associated rank one operator, which is defined by

P,w = (w|v)v
the map

T: Z Rv; — u(B)
j=1

. Choose an orthonormal basis {v1,...,

v} for E and consider

m 1 m
Zlcvjvj — 3 lej(gongj + ijgpg).
j= j=

Then t:= 7(F) is a Cartan algebra of ¢(B) and u(B). Note that 7 is injective
for K= C and K = H but not for K= R.
Using the embedding Mat(n x n,H) — Mat(2n x 2n,C) given by

B A

A+ TB+— (é _—B)

for A, B € Mat(n x n,C) C Mat(n x n,H) one has the following matrix repre-
sentations for our standard cases:

(1)
sp(n,R) = {(é

=13

— At

B ):A,B,C’EMat(nxn,]R),Bt:B,Ct:C}

i) € sp(n,R): A' = —A B' = B}

0 B .
t= {(—B O) € sp(n,R): B d1agonal}

(2) Here we have complex block matrices according to the partion (p,q) of

u(p,q) = {(; g) 1 A* = —A, D" :—D,}

pP+q.

£

(6 b))

A 0 .
t= {(0 D) cu(p,q): A, D dlagonal}

50" (2n)

(3
f
(s

o= W

t

blm

) A, B € Mat(n x n,C), A" :—A,B*:B}

_AB>650( n):A=A= —AT,B:§:BT}
_OB) cet:B dlagonal}

Choose a maximal B-isotropic subspace F' C E and an orthonormal

basis {v1,...,

(VIL11)

FEBQOBF:

v} of F'. The number r is the real rank of u(B). We have

(Kvy @ Kogv1) @ ... @ (Ku, @ Kpgo,).
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The (Kv; @ Kyppv,) are pairwise orthogonal w.r.t. (- | -) and B. The matrix of

B on (Kv; @ Kpgv;) w.r.t. the basis {v;, —ppv;} is <(1) _(1)> All B-isotropic

vectors are contained in F' @ ¢pgF' since
(VIL.12) Freqd := (F @ ppF)* = (F ® ppF)*5.

We have FE,eq = {0} iff u(F) is of tube type.
In the standard cases we have

(1> 5p(n7R)7 r=n, Freq = {0}
(2) u(p,q), p>4q, r=gq, Ereqa =CP 1.

* n 0} f
R I N T

For the skewhermitean planes K? := (Kv; @ Kpgv;), the real rank of
u(Blkz) is 1 and the corresponding (Hp)-homomorphism «;:s[(2,R) — u(B|k2)
is the natural inclusion. We have in particular

1 0 0 1
HW_(O _1) and X“"_<O 0).

Similarly (VII.11) gives an inclusion u(Bl|g2)" — u(B) which provides in par-
ticular an inclusion of s[(2,R)". This makes it rather transparent how the dif-
ferent sl(2,R)-subalgebras s* look like, namely exactly like they are embedded
into s[(2,R)". Using Proposition II.7, we see that all the X, are contained
in —Wmin(%gog) and in fact generate it as an invariant closed convex cone. We
claim that

(VIL13) Winax,8 = Wiax (398) -

The inclusion C follows from ¢p € Winax 5. For the converselet Y & Wmax(%gog)
and v € E be non-zero B-isotropic. Then there exists a g € U(B) with g.v = vy
and we can extend {g.v,—@pg.v} to a orthogonal basis {wy,ws,...,w,} for
E. Then X, € Endg(F) satisfies Xy, .wo = w1, Xy, -w; = 0 for [ # 2. Thus
Ad(g™). Xy, = 97X, 9 € —Wiin(35) . But now we have

B(Yw,v)=B(gYg ".(9.v),g.v)
= (chng_l.(g.v) ] g.v)
= —(ng_l.(g.v) | (p[gg.’U)
= (9Y g "wr | wo)
= (9Y g X, ws | wo)
=tr(gYg ' X,,) <0
which implies the claim.

Now we turn the structure of the Jacobson-Morosow parabolics. The
(H1)-embedding described above shows that

(VIL.14) 3u) (H") = 3u(8| o) (H") © u(Blgzt-ng5,.,)-
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Note that H* belongs to the sly-triple of maximal rank in w(B|gzx).

In view of the simple structure of H*, as an endomorphism of K?¥ | it is
clear that its commutant consists of those linear mappings leaving the eigenspaces
of H* invariant. Writing accordingly K?* = K*¥ @ K*, we see that

Bu(Bl an) (H") = { (61 _21* ) }

3u(B|K2k)(Hk) = g[<k7 K)

Putting all this together we get

so that we find

(VIL15) sus)(H®) 2 u(Blg,) ® gl(k,K) 2 g1& @ go,1,

where Ej, = K2=%) @ E, 4.
The corresponding parabolic q; is given by

(VIL.16) qr = {X e u(B): X.E(H";1) C E(H";1)},

where one has to read X.v as the matrix product v- X since we are dealing with
a skew-field. To prove (VII.16) one checks that qj as above contains the minimal
parabolic, hence is parabolic, and then that it has the correct Levi algebra.

The corresponding flag manifold M} := SU(E)/Qy is the space of all
k-dimensional isotropic subspaces of . For k£ = 1 we find in particular the
isotropic part of the projective space and for k = r the space of all Lagrangian
subspaces. The minimal non-zero nilpotent orbit of convex type O is the image
of the map

{v e V\{0}: B(v,v) =0} - u(B), v+ X,,

where X, is defined by
(VIL.17) B(Yv,v)=tr(YX,), VY e€ub)

as can be seen from the considerations leading to (VII.13).

Note that the above class of examples covers (ignoring the trivial central
factor in u(p, q)) all simple hermitean Lie algebras up to so(n,2) and the two
exceptional ones. We conclude with some explicit information on those cases (cf.
[29, pp.115-119]).

Example VII.1. For g=s0(2,n) we have r = 2.

For k =1 we have 34(H*) 2 s[(2,R) & RH* @ so(n — 2), V; is a real
module of dimension 2(n—2). More precisely, it is the tensor product RZ@R"~2,
where the factors are endowed with the natural representations.

For k = 2 we have 34(H*) & RH* @ so(1,n — 1), Vo = {0}, and
Us = R™ is n-dimensional Minkowski space. Here the parabolic corresponds to
the identification of g with the Lie algebra g(Us), where we consider Uy as a
Jordan algebra. [ ]
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Example VII.2. For the exceptional hermitean algebra g = e, _14) one has
r=2.

For k =1 we have 34(H"*) 2 RH* @ su(5,1), and V; is a real module
of dimension 20, hence a real form of A 3(CS).

For k = 2 we have 34(H*) @ R & RH” ¢ 50(7,1), dimlUs = 8 and
dim Vs = 16. Here V5 = V5 ®¢ Va5, where R acts on V; = C by multiplication
by i and s0(7,1) acts on Vi = C® according to the spin representation. ]

Example VII.3. For the exceptional hermitean algebra g = ez _25) one has
r=3.

For k = 1 we have 34(H") 2 RH"* & 50(10,2), and that V; is a real
module of dimension 32, hence the spin representation.

For k = 2 we have 34(H") 2 sl(2,R) DRH* ®50(9,1), dimUs = 10 and
dim V, = 32. Here Vo = R?®g R'® where s0(9,1) acts on R!® according to the
spin representation.

For k = 3 we have 34(H") 2 RH"®e(g,_26), dimUs = 27 and V3 = {0}.
This is the Jordan algebra situation, where U3 = Herm(3,0). u
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