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Introduction

The unitarizable highest weight representations of simple Lie groups
have been classified in an algebraic manner more than ten years ago (cf. [34],
[5], [16], [17], [6]). Nevertheless, no uniform analytic way of constructing these
representations is known. Pioneering work in this direction has been done by
Rossi and Vergne [33]. Other approaches are given for example in [7], [4], [18]
and [27].

It is our goal to construct the unitary highest weight representations in
an analytic fashion which is based on the orbit method. The coadjoint orbits
we want to use are the orbits of convex type. These are the coadjoint orbits
which are contained in a proper generating cone invariant under the coadjoint
action. The basic idea is that unitary highest weight modules can be extended
to contraction representations of certain complex semigroups having the original
group as a kind of Shilov boundary. This leads to a one sided boundedness for
the spectrum of the operators given by the derived representation. Following
the idea that the spectrum of the representation has a close connection to the
spectrum of its classical counterpart, i.e., the range of the Hamiltonian functions
on the coadjoint orbit, one is led to the consideration of coadjoint orbits of
convex type. This connection has been studied in detail in [24]. So far we are
only able to carry out the program for nilpotent orbits. In that case it results in
analytic realizations of all highest weight modules whose lowest K -types are one
dimensional.

For the construction of the representations one proceeds in several steps.
The first step is to use the detailed knowledge of the geometry of nilpotent orbits
of convex type to construct a polarization of a suitable open dense subset of the
orbit. This subset is in its own right a coadjoint orbit for a subgroup Qred for
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which the polarization is invariant. The next step is to construct a Hilbert space
and a representation of Qred following the scheme of geometric quantization.
This Hilbert space turns out to be a space of holomorphic functions on a Siegel
domain of the second kind. It is a key observation that this Hilbert space can
be reinterpreted as a space of holomorphic functions on a Siegel domain of the
third kind on which the big group acts. The last step is to identify the resulting
representation of Qred as the restriction of a highest weight representation by
comparing the reproducing kernels coming from the construction with the ones
predicted by the general realization theory given in [25]. The first step is de-
scribed in the present paper. The two others are dealt with in [14] and [15]. The
paper is organized as follows:

I. Cayley homomorphisms of reductive Lie algebras

II. (H1)-homomorphisms and invariant cones

III. The classification of the nilpotent orbits of convex type

IV. The fine structure of the Jacobson-Morosow parabolics

V. Moment maps

VI. The symplectic geometry of Ok and Mk

VII. Examples

We explain the contents in a little more detail. In Section I we estab-
lish some refinements of well known results on sl2 -triples which will be used
to describe the geometry of conjugacy classes of real nilpotent elements. The
main point is to keep track of the Cartan decompositions when studying homo-
morphisms between real reductive Lie algebras. Homomorphisms preserving the
Cartan decomposition are called Cayley homomorphisms. In the case of quasi-
hermitean Lie algebras, which are characterized by the fact that there exists a
complex structure on p induced by a central element of k , one can also consider
(H1)-homomorphisms. These are Cayley homomorphisms preserving also the
complex structure on the p -parts. Quasihermitean Lie algebras are singled out
as the class of algebras which admit generating Ad-invariant convex cones with
compactly embedded edge. The key results of Section II describe how invariant
cones behave under (H1)-homomorphisms. We show that this description can
be used to see that nilpotent elements of convex type correspond to sl2 -triples
which are at the same time (H1)-homomorphisms. The Sekiguchi correspon-
dence between nilpotent orbits and KC -orbits in pC ([32]) then yields a bijection
between nilpotent orbits of convex type and KC -orbits in p+ ∪ p− .

In the third section we use the results of Section II to give a complete
classification of the nilpotent orbits of convex type in a hermitean simple Lie
algebra g . It turns out that there are exactly 2r + 1 such orbits, where r is
the real rank of g and each invariant cone in g contains r + 1 such orbits. The
ordering of the orbits lying in an invariant cone via inclusion of closures is linear.
Using the Sekiguchi correspondence, we see that the nilpotent orbits lying in a
fixed cone correspond to KC -orbits in p+ which have been classified by Muller,
Rubenthaler and Schiffmann in [22].

Section IV gives a detailed account of the structure of the parabolic
subalgebras associated to sl2 -triples which arise from nilpotent orbits of convex
type via the Jacobson-Morosow Theorem. These structural results are mostly
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based on the work of Koranyi and Wolf ([19], [36]). Our presentation follows
Satake’s book [29] from which we extract and reorganize all the material we will
need in this and the papers [14,15].

The structure of the Jacobson-Morosow parabolics then leads to a series
of natural moment maps between various subalgebras. A closer inspection of
these maps restricted to coadjoint orbits shows the existence of an open dense
submanifold M of the nilpotent orbit which is a symplectic homogeneous space
in its own right and is later shown to admit an invariant polarization. We show
in particular that an invariant polarization for the whole group exists only in
very special cases (when the orbit of convex type is maximal and G/K is a tube
domain).

In Section VI we provide explicit information on the symplectic geometry
of the nilpotent orbit and the manifold M . In particular we show that M has
a symplectic potential and determine an invariant complex polarization for M .
The final section contains various examples illustrating the theory.

As a standard reference we use [29]; several of the results there we
reinterpret and strengthen to suit our point of view, in particular with our
application to nilpotent orbits of convex type in mind.

I. Cayley homomorphisms of reductive Lie algebras

Definition I.1. Let (g, θ) and (g̃, θ̃) be two reductive Lie algebras with a fixed
Cartan involutions. A homomorphism κ: g→ g̃ is called a Cayley homomorphism
if κ ◦ θ = θ̃ ◦ κ .

Let g = k + p and g̃ = k̃ + p̃ be the Cartan decompositions associated
to θ and θ̃ . Then κ: g → g̃ is a Cayley homomorphism if and only if one has
κ(k) ⊆ k̃ and κ(p) ⊆ p̃ .

The following lemma which is a generalization of a theorem of Mostow
([21, Th. 6]) shows that the inclusion of a semisimple Lie algebra into a reductive
one can always be made a Cayley inclusion if one chooses the Cartan involution
on the bigger algebra in an appropriate way.

Recall that a subalgebra h of a Lie algebra g is called compactly embedded
if the group of inner automorphisms of g generated by ead h is relatively compact
in Aut(g).

Lemma I.2. Let g̃ be a semisimple Lie algebra and g ⊆ g̃ a reductive subalgebra
with the Cartan decomposition g = k + p such that z(g) is compactly embedded.

Then there exists a Cartan decomposition g̃ = k̃ + p̃ with k ⊆ k̃ and p ⊆ p̃ .

Proof. First we use Mostow’s Theorem ([21, Th. 6]) to see that there exists

a Cartan decomposition g̃ = k̃ + p̃ extending the Cartan decomposition of the
commutator algebra g′ = [g, g] . Let θ̃ denote the corresponding involution.

Set a := z̃
g
([g, g]) . Then a ⊆ g̃ is a θ̃ -invariant, and hence reductive,

subalgebra which intersects g in z(g). The orthogonal (w.r.t. the Killing form)
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projection p: g̃ → [a, a] commutes with θ̃ and its restriction to a is a surjective
homomorphism with kernel z(a). Therefore p

(
z(g)

)
is a compactly embedded

abelian subalgebra of [a, a] . Using [10, Ex. VI.A.8(ii)], we now find a Cartan
decomposition a = ka + pa such that z(g) ⊆ p

(
z(g)

)
+ z(a) ⊆ ka and pa ⊆ [a, a] .

On the other hand we have the Cartan decomposition a = (k̃∩a)+(p̃∩a). Since
Cartan decompositions of a are conjugate under inner automorphisms, there
exists γ ∈ 〈ead a〉 with γ(ka) = k̃∩a and γ(pa) = p̃∩a . In particular this implies

γ
(
z(g)

)
⊆ k̃.

Now γ(k) = γ
(
z(g)

)
+ (k ∩ g′) ⊆ k̃ and γ(p) = p ⊆ p̃ since p ⊆ [g, g]

shows that the Cartan decomposition of γ(g) induced by that of g is compatible

with the Cartan decomposition of g̃ . Hence g̃ = γ−1(̃k) + γ−1(p̃) is a Cartan
decomposition of g̃ satisfying the requirements of the lemma.

In this paper we will primarily be concerned with Cayley inclusions of
sl(2,R) into some reductive Lie algebra g . So let g0 := sl(2,R) and

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
,

T =

(
0 1
1 0

)
, U =

(
0 1
−1 0

)
.

Then

[U, T ] = 2H, [U,H] = −2T, [H,T ] = 2U, [H,X] = 2X, [H,Y ] = −2Y, [X,Y ] = H.

Every triple (H,X, Y ) of elements in a Lie algebra g satisfying the above com-
mutation relations is called an sl2 -triple. We fix the Cartan decomposition
g0 = k0 + p0 with k0 = RU and p0 = RT + RH on g0 . An sl2 -triple on
which the Cartan involution of g agrees with this involution will be called a
Cayley triple.

Given a reductive Lie algebra g and an element X ∈ g we call X
nilpotent if it belongs to the commutator algebra [g, g] and is nilpotent there
(in the usual sense). Then a trivial extension of the Jacobson-Morosow Theorem
(cf. [35, Prop. 1.3.5.3]), says that a non-zero element X in a reductive Lie algebra
g is nilpotent if and only if it is part of an sl2 -triple (H,X, Y ). Using Lemma
I.2 and the fact that the Cartan involutions on g are conjugate, we see that the
adjoint orbit of a nilpotent element in g always contains an element X which
belongs to a Cayley triple (H,X, Y ).

Fix a Cayley triple (H,X, Y ) in g = k+p and choose a maximal abelian
subspace a of p containing H . Then we have a system Σ = Σ(g, a) of restricted
roots and there is a positive system Σ+ such that µ(H) ≥ 0 for all µ ∈ Σ+ .
This means that we declare a Weyl chamber containing H in its closure to be
the positive one. Let gµ be the root spaces and set n =

∑
µ∈Σ+ gµ . Then

[H,X] = 2X implies that

X ∈
∑

µ(H)=2

gµ ⊆ n.
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Recall that the restriction of the adjoint representation to s = RH + RX +
RY is completely reducible and each irreducible summand is determined by a
highest weight vector which is annihilated by X and an eigenvector for H . The
corresponding eigenvalue is a non-negative integer and gives the isomorphy class
of the simple s -module. Accordingly we decompose g = g[0] + g[1] + . . . into
isotypic s -submodules. In particular we see that adH is diagonalizable with
integer eigenvalues. Thus the action of H on g gives a grading of g via

g(adH; k) := {Z ∈ g: [H,Z] = kZ}, k ∈ Z.

We set

q :=
∑

j≥0

g(adH; j), l := g(adH; 0), and u :=
∑

j>0

g(adH; j).

Then we have

q =
∑

µ(H)≥0

gµ, l =
∑

µ(H)=0

gµ, and u =
∑

µ(H)>0

gµ,

and therefore q is a parabolic subalgebra of g with Levi decomposition q =
l + u . We call it the Jacobson-Morosow parabolic associated to the Cayley triple
(H,X, Y ). Note here that a different choice of Σ+ with µ(H) ≥ 0 for µ ∈ Σ+

leads to the same parabolic.

Proposition I.3. Let (H,X, Y ) be a Cayley triple, q = l + u its Jacobson-
Morosow parabolic and s = RH + RX + RY . Then

(i) zg(H) ∩ zg(X) = zg(s) .

(ii) The centralizer zg(X) of X in g is contained in q and given by

zg(X) = zu(X) + zg(s) =
∑

j≥0

zg(adH;j)(X) = zl(X) +
∑

j>0

zg(adH;j)(X).

(iii) zu(X) =
∑
j>0 zg(adH;j)(X) = zg(X) ∩ [g, X].

Proof. (i) Assume that Z ∈ zg(X)∩zg(H). The general representation theory
of sl(2,R) applied to the representation on g then shows that also [Z, Y ] = 0 so
that Z ∈ zg(s).

(ii) We note first that obviously

zu(X) + zg(s) ⊆ zg(X) ∩ q.

For the converse we remark that the subalgebra zg(X) is invariant under adH .
Therefore we assume that Z ∈ zg(X) ∩ g(adH; j). If j = 0, part (i) shows
Z ∈ zg(s). If j > 0 we have Z ∈ u by definition. So it only remains to exclude
the case j < 0. To that effect we only need to remark that zg(X) consists of
highest weight vectors of the representation of sl(2,R) on g with respect to the
Cartan subalgebra RH and the corresponding weights are all non-negative.

(iii) The first equality follows immediately from the proof of (ii) and the second
from (ii) and the theory of sl(2,R)-representations applied to the representation
on g .
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Remark I.4. Suppose that g is semisimple. For Z ∈ zg(X) the linear map
adX adZ is nilpotent since adX is is nilpotent and commutes with adZ . Let
B be the Killing form of g . Then B(X,Z) = tr(adX adZ) = 0 so that X
and zg(X) are orthogonal under the Killing form. The non-degeneracy and the
invariance of the Killing form show that zg(X) = [X, g]⊥ , where ⊥ denotes the
orthogonal complement with respect to the Killing form. Thus we have

X ∈ zu(X) = zg(X) ∩ zg(X)⊥.

Lemma I.5. Let (H,X, Y ) be a Cayley triple in g and q = l+u its Jacobson-
Morosow parabolic. Suppose that (H ′, X, Y ′) is another sl2 -triple in g . Then
there exists a Z ∈ zu(X) such that

eadZ .H = H ′ and eadZ .Y = Y ′.

Proof. [3, Ch. VIII, §11, no. 1, Lemme 4]

Remark I.6. It follows from Lemma I.5 that the Jacobson-Morosow parabolic
of a Cayley triple (H,X, Y ) only depends on the X -part of the triple.

Theorem I.7. Let G be a connected real reductive Lie group and (H,X, Y )
be a Cayley triple in the Lie algebra g of G . We set s = RH + RX + RY and
denote the Levi decomposition of the corresponding Jacobson-Morosow parabolic
subgroup by Q = UL . Then

(i) ZU (X) = exp
(
zu(X)

)
.

(ii) ZG(X) = ZU (X)nZG(s) .

(iii) ZG(X) ⊆ Q .

Proof. (i) The connectedness of ZU (X) follows from the fact that U is a
unipotent algebraic group and that all algebraic subgroups of unipotent groups
are connected. Since u is nilpotent and hence U is exponential, (i) follows.

(ii) It is clear that ZU (X) and ZG(s) are contained in ZG(X). The action of
eadRH on ZU (X) and ZG(s) shows that these two groups have trivial intersec-
tion. Moreover it is clear that ZU (X) is normalized by ZG(s). Thus it only
remains to show that ZG(X) ⊆ ZU (X)ZG(s). To this end we let g ∈ ZG(X).
Then (H,X, Y ) and (Ad(g)H,X,Ad(g)Y ) satisfy the hypotheses of Lemma I.5
so that one can find a Z ∈ zu(X) with eadZH = Ad(g)H and eadZY = Ad(g)Y
which implies exp(−Z)g ∈ ZG(s). This proves the claim.

(iii) Let g ∈ ZG(s). Then g normalizes l = ker(adH) and also

u =
∑

j>0

g(adH; j).

Thus g normalizes q and hence is in Q (cf. [35, Th. I.2.1.1]). Since ZU (X) ⊆
U ⊆ Q holds by definition, the assertion follows from (ii).
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Remark I.8. Theorem I.9 shows in particular that the adjoint orbit OX =
Ad(G).X of X has a bundle structure with compact base space G/Q and fibre
isomorphic to Q/ZG(X). More precisely we have

OX ∼= G/ZG(X) ∼= G×Q
(
Q/ZG(X)

)
,

where G×Q
(
Q/ZG(X)

)
is the fiber product with respect to the right action of Q

on G via translation and the left action of Q on Q/ZG(X) also via translation.

II. (H1)-homomorphisms and invariant cones

We call a reductive Lie algebra g quasihermitean if it contains only com-
pact or hermitean simple ideals. In this section g always denotes a quasiher-
mitean reductive Lie algebra and G a simply connected group with L(G) = g .

Definition II.1. (cf. [29]) Let g be a reductive quasihermitean Lie algebra.
An element H0 ∈ g is called an H -element if zg(H0) = ker adH0 is a maximal
compactly embedded subalgebra of g and Spec(adH0) = {0, i,−i} . The pair
(g, H0) is called a reductive Lie algebra of hermitean type.

Let (g, H0) be a reductive Lie algebra of hermitean type and set k :=
ker adH0 . Then p := [H0, g] is a uniquely determined complement for k and
g = k+p is a Cartan decomposition. Note that z(g) ⊆ k . In the complexification
gC , the endomorphism adH0 is diagonalizable and we obtain

gC = p+ + kC + p−,

where p± is the ±i -eigenspace of adH0 .

Note that 1
2U is an H -element in sl(2,R). In view of this example we

should rather speak of U -elements, but we stick to Satake’s notation since we
will have to refer to [29] on various occasions.

Remark II.2. Let g = z(g)⊕ g0 ⊕ g1 ⊕ . . .⊕ gk , where z(g) is the center, g0

is the maximal compact semisimple ideal, and g1, . . . , gk are the non-compact
simple ideals. Then an element Hz+H0+

∑k
j=1 Hj is an H -element if and only if

H0 = 0 and Hj is an H -element in gj . It follows in particular that the number
of H -elements associated to a fixed Cartan decomposition in the commutator
algebra [g, g] is 2k since every simple hermitean Lie algebra contains exactly
two H -elements associated to a fixed Cartan decomposition.

We recall some basic facts about invariant cones (cf. [11, Ch. III] and
[23]): As was mentioned in the introduction, quasihermitean reductive Lie alge-
bras are precisely the class of reductive Lie algebras that admit invariant cones
having the maximal compact ideal as largest vector subspace. More precisely,
closed convex cones W with non-empty interior, invariant under inner automor-
phisms and such that W ∩ (−W ) is the largest compact ideal in the algebra.
Quasihermitean Lie algebras admit compactly embedded Cartan subalgebras.
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Fix a quasihermitean Lie algebra g and a compactly embedded Cartan subal-
gebra t in g . Then there exists a unique Cartan involution θ on g such that
t is contained in the corresponding maximal compactly embedded subalgebra k
of g . Let ∆ = ∆(gC, tC) be the root system associated to the pair (gC, tC). A
root α is called compact if the corresponding rootspace gαC is contained in kC
and non-compact otherwise. We write ∆k for the set of compact roots and ∆p

for the set of non-compact roots. A positive system ∆+ of the root system ∆ is
called k -adapted, if the set ∆+

p of positive non-compact roots is invariant under
the Weyl group Wk of the pair (k, t). Such positive systems always exist. Given
a k -adapted positive system we define two convex cones in t via

Cmin = cone{i[X,X]:X ∈ gαC, α ∈ ∆+
p },

where cone(E) denotes the smallest closed convex cone containing E , and

Cmax = {X ∈ t: (∀α ∈ ∆+
p ) iα(X) ≥ 0}.

Then Cmin is actually contained in Cmax . Invariant cones in g are uniquely
determined by their intersections with t and each Wk -invariant cone between
Cmin and Cmax occurs as such an intersection. In particular, there is a minimal
invariant cone Wmin with Cmin = Wmin ∩ t and a maximal invariant cone Wmax

with Cmax = Wmax ∩ t .

Proposition II.3. Let h be a quasihermitean reductive Lie algebra.

(i) For each H -element H0 ∈ g there exists one and only one maximal
invariant cone Wmax(H0) containing H0 .

(ii) Each maximal invariant cone contains an H -element.

Proof. (i) Let t be a compactly embedded Cartan algebra containing H0 .
Then we have k = zg(H0) and α(H0) ∈ {i,−i} for all α ∈ ∆p . Therefore we
find a k -adapted positive system with iα(H0) > 0 for all α ∈ ∆+

p . This means
that H0 ∈ intCmax ⊆ intWmax . The uniqueness follows from the fact that the
interiors of two different maximal invariant cones are disjoint.

(ii) It suffices to show that Cmax contains an H -element. But that is an
immediate consequence of the structure of quasihermitean reductive Lie algebras
(cf. [11, III]).

Remark II.4.

(i) The choice of a maximal cone and the choice of an H -element are equiv-
alent once one has fixed a compactly embedded Cartan algebra t . More
precisely, we find that there is a unique H -element in [g, g] in each max-
imal invariant cone contained in t . In particular a reductive quasiher-
mitean Lie algebra containing k simple hermitean ideals contains exactly
2k maximal and minimal cones.

(ii) In the proof of Proposition II.3 we used that for non-compact quasiher-
mitean Lie algebras the choice of a k -adapted positive system also implies
the choice of an H -element H0 ∈ t (modulo the center) by asking that
iα(H0) > 0 for all α ∈ ∆+

p . Conversely ∆+
p for a k -adapted positive

system is fixed by the choice of an H -element in t .
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(iii) The definitions show that Cmin contains the corresponding H -element
whenever it is contained in the commutator algebra of g .

(iv) The choice of a maximal cone determines the projection of H0 onto the
commutator algebra.

We will write Wmax(H0) for the maximal cone containing H0 if we
want to stress the relation with H0 . Similarly we write Wmin(H0) for the
corresponding minimal cone.

Note here that we have compiled various examples in Section VII.

Definition II.5. (cf. [29]) Let (g, H0) and (g̃, H̃0) be two reductive Lie
algebras of hermitean type.

(a) A homomorphism κ: g→ g̃ is called an (H1)-homomorphism if

κ ◦ adH0 = ad H̃0 ◦ κ.

(b) A homomorphism κ: g→ g̃ is called an (H2)-homomorphism if κ(H0) = H̃0 .
It is clear that this implies in particular that κ is an (H1)-homomorphism.

Remark II.6. (a) Note that the (H1)-condition is equivalent to the condition

that the complex linear extension κ: gC → g̃C satisfies κ(kC) ⊆ k̃C and κ(p±) ⊆
p̃± . It is also equivalent to the condition that κ is a Cayley homomorphism with
the additional property that κ |p: p → p̃ is complex linear with respect to the

complex structures J = adH0 |p and J̃ = ad H̃0 |̃p .

(b) Compositions of (H1)-homomorphisms yields (H1)-homomorphisms.

Proposition II.7. Let (g, H0) and (g̃, H̃0) be two reductive Lie algebras of
hermitean type and κ: g → g̃ an (H1)-homomorphism. Then κ

(
Wmin(H0)

)
⊆

Wmin(H̃0) .

Proof. Since H̃0 ∈ z(̃k), we may choose compactly embedded Cartan algebras

t and t̃ of g and g̃ with H0 ∈ t and H̃0 ∈ t̃ such that κ(t) ⊆ t̃ . Let pt: g → t
resp. p̃

t
: g̃→ t̃ denote the orthogonal projection onto t resp. t̃ . Then

Cmin(H0) = cone
(
{pt(i[X,X]):X ∈ p+}

)

and
Cmin(H̃0) = cone

(
{pt(i[X,X]):X ∈ p̃+}

)
.

Therefore κ(t) ⊆ t̃ and κ(p+) ⊆ p̃+ imply κ
(
Cmin(H0)

)
⊆ Cmin(H̃0) and hence

the claim.

Lemma II.8. Let g and g̃ be two reductive quasihermitean Lie algebras of
hermitean type with H -elements H0 and H̃0 and κ: g→ g̃ a Lie algebra homo-
morphism. Write pz , p

g̃n
, and p

g̃′ for the projection onto the center, the sum

g̃n of all non-compact simple ideals, and the commutator algebra of g̃ . Then the
following are equivalent:

(1) κ is an (H1)-homomorphism.
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(2) p
g̃′ ◦ κ is an (H1)-homomorphism with respect to the H -element

p
g̃′(H̃0) ∈ g̃′.

(3) p
g̃n
◦κ is an (H1)-homomorphism with respect to the H -element p

g̃n
(H̃0)

of g̃n .

For (H2)-homomorphisms the conclusions (1)⇒ (2)⇒ (3) hold.

Proof. (1) ⇒ (2) ⇒ (3): Suppose that κ is an (H1)-homomorphism. Then
(2) follows from the fact that the projection p

g̃′ is an (H2)-homomorphism and

(3) from the fact that the projection p
g̃n
|̃
g′ : g̃

′ → g̃n is an (H2)-homomorphism.

The same argument applies if κ is an (H2)-homomorphism.

(3) ⇒ (1): Let g̃c be the sum of all compact simple ideals in g̃ . For X ∈ g we
write κ(X) = Y1 + Y2 with Y1 ∈ g̃c and Y2 ∈ g̃n . Then (3) implies

[H̃0, κ(X)] = [H̃0, Y2] = p
g̃n

(
κ([H0, X])

)
.

On the other hand [H0, X] ⊆ [g, g] is a split element, which shows that

pz

(
κ([H0, X])

)
= 0 and p

g̃c
(κ([H0, X])

)
= 0. Therefore [H̃0, κ(X)] = κ([H0, X]),

i.e., κ is an (H1)-homomorphism.

If W is a closed convex cone in a finite dimensional vector space, we
write H(W ) := W ∩ (−W ) for the edge of the cone W .

Proposition II.9. Let g and g̃ be two reductive quasihermitean Lie algebras
and κ: g→ g̃ a Lie algebra homomorphism. Consider the following conditions:

(1) There exists a maximal invariant cone W̃max ⊆ g̃ such that κ−1(W̃max)
is generating in g and κ

(
z(g)

)
is compactly embedded.

(2) There exist H -elements H0 ∈ g and H̃0 ∈ g̃ such that κ is an (H1)-

homomorphism and W̃max = Wmax(H̃0) .

Then the implication (1) ⇒ (2) holds and (2) ⇒ (1) holds if g is semisimple
without compact factors or if κ is an (H2)-homomorphism.

Proof. Before we prove both implications, we make some reductions. Let
W̃max ⊆ g̃ be the maximal cone associated to an H -element H̃0 ∈ g̃n and set
W := κ−1(W̃max). Let κ̃ := p

g̃n
◦ κ , where p

g̃n
is the projection onto the

semisimple ideal g̃n . Then κ̃−1(W̃max) = κ−1(W̃max) and κ
(
z(g)

)
is compactly

embedded in g if and only if κ̃
(
z(g)

)
is compactly embedded in gn . According

to Lemma II.8, we may therefore w.l.o.g. assume that g̃ = g̃n is semisimple and
a sum of hermitean simple ideals. Note that this implies in particular that the
cones W̃max are pointed.

It is clear that kerκ ⊆ H(W ). Further the fact that W̃max is pointed
yields that kerκ = H(W ). Write g = kerκ ⊕ b , where b is a complementary
ideal. Then W = kerκ+(W ∩b) is generating if and only if W ∩b is generating.
Moreover κ

(
z(b)

)
= κ

(
z(g)

)
and κ is an (H1)-homomorphism if and only this

holds for κ |b . Hence it suffices to assume that κ is injective, i.e., that g is a
subalgebra of g̃ .

(1) ⇒ (2): Let W̃max be as in (1). We assume that g ⊆ g̃ = g̃n . Then (1)

means that the cone W = g ∩ W̃max is a pointed generating invariant cone in
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the reductive Lie algebra g . According to the theory of invariant cones (cf. [23,
III]), there exists an H -element H0 in g such that

(II.1) Wmin(H0) ⊆W ⊆Wmax(H0).

Let k := ker adH0 and θ the associated Cartan involution of g . Since
κ is injective and, according to our assumption, the image of z(g) is compactly

embedded, it follows from Lemma I.2 that there exists a Cartan involution θ̃ of
g̃ extending θ .

We conclude in particular that k ⊆ k̃ . Therefore we find a compactly
embedded Cartan algebra t of k which is contained in a compactly embedded
Cartan algebra t̃ of k̃ . We choose k -adapted positive systems ∆+

p and ∆̃+
p such

that p+ and p̃+ are the sum of the non-compact positive root spaces. Then
(II.1) implies that

C̃max = W̃max ∩ t = W ∩ t ⊆Wmax ∩ t = Cmax.

If α ∈ ∆̃+
p is a positive non-compact root, then α |t is zero or a non-compact root

and iα is non-negative on the generating cone C̃max ∩ t . Since no non-compact
root changes its sign on iCmax , it follows that iα is non-negative on Cmax , i.e.,
that iα|t ∈ ∆+

p ∪ {0} .

On the other hand pC ⊆ p̃C , so that every root α in ∆+
p is the restriction

of a root in ∆̃+
p . According to the above argument, every root β ∈ ∆̃p with

α = β |t must be contained in ∆̃+
p . Hence p+ ⊆ p̃+ and similarly p− ⊆ p̃− ,

whence κ is an (H1)-homomorphism.

(2) ⇒ (1): Suppose that (g, H0)→ (g̃, H̃0) is an (H1)-homomorphism. We may
assume that g ⊆ g̃ = g̃n .

(a): Let us first assume that g is semisimple. Then z(g) = {0} and we

only have to show that W = g ∩ W̃max is generating. Let t ⊆ k be a compactly
embedded Cartan algebra of g . Since t ⊆ k̃ , there exists a compactly embedded
Cartan algebra t̃ of g̃ contained in k̃ and containing t . It is clear that each
element of the root system ∆ of g may be obtained as the restriction of an
element in ∆̃, the root system of g̃ . The (H1)-condition implies that ∆+

p is

obtained by restricting elements of ∆̃+
p . Therefore Cmin ⊆ C̃min ⊆ C̃max yields

Wmin = Ad(G).Cmin ⊆ g ∩ W̃max = W.

Since g is semisimple without compact factors, the cone Wmin is generating, so
that W is also generating.

(b): Now we assume that κ in an (H2)-homomorphism and that g

is not necessarily semisimple. Then κ(H0) = H̃0 ∈ int W̃max because g̃ =

g̃n . Therefore H0 ∈ intκ−1(W̃max) and it follows in particular that the cone

κ−1(W̃max) is generating. That κ
(
z(g)

)
⊆ k̃ follows from the assumption that κ

is an (H1)-homomorphism.
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Theorem II.10. Let g be a quasihermitean semisimple Lie algebra and
Wmax ⊆ g a maximal invariant cone. Then the following are equivalent:

(1) X is a nilpotent element contained in Wmax .

(2) There exists an H -element H0 in g with Wmax = Wmax(H0) and a Cay-
ley triple (H,X, Y ) defining an (H1)-homomorphism

(
sl(2,R), 1

2U
)
→

(g, H0) .

Proof. (1) ⇒ (2): First we use the Jacobson-Morosow Theorem (cf. [35, Prop.
1.3.5.3]) to find an sl2 -triple (H,X, Y ). Let κ: sl(2,R) → g denote the corre-
sponding inclusion homomorphism and s its image. Then κ−1(Wmax) = Wmax∩s
contains the element X . Therefore this is a non-zero closed convex pointed in-
variant cone in s , hence Wmax ∩ s = Wmax( 1

2
U). Now we use Proposition II.9

to see that there exists an H -element H̃0 ∈ g and an H -element 1
2 Ũ ∈ s such

that the inclusion of s is an (H1)-homomorphism, Wmax ∩ s = Wmax( 1
2 Ũ), and

Wmax = Wmax(H̃0). Since all H -elements in Wmax ∩ s are conjugate under in-

ner automorphisms, there exists γ ∈ 〈ead s〉 with γ(Ũ) = U . Then H0 := γ(H̃0)
is H -element in g with the same maximal cone and (s, 1

2U) → (g, H0) is an
(H1)-homomorphism.

(2) ⇒ (1): It is clear that X is nilpotent and X ∈ Wmin ⊆ Wmax follows from
Proposition II.7.

In view of [32, Th. I.9], one has a bijection between the set of all nilpotent
orbits in g and the set of all nilpotent KC -orbits in pC , where KC = 〈ead kC〉 .
More explicitly, this correspondence is obtained by assigning to a nilpotent
element X belonging to the Cayley triple (H,X, Y ) the KC -orbit of the element

X̃ =
1

2
(X + Y − iH) ∈ pC.

We will refer to this bijection as the Sekiguchi correspondence. We identify the
orbits in pC corresponding to the nilpotent orbits in Wmax .

Theorem II.11. For a nilpotent orbit OX ⊆ g we have:

(i) OX is of convex type if and only if O
X̃

is contained in p+ ∪ p− .

(ii) OX is contained in Wmax if and only if O
X̃

is contained in p+ .

Proof. Since the orbit O−X corresponds to the orbit of 1
2(−X − Y − iH) =

−X̃ , it follows that X̃ ∈ p+ is equivalent to (−X )̃ ∈ p− . Therefore it suffices
to prove (ii).

If X is contained in Wmax , then we use Theorem II.10 to obtain a
Cayley-triple defining an (H1)-homomorphism κ:

(
sl(2,R), 1

2
U
)
→ (g, H0). Put

g1 := sl(2,R). Then p+
1 = C(X+Y −iH) and since the complex linear extension

of κ maps p+
1 into p+ (cf. Remark II.6), it follows that X̃ ∈ p+ .

If, conversely, X̃ ∈ p+ , then X̃ ∈ p− , so that the complex linear
extension of κ maps p±1 into p± . Using Remark II.6, we see that κ is an
(H1)-homomorphism (g1,

1
2U)→ (g, H0).

For later applications we provide a proof of Exercice II.8.1 in [29].
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Lemma II.12. Let ρ: (g, H0) → (g̃, H̃0) be an (H1)-homomorphism of semi-
simple Lie algebras of hermitean type. Then ρ is an (H1)-homomorphism with

respect to the H -element Ad(g).H̃0 , g ∈ G̃ if and only if g ∈ Z
G̃

(
ρ(g)

)
K̃ .

Proof. First let g ∈ Z
G̃

(
ρ(g)

)
K̃ and g = xk , where k ∈ K̃ and x ∈

Z
G̃

(
ρ(g)

)
. Let H ′0 := Ad(g).H̃0 = Ad(x).H̃0 . Then the corresponding Cartan

decomposition is given by

k′ := Ad(x).̃k and p′ := Ad(x).p̃.

Since Ad(x) centralizes ρ(g), we have ρ(k) ⊆ k′ and ρ(p) ⊆ p′ . Moreover

ad
(

Ad(g).H̃0

)
◦ ρ = ad

(
Ad(x).H̃0

)
◦ ρ

= Ad(x) ◦ ad H̃0 ◦Ad(x)−1 ◦ ρ
= Ad(x) ◦ ad H̃0 ◦ ρ
= Ad(x) ◦ ρ ◦ adH0

= ρ ◦ adH0,

i.e., ρ is an (H1)-homomorphism with respect to H0 and Ad(g).H̃0 .

If, conversely,

ad
(

Ad(g).H̃0

)
◦ ρ = ρ ◦ adH0,

then we may w.l.o.g. assume that g = expY with Y ∈ p̃ since G̃ = exp(p̃)K̃ .
Then

ad
(
(eadY ).H̃0

)
◦ ρ = ρ ◦ adH0.

This leads to ρ(k) ⊆ eadY .̃k , hence to e− adY .ρ(k) ⊆ k̃ , so that [35,
Lemma 1.1.3.7] implies that [Y, ρ(k)] = {0} . Similarly e− adY .ρ(p) ⊆ p̃ implies
[Y, ρ(p)] = {0} , whence Y ∈ z̃

g

(
ρ(g)

)
. This completes the proof.

III. The classification of nilpotent orbits of convex type

In this part we introduce the subject proper of this paper, the nilpotent
orbits of convex type. We restrict our attention to simple hermitean Lie algebras
so that we can identify g and its dual g∗ via the Killing form B . Note right
away that the more general considerations from Section I come to bear even here
when we have to study various subalgebras.

Definition III.1. Let g be a finite dimensional Lie algebra. A linear func-
tional ω ∈ g∗ is said to be of convex type if the coadjoint orbit Oω = Ad∗(G).ω
is contained in a pointed closed convex cone.
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From now on we fix a simple hermitean Lie algebra g and identify g and
g∗ via the Cartan Killing form of g .

As in Section I we let g0 := sl(2,R) and fix the elements H,X, Y, T, U .
Moreover, we shall freely use the notation from Section I. Recall also that(
sl(2,R), 1

2
U
)

is a simple Lie algebra of hermitean type. In this case we have
p± = C(T ∓ iH) and the invariant cone Wmax = Wmin containing U contains
X in its boundary.

We have seen in Theorem II.10 how one can sharpen the Jacobson-
Morozow theorem for nilpotent elements of convex type. This result shows that
every ray R+X contained in the nilpotent orbit OX in the boundary of the
invariant cone Wmax can be obtained as

lim
t→∞

et adH(R+U) = R+X,

where (H,X, Y ) is an sl2 -triple and U = X−Y . Moreover, this can be arranged
in such a way that U ∈ k , H,T ∈ p holds for a Cartan decomposition of g and
T = −JH = −[H0, H] with respect to the complex structure J = adH0 |p on p .

Definition III.2. Let g and g̃ be Lie algebras. Two Lie algebra homomor-
phisms ρ1, ρ2: g→ g̃ are said to be orthogonal if the images commute with each
other. In this case we can define the homomorphism

ρ1 + ρ2: g→ g̃, X 7→ ρ1(X) + ρ2(X)

which is called the commutative sum of ρ1 and ρ2 .

Note that the commutative sum of two (H1)-homomorphisms between
reductive Lie algebras of hermitean type is again an (H1)-homomorphism with
respect to the same H -elements.

Lemma III.3. Let a ⊆ p be a maximal abelian subspace. Then s := a + Ja +
[a, Ja] ∼= sl(2,R)r , where r = dim a is the real rank of g . Moreover s can be
obtained as the range of an (H1)-homomorphism sl(2,R)r → g .

Proof. Using a system of r strongly orthogonal roots (cf. [29, p.109]), one
obtains r orthogonal (H1)-homomorphisms κ1, . . . , κr: sl(2,R) → g such that
a =

∑r
j=1 Rκj(H). Then

Ja = [H0, a] =
r∑

j=1

Rκj([U,H]) =
r∑

j=1

Rκj(T )

and

[a, Ja] =

r∑

j=1

Rκj(U).

Therefore the assertion follows from the fact that s is the range of the (H1)-
homomorphism κ1 × . . .× κr: sl(2,R)r → g.

The crucial conclusion we draw from the preceding lemma is the follow-
ing.
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Proposition III.4. If κ: sl(2,R)→ g is an (H1)-homomorphism, then there
exists an (H1)-homomorphism

ρ: sl(2,R)→ sl(2,R)r

and an (H1)-homomorphism κ̃: sl(2,R)r → g such that κ = κ̃ ◦ ρ.
Proof. First we extend Rκ(H) to a maximal abelian subspace a of p0 .
Then κ

(
sl(2,R)

)
= Rκ(H) + RJκ(H) + Rκ(U) and 2U = [JH,H] . Let s =

a + Ja + [a, Ja] be as in Lemma III.3. Then s ∼= sl(2,R)r and the inclusion
s → g is an (H1)-homomorphism. It is also clear that the corestriction of κ ,
ρ: sl(2,R)→ s is an (H1)-homomorphism. This proves the assertion.

Corollary III.5. Every nilpotent orbit of convex type meets the range of the
(H1)-homomorphism κ: s→ g .

Proof. In view of the fact that different subalgebras s are conjugate under
Ad(K), this follows by combining Proposition III.4 with Theorem II.10.

Remark III.6. Theorem II.10 and Corollary III.5 have an interesting inter-
pretation in terms of hermitean symmetric spaces. Since (H1)-homomorphisms
g → g̃ correspond to strongly equivariant holomorphic maps of the hermitean
symmetric spaces G/K → G̃/K̃ (cf. [29]), Theorem II.10 shows that nilpotent
orbits of convex type correspond to embeddings of the complex unit disc into
G/K and Corollary III.5 shows that every embedding of a unit disc can be ex-
tended to an embedding of an r -dimensional polydisc.

Proposition III.7. Let Hj , Tj , Uj , j = 1, . . . , r denote the basis elements of
sl(2,R)r corresponding to the basis elements in the simple sl(2,R)-factors and
set U r :=

∑r
j=1 Uj .

(i) Let ρ:
(
sl(2,R), 1

2
U
)
→
(
sl(2,R)r, 1

2
Ur
)

be an (H1)-homomorphism.

Then

ρ(U) =

r∑

j=1

λjUj

with λj ∈ {0, 1} .

(ii) Conversely, for each collection λ1, . . . , λr with λj ∈ {0, 1} there is an
(H1)-homomorphism ρ:

(
sl(2,R), 1

2
U
)
→
(
sl(2,R)r, 1

2
Ur
)

with ρ(U) =∑r
j=1 λjUj .

(iii) Let t :=
∑r
j=1 RUj . Then ead t acts on the set of (H1)-homomorphisms(

sl(2,R), 1
2
U
)
→
(
sl(2,R)r, 1

2
Ur
)

by conjugation and the conjugacy class
of ρ is determined by the r -tuple (λ1, . . . λr) ∈ {0, 1}r . In particular
there are 2r ead t -conjugacy classes.

Proof. (i) According to Proposition II.7, ρ(U) =
∑r
j=1 λjUj is contained in

the cone Wmax( 1
2U

r), and therefore λj ≥ 0 for j = 1, . . . , r . This element
leaves the subspace RHj + RTj invariant and acts on it with the spectrum
{±λj2i} . Hence ρ(H) and ρ(T ) are contained in

∑
λj=1(RHj + RTj) and

therefore [H,T ] ∈ RU yields that λj = 1 whenever λj 6= 0.
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(ii) Given
∑r
j=1 λjUj we set

U ′ =
r∑

j=1

λjUj , H ′ =
r∑

j=1

λjHj , T ′ =
r∑

j=1

λjTj

and note that these three elements define an (H1)-homomorphism

ρ:
(
sl(2,R), 1

2U
)
→
(
sl(2,R)r, 1

2U
r
)
, via ρ(U) = U ′, ρ(H) = H ′, ρ(T ) = T ′.

(iii) It follows from the above arguments that there exist exactly 2r (H1)-
homomorphisms

ρ:
(
sl(2,R), 1

2U
)
→
(
sl(2,R)r, 1

2U
r
)

with ρ(H) ⊆ ∑r
j=1 R+Hj . Since the image of H under an (H1)-homomor-

phism is necessarily is contained in
∑
λj=1(RHj + RTj) it follows that each

(H1)-homomorphism is ead t conjugate to such an (H1)-homomorphism. On
the other hand it is clear that (H1)-homomorphisms with different (λ1, . . . , λr)
cannot be ead t -conjugate. This implies the claim.

Proposition III.7 shows that we can define an invariant m(ρ) := |{j:λj =
1}|, called the multiplicity (cf. [29, p.111]) for any

ρ:
(
sl(2,R), 1

2
U
)
→
(
sl(2,R)r, 1

2
Ur
)
.

Let κ:
(
sl(2,R), 1

2U)→ (g, H0) be an (H1)-inclusion. Then, according to Propo-
sition III.4, it factors over an (H1)-inclusion

ρ:
(
sl(2,R), 1

2U
)
→
(
sl(2,R)r, 1

2U
r
)
.

Proposition III.8(i) below shows that we may define the multiplicity m(κ) to be
the multiplicity of ρ .

Proposition III.8. Let (g, H0) be a simple Lie algebra of hermitean type with
real rank r .

(i) The multiplicity m(ρ) of an (H1)-inclusion ρ: (sl(2,R), 1
2
U) → (g, H0)

does not depend on the choice of the (H1)-inclusion of sl(2,R)r in g
over which it factors.

(ii) The Ad(G)-conjugacy classes of (H1)-homomorphisms

(
sl(2,R), 1

2U
)
→ (g, H0)

are classified by their multiplicity m(ρ) .

(iii) The Ad(G)-conjugacy classes of (H1)-inclusions

ρ:
(
sl(2,R), 1

2U
)
→ (g, H0)

coincide with the Ad(K)-conjugacy classes of (H1)-inclusions

ρ:
(
sl(2,R), 1

2U
)
→ (g, H0).
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Proof. (cf. [29, p.111]) (i): Let s and s1 be two copies of sl(2,R)r which are
(H1)-inclusions over which ρ factors. Choose maximal abelian subspaces a and
a1 of s ∩ p and s1 ∩ p containing ρ(H). The centralizer g0 := ker(ad ρ(H)) of
ρ(H) in g is θ -invariant and hence a reductive subalgebra. Since a, a1 ⊆ p ∩ g0

and g has real rank r , we see that a and a1 are maximal abelian also in p∩ g0 .
Thus we can find k ∈ exp(k ∩ g0) such that Ad(k)a = a1 . According to Lemma
III.3,

s = a + Ja + [a, Ja], s1 = a1 + Ja1 + [a1, Ja1]

and Ad(k) commutes with J . Therefore Ad(k).s = s1 . Note that k ∈ exp k
now implies that Ad(k): s → s1 is an (H1)-isomorphism. Let i be the ideal
complement of the largest ideal of s contained in g0 and similarly i1 for s1 .
Then Ad(k).i = i1 . Since the dimension of i is three times the multiplicity of ρ
calculated using s , the claim follows.

(ii), (iii): We show first that m(ρ) = m(Ad(g) ◦ ρ) holds whenever Ad(g) ◦ ρ
is an (H1)-homomorphism. Let s ∼= sl(2,R)r be such that ρ factors over the
embedding of s . Assume that Ad(g) ◦ ρ is an (H1)-homomorphism. Then
ρ: sl(2,R)→ g is an (H1)-homomorphism with respect to 1

2U and Ad(g)−1.H0 .
The ideal of s generated by the image of ρ is moved by Ad(g) into the ideal
generated by the image of Ad(g) ◦ ρ in Ad(g).s . Hence the dimensions of
these ideals are the same and we see that both homomorphisms have the same
multiplicity.

In view of Lemma II.12, g ∈ KZG
(
ρ(sl(2,R))

)
. Let g = k exp(Y ) with

k ∈ K and [Y, imρ] = {0} . Then Ad(g) ◦ ρ = Ad(k) ◦ ρ and Ad(k).s is a
subalgebra such that Ad(k) ◦ ρ factors over Ad(k).s . This proves (iii).

It now suffices to show that if m(ρ) = m(ρ′), there exists k ∈ K with
Ad(k) ◦ ρ = ρ′ . Since the maximal abelian subspaces a ⊆ p are conjugate
under K , we may w.l.o.g. assume that both ρ and ρ′ factor over the inclusion
of s ∼= sl(2,R)r . Let a+ ⊆ a be a Weyl chamber. Then we may also assume that
ρ(H), ρ′(H) ∈ a+ . Let γ1, . . . , γr denote the strictly orthogonal roots and assume
that γ1 ≥ γ2 ≥ . . . ≥ γr in the ordering corresponding to the Weyl chamber.
Write ρ(H) =

∑r
j=1 λjHj . Then λ1 ≥ λ2 ≥ . . . ≥ λr and λj ∈ {0, 1} . Therefore

ρ(H) =
∑k
j=1 Hj , where k = m(ρ) is the multiplicity. Since m(ρ) = m(ρ′) by

assumption, it follows that ρ = ρ′ .

We turn to the classification of the nilpotent orbits lying in an invariant
cone Wmax . Note first that there exist exactly 2r nilpotent orbits lying in the
cone Wmax( 1

2
Ur) in the Lie algebra sl(2,R)r . If g is simple hermitean, then

it contains exactly 2 conjugacy classes of H -elements. If ρ: sl(2,R) → g is an
(H1)-homomorphism with respect to some H0 and H ′0 is another H -element,
then there exists g ∈ G with Ad(g).H0 = H ′0 or Ad(g).H0 = −H ′0 . Hence it
suffices to consider those (H1)-homomorphisms which are associated to a fixed
H -element H0 .

Theorem III.9. Let g be a simple hermitean Lie algebra of real rank r and
Wmax a maximal invariant cone. Then Wmax contains exactly r + 1 nilpotent
orbits O0, . . . ,Or . They satisfy

{0} = O0 ⊆ O1 ⊆ . . . ⊆ Or
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and they are contained in Wmin .

Proof. We fix an H -element H0 contained in Wmax , a maximal abelian
subspace a ⊆ p together with the associated subalgebra s ∼= sl(2,R)r (cf.
Lemma III.3), and a Weyl chamber a+ ⊆ a . Suppose that γ1 ≥ . . . ≥ γr is
the corresponding order on the strictly orthogonal roots corresponding to s .

Let OX ⊆ Wmax be a nilpotent orbit and ρ:
(
sl(2,R), 1

2U
)
→ (g, H0)

the corresponding (H1)-homomorphism (cf. Theorem II.10). We may w.l.o.g.

assume that ρ(H) ∈ a+ . Then ρ(H) =
∑k
j=1Hj and m(ρ) = k . In view of

Proposition III.8, this proves that every nilpotent orbit OX in Wmax can be
obtained by an sl2 -triple (H,X, Y ) as above. Hence there exist at most r + 1

different nilpotent orbits in Wmax which are given by Xk :=
∑k
j=1 Xj . Since

Xk−1 ∈ OXk follows from the fact that the nilpotent orbits in sl(2,R) contain
0 in their closure, we see that OXk−1 ⊆ OXk .

It remains to show that OXk 6= OXk−1 . Suppose that both orbits
coincide. Then it follows from Lemma I.5 that both are contained in conjugate
sl2 -triples. Then the associated (H1)-homomorphisms must have the same rank
which is impossible since k 6= k − 1 (Propositions III.7, III.8).

Remark III.10. A second way to prove Theorem III.9 is to show that the
dimension of the centralizers of X0 = 0, X1, . . . , Xr are mutually different. This
can be done by considering the s -module structure of g (cf. Section IV). We will
come back to this context when we study parabolics associated to the nilpotent
orbits.

Corollary III.11. A simple hermitean Lie algebra g contains exactly 2r + 1
nilpotent orbits of convex type.

Remark III.12. We have observed in Theorem II.11 that the nilpotent or-
bits contained in Wmax correspond to KC -orbits in p+ under the Sekiguchi
correspondence. These orbits have been classified by Muller, Rubenthaler and
Schiffmann in [22].

IV. The fine structure of the Jacobson-Morosow parabolics

In this section we study the special structure of Jacobson-Morosow
parabolics associated to (H1)-embeddings of sl(2,R) into some simple Lie al-
gebra of hermitean type. So fix an (H1)-embedding κ: (sl(2,R), 1

2U) → (g, H0)
and write sκ for its image in g . Further we write Hκ, Xκ, Yκ, Uκ, Tκ for the
respective images of H,X, Y, U, T under κ . For the sl(2,R)-module g defined
by κ we have the isotypic decomposition

(IV.1) g = g[0]κ + g[1]κ + g[2]κ

(cf. [29, p.90], Section I). The decomposition (IV.1) shows that the Jacobson-
Morosow parabolic of the Cayley-triple (Hκ, Xκ, Yκ) is

(IV.2) Uκ + Vκ + zg(Hκ)
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with Uκ = g(adHκ; 2) and Vκ = g(adHκ; 1). In particular it follows that Uκ
and Vκ commute. The space Vκ may or may not be trivial.

Proposition IV.1. (cf. [29, p.112]) Suppose that Vκ 6= {0} . Then

(i) the representation of zg(Hκ) on Vk is irreducible and faithful, and

(ii) [Vκ,Vκ] = Uκ .

The spaces g[0]κ and g[even]κ = g[0]κ +g[2]κ are subalgebras of hermitean
type with H -elements H0− 1

2
Uκ and H0 , respectively (cf. [29, p.92]). Decompose

g[even]κ in ideals

g[even]κ =

sκ⊕

j=0

s
(κ)
j

with s
(κ)
0 the largest compactly embedded ideal and s

(κ)
j simple non-compact

for j > 0. Further we order the ideals in such a way that
⊕so,κ

j=1 s
(κ)
j ⊆ g[0]κ and

s
(κ)
j 6⊆ g[0]κ for j > so,κ . Now we set

(IV.3) g1,κ =

so,κ∑

j=0

s
(κ)
j .

Proposition IV.2. (cf. [29, p.94])

(i) g1,κ is of hermitean type with H -element H0 − 1
2
Uκ .

(ii)
∑sκ
j=so,κ+1 s

(κ)
j is of hermitean type with H -element 1

2
Uκ .

Consider the partial Cayley transform cκ = ei
π
4 adTκ . It satisfies

(IV.4) ck(Uκ) = −iHκ, cκ(Hκ) = −iUκ, cκ(Tκ) = Tκ.

We set

(IV.5) g2,κ = g ∩ c−1
κ

(
(k ∩

sκ∑

j=so,κ+1

s
(κ)
j )C

)
.

Proposition IV.3. (cf. [29, p.96]) zg(Hκ) = g1,κ ⊕ g2,κ .

Proposition IV.4. (cf. [29, Th. III.2.3, Prop. III.4.4])

(i) The representation of g2,κ on Uκ is faithful and irreducible.

(ii) g1,κ acts trivially on Uκ .

(iii) Let G be a connected Lie group with Lie algebra g and G2,κ the analytic
subgroup of G corresponding to g2,κ . Then the orbit

Ωκ := Ad(G2,κ

)
.Xκ

is an open convex cone in Uκ which is selfdual with respect to the eu-
clidean inner product (· | ·) on g defined by

(IV.6) (X | Y ) = −B(X, θY ).

The group AdUκ(G2,κ) coincides with the identity component of the lin-
ear automorphism group G(Ωκ) of the cone Ωκ .
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Proposition IV.5. (cf. [29, pp. 92, 102, 103, 112])

(i) θc2κ = c−2
κ θ .

(ii) Iκ := ic2κθ|Vκ leaves Vκ invariant and defines a complex structure on
this space.

(iii) ad(H0 − 1
2Uκ)|Vκ = 1

2Iκ .

(iv) (v, v′) 7→ − i
4B(v, c2κv

′) = − 1
4 (Xκ | [v, v′]) defines a symplectic form on

Vκ .

(v)
(
sp(Vκ), 1

2Iκ
)

is a simple Lie algebra of hermitean type.

(vi) The adjoint action of g induces an (H2)-homomorphism g1,κ → sp(Vκ).

(vii) The adjoint action of g induces a homomorphism g2,κ → gl(Vκ, Iκ),
where gl(Vκ, Iκ) denotes the complex linear endomorphisms of Vκ with
respect to Iκ .

We define a skew symmetric bilinear form Au on Vκ for any u ∈ Uκ via

(IV.7) Au(v, v′) = −1

4
(u | [v, v′]).

and a bilinear map A:Vκ×Vκ → Uκ by A(v, v′) = − 1
4 [v, v′] . Consider the group

(IV.8) Sp(Vκ, A) = {g ∈ Gl(Vκ):A(g.v, g.v′) = A(v, v′)}

and its Lie algebra sp(Vκ, A). Then it is clear that Sp(Vκ, A) ⊆ Sp(Vκ), where
Vκ carries the symplectic form provided by Proposition IV.5(iv). But more is
true:

Proposition IV.6. (cf. [29, p.132])

(i) sp(Vκ, A) is of hermitean type with H -element 1
2Iκ .

(ii) The adjoint action of g induces an (H2)-homomorphism

g1,κ → sp(Vκ, A).

(iii) The real bilinear forms AuI on Vκ given by (v, v′) 7→
(
u | A(v, Iv′)

)
are

symmetric for all u ∈ Uκ and positive definite for all u ∈ Ωκ .

For the remainder of this section we assume that g is simple hermitean of
real rank r and the sl2 -triples are the r ones occurring in the proof of Proposition
III.7. More precisely, we fix a Cartan decomposition g = k + p , an H -element
H0 ∈ z(k), and a maximal abelian subspace a ⊆ p and then view a+Ja+ [a, Ja]
as the range of an (H1)-homomorphism sl(2,R)r → g , where J = ad(H0)|p (cf.
Lemma III.3).

We write Σ for the set of restricted roots in a∗ . Then, according to
a theorem of Moore, Σ is a not necessarily reduced root system of type (Cr)
(G/K of tube type) or of type (BCr) (cf. [29, p.110]).

Let γ1, . . . , γr denote the strictly orthogonal roots. Then γj = 2εj and
Σ is given by

Σ = {±2εj ,±(εi ± εj): 1 ≤ i < j ≤ r} type (Cr)
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and
Σ = {±εj ,±2εj ,±(εi ± εj): 1 ≤ i < j ≤ r} type (BCr) .

As fundamental systems we choose

Υ = {µ1, . . . , µr} := {ε1 − ε2, . . . , εr−1 − εr, 2εr} type (Cr)

and
Υ = {µ1, . . . , µr} := {ε1 − ε2, . . . , εr−1 − εr, εr} type (BCr) ,

respectively. With respect to the ordering fixed by this choice of a fundamental
system we have γ1 ≥ . . . ≥ γr.

Let H1, . . . , Hr ∈ a denote the coroots for the roots γj , i.e., γj(Hi) =
2δij . The elements Hj span a . We have seen in the last section that the elements
Hk := H1 + . . . + Hk belong to Cayley triples (Hk, Xk, Y k) associated to the
nilpotent orbits OXk of convex type, where Xk = X1 + . . .+ Xk . Now we set
sk := RHk+RXk+RY k and Uk := Xk−Y k, T k := Xk+Y k . The corresponding
(H1)-homomorphisms will be denoted by κk . To simplify the notation we will
g[j]k instead of g[j]κk and similarly for g[even] and other notations involving κ . In
this situation we have a lot of additional information on the Jacobson-Morosow
parabolic of (Hk, Xk, Y k). We begin with a closer look at zg(Hk).

Lemma IV.7. Let µ ∈ Σ+ . Then µ(Hk) ∈ {0, 1, 2} . More precisely we have

(i) µ(Hk) = 0 if and only if µ belongs to the following list:

εi − εj i < j ≤ k,
εi − εj k < i < j,

εi + εj k < i < j,

2εi k < i,

εi k < i.

Here of course the last line only occurs if Σ is of type (BCr) .

(ii) µ(Hk) = 1 if and only if it belongs to the following list:

εi ± εj , i ≤ k < j, εi, i ≤ k.
(iii) µ(Hk) = 2 if and only if it belongs to the following list:

εi + εj , i < j ≤ k, 2εi, i ≤ k.
Proof. Let 1 ≤ i < j ≤ r . Then we calculate

(εi − εj)(Hk) =

k∑

s=1

δis −
k∑

s=1

δjs =
{

1 for i ≤ k < j
0 otherwise

and

(εi + εj)(H
k) =

k∑

s=1

δis +

k∑

s=1

δjs =

{
0 for k < i < j
1 for i ≤ k < j
2 for i < j ≤ k.

Moreover, for 1 ≤ i ≤ r we have

εi(H
k) =

k∑

s=1

δis =
{

1 for i ≤ k
0 otherwise.

Now the claim follows by inspection.
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Consider the subsets

(IV.9)
Σ(k,±) := Σ ∩ span{µj ∈ Υ:±(k − j) < 0}
Σ(k,j) := {µ ∈ Σ:µ(Hk) = j}

of Σ. Note that Σ(k,+) and Σ(k,−) are the two root systems that one obtains
from Σ by first deleting µk from the Dynkin diagram of Σ and then forming
two root systems from the two remaining connected components.

Proposition IV.8.

(i) Σ(k,+) is a root system of type (C(r−k)) if Σ is of type (Cr) .

(ii) Σ(k,+) is a root system of type (BC(r−k)) if Σ is of type (BCr) .

(iii) A system of fundamental roots for Σ(k,+) is {µk+1, . . . µr} .

(iv) Σ(k,−) is a root system of type (Ak−1) .

(v) A system of fundamental roots for Σ(k,−) is {µ1, . . . µk−1} .

(vi)
(
Σ(k,+) + Σ(k,−)

)
∩ Σ = Ø .

(vii)
(
Σ(k,+) + Σ(k,2)

)
∩ Σ = Ø .

(viii) Let µ ∈ Σ . Then µ(Hk) = 0 if and only if µ ∈ Σ(k,+) ∪ Σ(k,−) .

Proof. An inspection of the list in Lemma IV.7 yields that

Σ(k,−) = {±(εi − εj): i < j ≤ k}
which is a root system of type (Ak−1), whereas

Σ(k,+) = {±2εj ,±(εi ± εj): k < i < j ≤ r} is of type (C(r−k))

or

Σ(k,+) = {±εj ,±2εj ,±(εi ± εj): k < i < j ≤ r} is of type (BC(r−k))

depending on the type of Σ. The remaining claims now follow easily by inspec-
tion.

Remark IV.9. The dual base of {µ1, . . . , µr} is {H1, . . . , Hr} if Σ is of type
(BCr). It is {H1, . . . , Hr−1, 1

2H
r} if Σ is of type (Cr).

Set

a(k,−) := span{H1, . . . , Hk} ∩ (Hk)⊥ and a(k,+) := span{Hk+1, . . . , Hr}.
Proposition IV.10.

(i) a(k,−) = span{Hk, . . . , Hr}⊥ .

(ii) a(k,+) = span{H1, . . . , Hk}⊥ .

Proof. This follows from

span{Hj: k ≤ j ≤ r}⊥ = span{Hk+1, . . . , Hr, H
k}⊥

= span{Hj : 1 ≤ j ≤ k} ∩ (Hk)⊥

and
span{Hj: 1 ≤ j ≤ k}⊥ = span{Hj: 1 ≤ j ≤ k}⊥

= span{Hj: k + 1 ≤ j ≤ r}.
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Proposition IV.11. Let µ ∈ Σ(k,±) and m = zk(a) . Then

(i) µ(a(k,∓)) = {0} .

(ii) [gµ, g−µ] ⊆ a(k,±) + m .

Proof. (i) This follows immediately from Proposition IV.8, Remark IV.9 and
Proposition IV.10.

(ii) Let µ ∈ Σ(k,+) , Z ∈ gµ , Z ′ ∈ g−µ and B the Killing form on g . Then

B(Hj , [Z,Z ′]) = B([Hj, Z], Z ′) = µ(Hj)B(Z,Z ′)

which is zero for 1 ≤ j ≤ k . Thus

[gµ, g−µ] ⊆ m + span{Hj : 1 ≤ j ≤ k}⊥ = m + a(k,+).

For µ ∈ Σ(k,−) we argue similarly and find

[gµ, g−µ] ⊆ m + span{Hj : k ≤ j ≤ r}⊥ = m + a(k,−).

Lemma IV.12. Let g(k,±) be the subalgebra of g generated by the root spaces
gµ with µ ∈ Σ(k,±) .

(i) g(k,±) is simple and θ -invariant with restricted root system Σ(k,±) .

(ii) g(k,+) and g(k,−) commute. In particular, being simple, they intersect
in {0} .

(iii) g(k,±) ∩ a = a(k,±) is maximal abelian in g(k,±) ∩ p .

(iv) We set k(k,±) := k∩g(k,±) and n(k,±) := n∩g(k,±) =
∑

µ∈Σ+
(k,±)

gµ . Then

g(k,±) = k(k,±) + a(k,±) + n(k,±)

is an Iwasawa decomposition.

Proof. (i) It is clear that g(k,±) is θ -invariant and hence reductive. Therefore
we can write

g(k,±) =
s⊕

j=0

h±j

with a compact factor h±0 and non-compact θ -invariant simple factors h±j ,
j = 1, . . . , s . Then the restricted root system for g(k,±) is the disjoint union
of the restricted root systems for the hj , j ≥ 1. On the other hand we know
from Proposition IV.10 and Proposition IV.8 that

g(k,±) ⊆ m + a(k,±) +
∑

µ∈Σ(k,±)

gµ.

Therefore the restricted root system for g(k,±) is Σ(k,±) . Thus there can only
be one non-compact simple factor which we denote by h± . But h± contains all
the root spaces gµ with µ ∈ Σ(k,±) . Thus it coincides with g(k,±) . This proves
(i)
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(ii) It follows from Proposition IV.8 that the root spaces of g(k,+) commute with
the root spaces of g(k,−) . Thus all of g(k,+) commutes with g(k,−) .

(iii) Consider the algebra h̃± := a + g(k,±) . It is θ -invariant, hence reductive,

and a is maximal abelian in h̃± ∩ p . Since any maximal abelian subspace of
h̃± ∩ p respects the decomposition into simple factors (plus the center), we see
that a± := a ∩ g(k,±) is maximal abelian in g(k,±) ∩ p . From Proposition IV.11
we know that a± ⊆ a(k,±) . Conversely, the real rank of g(k,±) coincides with the
dimension of a(k,±) . Thus a± = a(k,±) .

(iv) This follows immediately from (i) and (iii).

Theorem IV.13. zg(Hk) = g̃1,k ⊕ g̃2,k , where g̃1,k := g(k,+) ⊕ mk , g̃2,k :=

RHk ⊕ g(k,−), and mk ⊆ m = zk(a) .

Proof. We note first that zg(Hk) is θ -invariant hence reductive in g . Thus
we may write

zg(Hk) =

s⊕

j=0

hj

with a compact factor h0 and non-compact θ -invariant simple factors hj , j =
1, . . . , s . Then the restricted root system for zg(Hk) is the disjoint union of the
restricted root systems for the hj , j ≥ 1. On the other hand we know from
Proposition IV.8 and Lemma IV.12 that

zg(Hk) = RHk ⊕
(
m + (g(k,+) ⊕ g(k,−))

)
.

But m leaves each root space gµ invariant, so g(k,+) and g(k,−) are ideals in

zg(Hk). Therefore the restricted root system for zg(Hk) is a disjoint union of
Σ(k,+) and Σ(k,−) . Thus there can only be two non-compact simple factors and
these have to be g(k,+) and g(k,−) . Now consider h0 . It is contained in zg(a)

since a = RHk + a(k,+) + a(k,−) , a(k,±) ⊆ g(k,±) and Hk is central in zg(Hk).
Therefore the compact part mk := k ∩ h0 is contained in m . The non-compact
part p ∩ h0 is contained in a and hence the claim follows.

We will show below (Remark IV.19) that g̃i,k = gi,k .

Proposition IV.14.

(i) g(k,+) ⊆ g[0]k = zg(sk) .

(ii) zg(Hk) ⊆ g[even]k

(iii) Hj ∈ g[2]k for 1 ≤ j ≤ k .

Proof. (i) Since Xj ∈ g2εj we have [Xj , g
µ] ⊆ gµ+2εj . If µ ∈ Σ(k,+) and

1 ≤ j ≤ k , then µ+ 2εj 6∈ Σ so that [Xk, gµ] = 0, i.e., gµ ⊆ zg(Xk). Therefore
the algebra g(k,+) which is generated by these root spaces is also contained in

zg(Xk). Now Proposition I.3 implies the claim.

(ii) This follows immediately from the definitions.

(iii) Hj belongs to the sk -submodule RHj +RXj +RYj ⊆ g which is equivalent
to the adjoint representation of sk and hence in g[2]k .
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Proposition IV.15. g(k,+) is an ideal in g[even]k .

Proof. Note first that

g[even]k = zg(Hk) + g(adHk; 2) + g(adHk;−2)

and g(adHk;−2) = θg(adHk; 2). Since g(k,+) is a θ -invariant ideal in zg(Hk),

it suffices to show that [g(k,+), g(adHk; 2)] = {0} . But that follows from Propo-
sition IV.8(vii) since

g(adHk; 2) =
∑

µ∈Σ(k,2)

gµ.

Recall from the beginning of this section that s
(k)
0 is the maximal com-

pactly embedded ideal in g[even]k and the s
(k)
j for j > 0 are non-compact simple

ideals such that
⊕so,k

j=1 s
(k)
j ⊆ g[0]k and s

(k)
j 6⊆ g[0]k for j > so,k . In particular

this implies that the s
(k)
j for 1 ≤ j ≤ so,k are non-compact simple ideals of

zg(Hk) which are contained in zg(sk). Thus Theorem IV.13, Proposition IV.14

and Proposition IV.15 show that so,k = 1 and s
(k)
1 = g(k,+) . We write s̃(k) for⊕

j>1 s
(k)
j .

The following proposition extends Proposition IV.2.

Proposition IV.16. ([29, Prop. III.1.3, III.1.5]) The following pairs are
reductive Lie algebras of hermitean type:

(i) (zg(sk), H0 − 1
2
Uk) .

(ii) (g[even]k , H0) .

(iii) (̃s(k), 1
2U

k) .

(iv) (s
(k)
0 ⊕ g(k,+), H0 − 1

2U
k) .

Remark IV.17.

(i) Let s̃
(k)
0 := g[0]k ∩ s̃(k) and note that s̃

(k)
0 ⊆ z̃

s(k)(U
k). Then s

(k)
0 is com-

pactly embedded in g[even]k , hence by Proposition IV.16(iii) annihilated
by H0 . Thus it is contained in k .

(ii) We have the following decompositions

(a) g[0]k = s
(k)
0 ⊕ g(k,+) ⊕ s̃

(k)
0 .

(b) g[even]k = s
(k)
0 ⊕ g(k,+) ⊕ s̃(k) .

(c) s̃(k) = s̃
(k)
0 ⊕ g[2]k .

Proposition IV.18.

(i) zg(Uk) = s
(k)
0 ⊕ g(k,+) ⊕ (k ∩ s̃(k)) .

(ii) zgC(H
k) =

(
h

(k)
0 ⊕ g(k,+)

)
C ⊕ c

−1
k (k ∩ s̃(k))C .

(iii) zg(Hk) = s
(k)
0 ⊕ g(k,+) ⊕

(
g ∩ c−1

k (k ∩ s̃(k))C
)

.

Proof. (i) In view of Remark IV.17, we only have to show that zg(Uk) is
contained in g[even]k . But this is clear since Uk acts as an injective mapping on
g[1]k .

(ii) and (iii) are an immediate consequence of (i) and ck(Hk) = −iUk .
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Remark IV.19. Now we can identify g̃1,k and g̃2,k in terms of our root data.

We have g1,k = s
(k)
0 ⊕ g(k,+) . It is shown in [29, p.113] that

g2,k = RHk ⊕ g(k,−) = g̃2,k

(cf. Th. IV.13). Combining this with Theorem IV.13 and Proposition IV.18, we

see that s
(k)
0 = mk and

g1,k = mk ⊕ g(k,+) = g̃1,k.

Remark IV.20. zg(k,−)
(Xk) = k(k,−) = k2,k = s̃

(k)
0 , where the first equality

follows from [29, Th. III.2.3] and the second is [29, Lemma III.2.2].

In our special situation it is also easy to determine whether we can apply
Proposition IV.1.

Proposition IV.21. (cf. [29, p.112]) Vk = {0} if and only if k = r and Σ is
of type (Cr) .

Proposition IV.22. Let qk = lk + uk be the Jacobson-Morosow parabolic
for the Cayley triple (Hk, Xk, Y k) and denote the generalized Heisenberg algebra
Uk + Vk by hk . Then

(i) qk is a maximal parabolic in g .

(ii) [Uk,Vk + Uk + g(k,+)] ⊆ [Uk, hk + g1,k] = {0}.
Proof. (i) µk is the only root in Υ which does not vanish on Hk .

(ii) Proposition IV.8, (IV.1), and Proposition IV.15.

Proposition IV.23.

(i) zg(Xk) = zlk(Xk) + zuk(Xk) .

(ii) zlk(Xk) = s
(k)
0 ⊕ g(k,+) ⊕ s̃

(k)
0 = g1,k ⊕ k2,k .

(iii) zuk(Xk) = uk .

Proof. (i) This claim follows from the fact that zg(Xk) is invariant under
adHk and Proposition I.3.

(ii) zlk(Xk) = g1,k⊕ k2,k by Proposition IV.4 and s
(k)
0 ⊕g(k,+)⊕ s̃

(k)
0 = g1,k⊕ k2,k

follows from Remark IV.19 and Remark IV.20.

(iii) This follows from Proposition IV.22.

Lemma IV.24. The map ad(Xk): θUk → p2,k is a bijection.

Proof. The representation theory of sl(2,R) shows that ad(Xk) is injective
on the eigenspaces of adHk for negative eigenvalues and in particular on θUk .

Moreover, also by sl(2,R)-representation theory, we have [Uk, θUk] ⊆ lk
and therefore

adXk(θUk) ⊆ g[2] ∩ lk = p2,k

(cf. Proposition IV.23).

Now the assertion follows from dim p2,k = dimUk which in turn follows
from the fact that the map g2 → Uk , Y 7→ [Y,Xk] is surjective with kernel k2,k .
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Remark IV.25. The argument in the above proof even yields

g[2]k = θUk + p2,k + Uk.

For later use we record some facts concerning the transformation prop-
erties of the various spaces we encountered so far under the Cayley transform.

Proposition IV.26. (cf. [29, p.95])

(i) kC(c2k;−1) ⊆ g
[2]k
C .

(ii) pC(c2k;−1) ⊆ g
[2]k
C .

(iii) ck induces a bijection kC(c2k; 1)→ kC(c2k; 1) .

(iv) ck induces a bijection pC(c2k; 1)→ pC(c2k; 1) .

(v) ck induces a bijection kC(c2k;−1)→ pC(c2k;−1) .

Let Iκ denote the complex structure in Vκ (Proposition IV.5). Then we
write V±κ for the ±i -eigenspaces of the complex linear extension of Iκ to (Vκ)C .

Proposition IV.27.

(i) ck
(
(Uk)C

)
= p+ ∩ g

[2]k
C .

(ii) ck(V+
k ) = p+ ∩ g

[1]k
C .

(iii) ck
(
p+

1,k + V+
k + (Uk)C

)
= ck

(
(p+
C ∩ zgC(s

k)) + V+
k + (Uk)C

)
= p+ .

(iv) ck(V−k + θV+
k ) = kC ∩ g

[1]k
C .

(v) ck
(
(g2,k ∩ p)C

)
= ck(CHk + (p ∩ g(k,−))C) = kC ∩ g

[2]k
C .

(vi) ck
(
(k1,k)C + (V−k + θV+

k ) + (g2,k)C
)

= kC .

Proof. (i) [29, p.97], (ii) [29, p.101], (iii) [29, p.104], (iv) [29, p.105], (v) [29,
p.96], (vi) [29, p.104].

Remark IV.28. zk(s
k) = k∩(mk⊕g(k,+)⊕k(k,−)) = k1,k+k2,k = l∩k , according

to Remark IV.17 and Proposition IV.18. Thus we have

c−1
k (kC) =

(
k(k,+) ⊕ mk ⊕ g(k,−) ⊕ RHk

)
C + V−k + θV+

k

(cf. [29, p.104]).

Proposition IV.29. zgC(X
k) ∩ c−1

k (kC) = zkC(s
k) + V−k .

Proof. According to Remark IV.28 and Proposition IV.23, we have

zgC(X
k) ∩ c−1

k (kC) = (k(k,+) ⊕ mk ⊕ k(k,−))C + V−k = zkC(s
k) + V−k .

V. Moment maps

In this section we fix k ∈ {1, . . . , r} , the corresponding nilpotent orbit
Ok = Ad(G).Xk and all the other entities depending on k (cf. Section IV). We
will be interested in the following chain of subalgebras:

(V.1) Uk −→ hk −→ qk,red := hkng2,k −→ qk = hknlk −→ g,
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where hk := Uk + Vk and the corresponding chain

(V.1′) g∗ Φqk−→ q∗k
Φqk,red−→ q∗k,red

Φhk−→ h∗k
ΦUk−→ U∗k

of restriction maps. In order to make this system of moment maps and its
encoded symplectic information available for our study of Ok , we transfer it to
g using the Killing form B and the Cartan involution θ . We start with a few
general observations: For the moment let g be a real semisimple Lie algebra with
Cartan involution θ and Killing form B . Then g has an inner product (· | ·)
defined by

(X | Y ) = −B(X, θY ) ∀X,Y ∈ g.

Moreover we have two linear isomorphisms ψ: g→ g∗ and ϕ: g→ g∗ defined by

〈ψ(X), Y 〉 = B(X,Y ) ∀X,Y ∈ g

and
〈ϕ(X), Y 〉 = (X | Y ) ∀X,Y ∈ g.

Then ϕ = −ψ ◦ θ and ψ is G -equivariant, where G acts on g via the adjoint
and on g∗ via the coadjoint action. This shows that

(V.2) (Ad(g)X | Y ) = (X | Ad(θ(g)−1)Y ) ∀X,Y ∈ g, g ∈ G.
This equation implies

(V.3) Ad∗(g) ◦ ϕ = ϕ ◦Ad
(
θ(g)−1

)
.

Now let b ⊆ g be a subspace. Then we may view b∗ as a subspace of g∗

extending ξ ∈ b∗ to g by 0 on

b⊥ = {Y ∈ g: (∀X ∈ h) (X | Y ) = 0}.
A simple calculation shows b∗ = ϕ(b). Let pb: g → b be the orthogonal
projection w.r.t. (· | ·). It is clear that pb is selfadjoint w.r.t. the inner product.
Now suppose that N ⊆ G is a subgroup such that Ad(N) leaves b invariant.
Then the selfadjointness of pb and equation (V.2) show that the map

ρb:N × b→ b, (n,X) 7→ n.X := pb ◦Ad(θn)(X)

is a group action. Let Φb: g∗ → b∗ be the restriction map. We define a group
action

ρb∗ :N × b∗ → b∗, (n, f) 7→ n.f := Φb ◦Ad∗(n)(f).

Then one easily checks

(V.4) ϕ(n.X) = n.ϕ(X).

and

(V.5) Φb ◦ ϕ = ϕ ◦ pb.

Proposition V.1. Let N ⊆ G be a subgroup and a ⊆ b subspaces of g .
Suppose that a and b are Ad(N)-invariant. Then

(i) a∗ and b∗ are Ad∗
(
θ(N)

)
-invariant.

(ii) Φa: b∗ → a∗ is equivariant w.r.t. the actions ρb∗ and ρa∗ .

(iii) pa: b→ a is equivariant w.r.t. the actions ρb and ρa .

Proof. This follows from the above by a simple calculation.



Hilgert, Neeb, Ørsted 213

Now we return to our special situation and note that using ϕ we can
replace (V.1 ′ ) by

(V.1′′) g pqk−→ qk
pk
−→ qk,red

phk−→ hk
pUk−→ Uk .

The kernels of the respective projections are given by the following proposition.

Proposition V.2.

(i) q⊥k = θhk .

(ii) q⊥k,red ∩ qk = g1,k .

(iii) h⊥k ∩ qk,red = g2,k .

(iv) (Uk)⊥ ∩ hk = Vk .

Proof. (i) hk is nilpotent, hence B vanishes on hk × hk . On the other
hand θhk and lk are sums of different root spaces a , respectively and therefore
orthogonal w.r.t. B . This shows “ ⊇ ” and equality follows for dimensional
reasons.

(ii) g1,k and g2,k are orthogonal which shows “ ⊇ ”. Equality follows again by
counting dimensions.

(iii) This follows from parts (i) and (ii).

(iv) Again one uses that different root spaces are (· | ·)-orthogonal.

For the following we recall the parabolic subgroup Qk of G associated to
the parabolic subalgebra qk . We write Qk = HknLk for the Levi decomposition
of Qk and G1,k , G2,k , Hk and Qred for the analytic subgroups corresponding
to g1,k , g2,k , hk and qred respectively. We also recall from [35, Lemma 1.2.4.5]
that Qk = ZK(a)(Qk)0 .

Proposition V.3. pqk , pk, phk and pUk are Qk -equivariant w.r.t. the ρ-
actions.

Proof. The only thing that remains to be checked is that qred is invariant
under Qk . Since qred is an ideal of q , it is invariant under (Qk)0 . Moreover
hk is invariant under Qk , so that is suffices to show that g2,k is invariant under
ZK(A). We have g2,k = RHk ⊕ g(k,−) . The element Hk is fixed by ZK(A),
and since all the real root spaces are ZK(A)-invariant, the same holds for the
subalgebra g(k,−) which is generated by certain real root spaces (Lemma IV.12).

Next we consider the G -orbit Ok of Xk in g . Note first that

Ad(G).Xk = ρg(G,Xk)

since G is θ -invariant. In order to take advantage of the above equivariance
properties, we use the Bruhat decomposition of G w.r.t. Qk :

(V.6) G =
⋃

w∈W(Σ)

QkmwθHk =
⋃

w∈W(Σ)

HkLkmwθHk,

where W(Σ) ∼= NK(a)/ZK(a) ∼= {−1, 1}rnSr is the Weyl group of the restricted
root system Σ and mw a representative of w in NK(a). We do not claim that
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(V.6) is a disjoint union. Now θHk stabilizes Xk in the ρg -action and the

element w =
(
(ε1, . . . , εr), σ

)
∈ {−1, 1}r × Sr acts on Xk =

∑k
j=1 Xj via

w.Xk =
∑

j∈{1,...,k}
εσ(j)=1

Xσ(j) +
∑

j∈{1,...,k}
εσ(j)=−1

θXσ(j).

Thus we have
pqk(w.Xk) =

∑

j∈{1,...,k}
εσ(j)=1

Xσ(j).

The group G1,k acts trivially on Uk and since the root space g2εk is one-
dimensional, it is pointwise fixed by ZK(A). So, in view of Q = QredG1,kZK(A)
and Proposition V.3, we obtain

(V.7) pqk(Ok) =
k⋃

j=0

ρqk(Qk,red, X
j),

where X0 = 0.

Remark V.4.

(i) Recall the open cone Ωk from Proposition IV.4 and its automorphism
group G(Ωk). It follows from [29, Th. III.2.3] that Uk is a euclidean
Jordan algebra with unit Xk and Jordan frame (X1. . . . , Xk). Here by a
Jordan frame we mean a maximal set of pairwise orthogonal idempotents
whose sum is the unit element.

(ii) Part (i) allows us to apply [7, Prop. IV.3.1] to Ωk . It says in particular
that

Ωk =
k⋃

j=0

G(Ωk)0.X
j

and characterizes G(Ωk)0.X
j as the set of elements Y ∈ Ωk whose rank

(in the Jordan algebra sense) is j .

Lemma V.5.

(i) ρqk(Lk, X
j) = G(Ωk)0.X

j.

(ii) ρqk(exp(X ′), X) = X + [θX ′, X] ∈ X + lk for all X,X ′ ∈ Uk .

(iii) ρqk(exp(Y ), X + Z) = X + [θY,X] + (Z + 1
2
[θY, [θY,X]]) ∈ X + Vk + lk

for all Y ∈ Vk, X ∈ Uk and Z ∈ lk .

Proof. (i) Since Lk is θ -invariant we see that Ad(θLk).Xj ⊆ Uk so that
ρqk(Lk, X

j) = Ad(Lk).Xj which in turn is equal to G(Ωk)0.X
j since the groups

ZK(A) and G1,k fix Xk .

The assertions (ii) and (iii) follow from the eigenspaces decomposition of ad(Hk)
and the fact that different root spaces are (· | ·)-orthogonal.

Similarly we find
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Lemma V.6.

(i) ρqk,red(Lk, X
j) = G(Ωk)0.X

j.

(ii) ρqk,red(exp(X ′), X) = X + [θX ′, X] ∈ X + g2,k for all X,X ′ ∈ Uk .

(iii) ρqk,red(exp(Y ), X + Z) = X + [θY,X] +
(
Z + 1

2
pqk,red([θY, [θY,X]])

)
∈

X + Vk + g2,k for all Y ∈ Vk, X ∈ Uk and Z ∈ g2,k .

Proof. The only thing we still have to note is that [θX ′, X] ∈ g2,k for all
X,X ′ ∈ Uk . But that follows from [29, (3.41)].

The action ρqk,red will be the one we use primarily. Therefore we abbre-
viate it by ρk:Qk,red × qk,red → qk,red. Similarly, we write pk for pqk,red .

Lemma V.7.

(i) ρhk(Lk, X
j) = G(Ωk)0.X

j.

(ii) ρhk(exp(X ′), X) = X for all X,X ′ ∈ Uk .

(iii) ρhk(exp(Y ), X) = X + [θY,X] ∈ X + Vk for all Y ∈ Vk and X ∈ Uk .

Lemma V.8.

(i) ρUk(Lk, X
j) = ρUk(G2,k, X

j).

(ii) ρUk(exp(X ′), X) = X for all X,X ′ ∈ Uk .

(iii) ρUk(exp(Y ), X) = X for all Y ∈ Vk and X ∈ Uk .

Proposition V.9.

(i) pUk(Ok) = Ωk .

(ii) The set O′k := p−1
Uk (Ωk) ∩ Ok = Ad(θQk,red).Xk is open and dense in

Ok .

Proof. (i) According to Lemma V.8 and equation (V.6) we have in view of
Remark V.4

pUk(Ok) = pUk
(
ρg(G,Xk)

)
=

k⋃

j=0

G2,k.X
j = Ωk.

(ii) The formula follows from (i), (V.7), and Lemma V.8. Moreover it is clear
that the set is open in Ok since Ωk is open in Uk . To show that it is also dense it
suffices to show that the open Bruhat cell B = QkθHk satisfies pUk

(
ρg(B, Xk)

)
=

Ωk. But that is clear since θHk fixes Xk and

pUk
(
ρg(Qk, X

k)
)

= ρUk(Qk, X
k) = ρUk(Lk, X

k) = Ωk.

We want to gain more insight into the geometry of Ok via the study of
the fibers and images of the various moment maps. We will essentially restrict
ourselves to the dense open subset of Ok given in Proposition V.9.

Proposition V.10.

(i) p−1
Uk (X) ∩ (Uk + Vk) = X + Vk ⊆ phk (Ok) for all X ∈ Ωk .

(ii) phk(Ok) ⊇ Ωk + Vk.
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(iii) phk(O′k) = Ωk + Vk.
Proof. (i) Since pUk is Qk -equivariant, the fibers of pUk are permuted by
Qk . In particular we have

p−1
Uk (X) = l.p−1

Uk (Xk)

for X = l.Xk . Thus it suffices to prove the claim for X = Xk .

According to Lemma V.7, we have to show that ad(Xk): θVk → Vk is
surjective. But that follows immediately from sl(2)-theory applied to the sl2 -
triple (Hk, Xk, Y k).

(ii) follows directly from (i).

(iii) Again the inclusion “ ⊇ ” is clear and for the converse we calculate

Ωk + Vk ⊆ phk

(
Ok ∩ p−1

Uk (Ωk)
)

= phk (O′k).

Lemma V.11. Let Y ∈ Vk and Ỹ ∈ Vk be the uniquely determined element
with ad(Xk)θỸ = Y . Then

pk(Ok) ∩ (Xk + Y + g2,k) = Xk + Y + pk(ad(θỸ )2Xk) + ad(Xk)θUk.

Proof. According to Lemma V.6 and the Bruhat decomposition (V.6) any
element of pk(Ok) ∩ p−1

Uk (Xk) can be written as

Xk + [θX ′, Xk] + [θY ′, Xk] + pk([θY ′, [θY ′, Xk]])

with X ′ ∈ Uk and Y ′ ∈ Vk since pk is equivariant w.r.t. the ρ -actions. But
this element gets mapped to Xk+[θY ′, Xk] under phk , i.e., its hk -component is

Xk + [θY ′, Xk] . If [θY ′, Xk] = Y , then Y ′ = −Ỹ . On the other hand [θX ′, Xk]
does not effect the phk projection and can be varied freely.

Proposition V.12. The fibers of the map

phk : pk(O′k)→ phk (O′k) = Ωk + Vk

are affine spaces of dimension dimUk . More precisely, for Z ∈ pk(O′k) with
pUk(Z) = X we have

pk(O′k) ∩ p−1
hk

(
phk (Z)

)
= Z + ad(X)θUk.

Proof. As in the proof of Proposition V.10, we may restrict ourselves to the
case X = Xk . Then Z ∈ Xk+Y +g2,k and according to Lemma V.11, the fiber
in question is given by

Xk + Y + pk(ad(θỸ )2Xk) + ad(Xk)θUk = Z + ad(Xk)θUk.

The statement about the dimension now follows from Lemma IV.24.
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Remark V.14. dimOk = 2 dimUk + dimVk . In fact, we calculate

dimOk = dim g− dim zg(Xk)

= (dim lk + 2 dim uk)− (dim zlk(Xk) + dim uk)

= (dim lk − dim zlk(Xk)) + dim uk

= dimUk + (dimVk + dimUk)

= 2 dimUk + dimVk.

Now we consider the diagram

O′k pUk−→ pUk(O′k) = Ωk
↓pk ↑pUk

pk(O′k) phk−→ phk(O′k) = Ωk + Vk
It clearly commutes and the dimension of the manifolds involved are

dimO′k = 2 dimUk + dimVk
dim Ωk = dimUk

dim(Ωk + Vk) = dimUk + dimVk
dim pk(O′k) = 2 dimUk + dimVk

Thus pk:O′k → pk(O′k) is a surjective submersion of equidimensional manifolds.
In fact, more is true:

It follows from (V.4) that we can use the map ϕ: g → g∗ to transport
the natural G -invariant Poisson structure on g∗ over to a Poisson structure on
g which is invariant under the ρg action. Therefore the symplectic leaves of g
are precisely the G -orbits w.r.t. ρg . Similarly we introduce a Qk,red -invariant
Poisson structure on qk,red for which the symplectic leaves are the Qk,red -orbits
w.r.t. ρqk,red . Then ϕ is a Poisson isomorphism and the map pk is a Poisson
morphism since Φqk,red is one. Therefore the G -orbit Ok and the Qk,red -orbit
pk(O′k) are symplectic submanifolds of g and qk,red , respectively. Moreover O′k
is a symplectic submanifold of Ok .

Proposition V.15. The map pk:O′k → pk(O′k) is a symplectic diffeomor-
phism.

Proof. We first recall that pk is Qk,red -equivariant w.r.t. the ρ -actions.
Moreover Qk,red acts transitively on both O′k and pk(O′k) and the symplectic
structures are both Qk,red -invariant. Finally the map pk can be viewed (via ϕ)
as the moment map of the Qk,red -action on O′k . Thus [9, p.185] implies that
pk:O′k → pk(O′k) is a symplectic covering. To conclude the argument we note
that the stabilizers of Xk in Qk,red w.r.t. the ρg and theρqk,red actions agree,
whence the equivariance shows that the fibers are trivial.

Since the symplectic manifold pk(O′k) will play an important role in this
paper we abbreviate it by Mk and denote its symplectic form by ω(k) .

Note that Proposition V.15 obviously implies that also

pqk :O′k → pqk(O′k) and pk: pqk(O′k)→ pk(O′k)

are symplectic diffeomorphisms.

The above results on the structure of Ok should be compared to



218 Hilgert, Neeb, Ørsted

Proposition V.16. Ok ∩ hk = Ωk .

Proof. Since Ok is of convex type, we know that it is contained in a proper
generating closed convex invariant cone W ⊆ g . In particular it contains Xk ∈
Uk and therefore its G(Ωk)0 -orbit Ωk . We apply [14, Lemma I.14] to W ∩ hk
and find that W ∩ hk = Ωk .

Let cj := Xj = Xj − Xj−1 for j = 1, . . . , r . Then (c1, . . . , ck) is a
Jordan frame in Uk . Suppose that Y ∈ Ok ∩ Ωk . Then there exists an element
g ∈ G(Ωk)0 and j ∈ {0, . . . , k} such that g.Y = Xj (Remark V.4). Since
ρU :G2,k → G(Ωk)0 is surjective, we conclude that Y ∈ Oj , hence that j = k
and therefore that Y ∈ G(Ωk)0.X

k = Ω. Thus Ok ∩ Uk = Ωk .

Remark V.17. The proof of Proposition V.16 even shows that the nilpotent
orbits of convex type Oj with j > k do not intersect hk and that for j ≤ k the
intersection consists of the set of all elements of rank j in the closed cone Ωk .

VI. The symplectic geometry of Ok and Mk

In this section we give details concerning the symplectic structure of Ok
and its various projections. We start with a few general facts on the symplectic
structure of coadjoint orbits.

Lemma VI.1. Let H be a Lie group and f ∈ h∗ . Then the following state-
ments are equivalent:

(1) f vanishes on the Lie algebra hf of the stabilizer Hf of f under the
coadjoint action.

(2) The left invariant 1-form α̃(f) on H defined by f is the pullback of an
H -invariant 1-form α(f) on the coadjoint orbit Of = Ad∗(H).f under
the orbit map s:H → Of , h 7→ h.f := Ad∗(h).f .

Proof. If such an α(f) exists, then it has to satisfy

(∗) α
(f)
h.f

(
h.(ad∗(X).f)

)
= 〈f,X〉 ∀h ∈ H,X ∈ h

since the orbit map s is H -equivariant. So, if (1) holds, the formula

α
(f)
f (ad∗(X).f) = 〈f,X〉

actually defines a linear functional αf on Tf (Of ) = ad∗(h).f . Since

(VI.1) Ad∗(h) ◦ ad∗(X) = ad∗(Ad(h).X) ◦Ad∗(h)

and
〈f,X〉 = 〈Ad∗(h).f,Ad(h)X〉,

we can move this form around with the H -action to define a 1-form α(f) on Of
via (∗). It follows from its invariance that this form is smooth and has α̃(f) as
its pullback under s . This proves (2).

Conversely, suppose that (2) holds. Then X ∈ hf shows ad∗(X).f = 0
so that (∗) implies 〈f,X〉 = 0, i.e., (1).
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Consider the canonical Poisson structure on the dual h∗ of a Lie algebra
h . Given f ∈ h∗ the cotangent space T ∗f (h∗) is identified with h and the Poisson
tensor Λf at f is given by

Λf (X,Y ) = 〈f, [X,Y ]〉 ∀X,Y ∈ h.

Therefore the associated bundle map

Λ]:T ∗(h∗) ∼= h∗ × h→ T (h∗) ∼= h∗ × h∗

is given by
Λ](f,X) = (f,− ad∗(X).f)

and we also write Λ]f (X) = − ad∗(X).f for this fact. The characteristic distri-
bution {Cf ⊆ Tf (h∗): f ∈ h∗} is given by

Cf = Λ]f
(
Tf (h∗)

)
= ad∗(h).f.

We denote the annihilator of Cf in T ∗f (h∗) ∼= h by AnnCf and note that

AnnCf = ker Λ]f = {X ∈ h: ad∗(X).f = 0} = hf .

Thus we have a canonical isomorphism C∗f ∼= h/hf . The map Λ]f induces an
isomorphism `f :C∗f → Cf and one has a symplectic form ωf on Cf defined by

ωf (a, b) = Λf
(
`−1
f (a), `−1

f (b)
)
, ∀a, b ∈ Cf .

This means that the corresponding symplectic form on C∗f is given by

ω̃f
(
X + hf , Y + hf

)
= 〈f, [X,Y ]〉.

The symplectic forms ωf for f in a coadjoint orbit of h form the H -invariant
symplectic form ω(f) on that orbit which turns it into a symplectic leaf of the
Poisson manifold h∗ .

Lemma VI.2. Let H be a Lie group and f ∈ h∗ . Suppose that hf ⊆ ker f .
Then the form α(f) constructed in Lemma VI.1 satisfies

(i) α
(f)
f ′ (ad∗(X).f ′) = 〈f ′, X〉 for all f ′ ∈ Of .

(ii) −2dα(f) = ω(f) .

Proof. (i) Let f ′ = h.f . Then, using (VI.1), we calculate

α
(f)
f ′ (ad∗(X).f ′) = α

(f)
h.f(ad∗(X).(h.f))

= α
(f)
f (h−1.(ad∗(X)(h.f)))

= α
(f)
f (ad∗(h−1.X).f)

= 〈f, h−1.X〉
= 〈f ′, X〉.
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(ii) We recall the orbit map s:H → Of from Lemma VI.1. The definitions show
that

(s∗ω(f))1(X,Y ) = 〈f, [X,Y ]〉.
Since s is a submersion, it suffices to show that s∗(dα(f)) = d(s∗α(f)) = s∗ω(f) .
On the other hand the H -invariance shows that we have to test d(s∗α(f)) and
s∗ω(f) only against left invariant vector fields, i.e., elements of h :

2d(s∗α(f))(X1, X2) = X1.α(X2)−X2.α(X1)− α([X1, X2])

= −α([X1, X2]) = −〈f, [X1, X2]〉.

This proves the lemma.

Now we consider a semisimple Lie algebra g with Cartan involution θ
and Killing form B . We retain the notation from Section V and transport the
Poisson structure from h∗ to h via ϕ: h→ h∗ . Here T ∗X(h) gets identified with
h∗ and hence the Poisson tensor on h is given by

ΛX(a, b) = 〈ϕ(X), [ϕ−1(a), ϕ−1(b)]〉, ∀X ∈ h, a, b ∈ h∗.

Lemma VI.3. The bundle map

Λ]:T ∗(h) ∼= h× h∗ → T (h) ∼= h× h

associated to Λ is given by

Λ](X, f) =
(
X,− ad(X)

(
θ(ϕ−1(f))

))
, ∀X ∈ h, f ∈ h∗.

Proof. Let a, b ∈ h∗ and X ∈ h . Then we calculate

〈Λ]X(a), b〉 = ΛX(a, b)

= 〈ϕ(X), [ϕ−1(a), ϕ−1(b)]〉
=
(
X | ad

(
ϕ−1(a)

)
ϕ−1(b)

)

=
(
ad
(
θ(ϕ−1(a))

)
X | ϕ−1(b)

)

= 〈ad
(
θ(ϕ−1(a))

)
X, b〉

= −〈ad(X)
(
θ(ϕ−1(a))

)
, b〉.

From Lemma VI.3 it is clear that

(VI.2) CX = ad(θh)X = ad(X)θh.

We will write CX,h for CX when we want to emphasize the subalgebra h for
which we consider the Poisson structure. The annihilator AnnCX,h of CX,h in
T ∗X(h) ∼= h∗ is

AnnCX,h = ker Λ]X = {f ∈ h∗: θh ⊆ ker
(

ad∗(X).f
)
}.
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Proposition VI.4. Let (ϕ−1)∗: h∗ → (h∗)∗ ∼= h denote the dual map of

ϕ−1: h∗ → h . Then we have (ϕ−1)∗ ◦ Λ]ϕ(X) = Λ]X ◦ ϕ.
Proof. For f ∈ h∗ and Y ∈ h we calculate

〈f,Λ]X ◦ ϕ(Y )〉 = ΛX(ϕ(Y ), f)

= 〈ϕ(X), [Y, ϕ−1(f)]〉
= 〈− ad∗(Y )

(
ϕ(X)

)
, ϕ−1(f)〉

= 〈Λ]ϕ(X)(Y ), ϕ−1(f)〉
= 〈f, (ϕ−1)∗ ◦ Λ]ϕ(X)(Y )〉.

Proposition VI.4 implies that ϕ∗ induces an isomorphism ϕ∗:Cϕ(X) →
CX and ϕ an isomorphism ϕ: AnnCϕ(X) → AnnCX . In fact, we have a commu-
tative diagram with exact lines

0 −→ AnnCX −→ h∗ Λ]
X−→ CX −→ 0

↑ϕ ↑ϕ ↑ϕ∗
0 −→ AnnCϕ(X) −→ h Λ]

ϕ(X)−→ Cϕ(X) −→ 0

which then gives a commutative diagram

C∗X
`X
−→ CX

↑ϕ ↑ϕ∗
C∗ϕ(X)

`ϕ(X)

−→ Cϕ(X)

where ϕ is the map induced by ϕ on C∗ϕ(X) = h/AnnCϕ(X) .

Lemma VI.5. Λ]X ◦ ϕ = ad(X) ◦ θ = −θ ◦ ad(θX) .

Proof. Λ]X ◦ ϕ(Y ) = − ad(X)
(
θ
(
ϕ−1(ϕ(Y ))

))
= ad(X)

(
θ(Y )

)
.

Proposition VI.6. The symplectic form ωX on CX,h is given by

ωX(ad(X)θY, ad(X)θZ) = −B(X, θ[Y, Z]), ∀X,Y, Z ∈ h.

Proof.

ωX(ad(X)θY, ad(X)θZ) = ΛX
(
`−1
X (ad(X)θY ), `−1

X (ad(X)θZ)
)

= ΛX

(
`−1
X

(
Λ]X ◦ ϕ(Y )

)
, `−1
X

(
Λ]X ◦ ϕ(Z)

))

= ΛX (ϕ(Y ) + AnnCX , ϕ(Z) + AnnCX)

= Λϕ(X)

(
Y + AnnCϕ(X), Z + AnnCϕ(X)

)

= 〈ϕ(X), [Y, Z]〉
= (X | [Y, Z])

= −B(X, θ[Y, Z]).
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Lemma VI.7. Suppose that X ∈ g is nilpotent. Then the functional ϕ(X) ∈
g∗ vanishes on gϕ(X) = {Y ∈ g: ad∗(Y ).ϕ(X) = 0} .

Proof. Let Y ∈ g . Then 〈ϕ(X), Y 〉 = −B(X, θY ). If Y ∈ gϕ(X) , then for all
Z ∈ g we have

0 = 〈ad∗(Y ).ϕ(X), Z〉 = 〈ϕ(X), [Z, Y ]〉
= −B(X, [θZ, θY ]) = −B([X, θZ], θY ).

But the Jacobson-Morosow Theorem says in particular that there exists a θZ ∈ g
with X = [X, θZ] . Therefore 〈ϕ(X), Y 〉 = −B(X, θY ) = 0 for all Y ∈ gϕ(X) .

Proposition VI.8. Let X ∈ g be nilpotent and ω(X) the symplectic form
on OX = Ad(G).X induced by the canonical symplectic form ω(ϕ(X)) on the
coadjoint orbit Oϕ(X) = ϕ(OX) = Ad∗(G).ϕ(X) . Then there exists a G-

invariant 1-form α(X) on OX defined by

α
(X)
X (ad(X)θY ) = B(X, θY )

such that −2dα(X) = ω(X) .

Proof. According to Lemma VI.7 and Lemma VI.2 there exists a form α(ϕ(X))

on Oϕ(X) with −2dα(ϕ(X)) = ω(ϕ(X)) . Then α(X) is the pullback of α(ϕ(X))

under ϕ . A simple calculation shows that ϕ(ad(X)θY ) = − ad∗(Y )ϕ(X) so the
claim follows from

α
(ϕ(X))
ϕ(X)

(
− ad∗(Y )ϕ(X)

)
= −〈ϕ(X), Y 〉 = B(X, θY )

We note here that we cannot expect to be able to prove an analogue of
Proposition VI.8 for the H -orbits since the centralizer hϕ(X) of ϕ(X) for X ∈ h
in h may not be contained in gϕ(X) and the conclusion of Lemma VI.7 depended
on the Jacobson-Morosow Theorem which is not available for non-semisimple
algebras.

Now we return to our special situation and apply the preceding results
to Ok and Mk .

Lemma VI.9. CXk,g = CXk,qk,red = hk + p2,k.

Proof. This can be derived from Proposition V.15 by calculating the Qk,red -
orbit of Xk . We give a more direct argument: sl2 -theory shows that the image
of ad(Xk): g→ g is

CXk,g = hk + [Xk, θUk] = hk + p2,k ⊆ qk,red

(Lemma IV.24).

It is obvious now that phk(CXk,g) = hk and pUk(CXk,g) = Uk.

Proposition VI.10. The symplectic form ω(k) on Mk is exact. More
precisely, there exists a Qk,red -invariant 1-form α(k) on Mk with −2dα(k) =
ω(k) and

α
(k)

Xk
(ad(Xk)θY ) = B(Xk, θY )

for all Y ∈ qk,red .

Proof. This follows immediately from Proposition V.15, Proposition VI.8 and
Lemma VI.9 by taking pullbacks.
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Lemma VI.11.

(i) L+,k(Xk) := (Uk)C + V+
k is a Lagrangian subspace of (CXk,qk,red)C .

(ii) L−,k(Xk) := (p2,k)C + V−k is a Lagrangian subspace of (CXk,qk,red)C .

Proof. For dimensional reasons it suffices to show that ωXk vanishes on the
two subspaces. Let X ∈ (Uk)C , Y ± ∈ V±k and Z ∈ (p2,k)C . Then we find

X̃, Ỹ ±, Z̃ ∈ qk,red with

X = ad(Xk)θX̃, Y ± = ad(Xk)θỸ ±, Z = ad(Xk)θZ̃.

Then X̃ ∈ (lk)C , Ỹ ± ∈ V±k and Z̃ ∈ (Uk)C . Now the claim follows since the
below commutator spaces all belong to the orthogonal complement of Xk w.r.t.
the Killing form B .

[lk, lk] ⊆ lk, [lk,V+
k ] ⊆ V+

k , [V+
k ,V+

k ] = {0},

[Uk,Uk] = {0}, [Uk,V−k ] = {0}, [V−k ,V−k ] = {0}.

Recall that Qk,red acts transitively on O′k and Mk . The stabilizer of
Xk in Qk,red is K2,k . Note that K2,k leaves both Lagrangian subspaces from
Lemma VI.11 invariant (the ρ -action of K2,k coincides with the adjoint action).
Since the Poisson structure is Qk,red -invariant we can define two Qk,red -invariant
Lagrangian distributions L±,k on Mk using the action ρk .

Using the semidirect product structure of Qk = HknLk we obtain
additional information on the form α(k) :

Consider the diffeomorphism

γ:Hk × Ωk →Mk, (h,X) 7→ ρk(h,X).

The Qk -action on Hk × Ωk induced from ρk via γ is given by the formula

(h, l).(h′, X) = (hlh′l−1, l.X), ∀h, h′ ∈ Hk, l ∈ Lk, X ∈ Ωk.

Pulling back α(k) to Hk × Ωk via γ yields an invariant form on Hk × Ωk and
since the action of Hk on Hk × Ωk simply consists of left translation in the fist
argument, it is given by elements of h∗k on the Hk -orbits. We identify T ∗Hk

with Hk × h∗k and T ∗(Hk × Ωk) with (Hk × Ωk)× (h∗k × U∗k ).

Proposition VI.12.

(i) The derivative of γ at (1, X) ∈ Hk × Ωk is given by

dγ(1,X)(X
′+Y ′, X ′′) = X ′′− ad(X)θ(X ′+Y ′) ∀X ′, X ′′ ∈ Uk, Y ′ ∈ Vk.

(ii) The pullback form γ∗α(k) is given by

γ∗α(k)
(h,X)(X

′ + Y ′, X ′′) = 〈ϕ(X), X ′〉+ α
(k)
X (X ′′),

for all X ′, X ′′ ∈ Uk, Y ′ ∈ Vk.
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Proof. (i) follows immediately from

γ(expY ′ expX ′, X) = X − ad(X).θ(X ′ + Y ′) +
1

2
pk(ad(θY ′)2.X)

for Y ′ ∈ Vk and X ′, X ∈ Uk which in turn is an immediate consequence of
Lemma V.5.

(ii) We calculate

γ∗α(k)
(h,X)(X

′ + Y ′, X ′′) = γ∗α(k)
h.(1,X)(X

′ + Y ′, X ′′)

= γ∗α(k)
(1,X)(X

′ + Y ′, X ′′)

= α
(k)
X (dγ(1,X)(X

′ + Y ′, X ′′))

= α
(k)
X (X ′′ − ad(X)θ(X ′ + Y ′))

= α
(k)
X (X ′′)− B(X, θ(X ′ + Y ′))

= α
(k)
X (X ′′)− B(X, θX ′)

= α
(k)
X (X ′′) + 〈ϕ(X), X ′〉.

We now turn to the study of polarizations. Let h be a Lie algebra and
f ∈ h∗ . Recall that a subalgebra b(f) of hC is called an algebraic polarization if
(cf. [2, p.54])

(a) b(f) + b(f) is a subalgebra of hC .

(b) b(f) is maximal isotropic in hC w.r.t. the form (X,Y ) 7→ 〈f, [X,Y ]〉 .
Note (cf. [37, p.103]) that the maximality implies that (hf )C ⊆ b(f).

Moreover an isotropic subalgebra containing hf is maximal iff

dimC
(
b(f)/(hf)C

)
= dimC

(
hC/b(f)

)
.

Let f ∈ q∗k,red be the linear functional given by

(VI.3) f(u+ v +X) = −(Xk | u), ∀u ∈ Uk, v ∈ Vk, X ∈ g2,k

Lemma VI.13. The subalgebra b(f) := (Uk)C + V−k + (k2,k)C is an algebraic
polarization of f ∈ q∗k,red .

Proof. It is clear that b(f) + b(f) = (Uk)C + (Vk)C + (k2,k)C is a subalgebra.
Since [k2,k,V−k ] ⊆ V−k , it is also clear that b(f) is a subalgebra of (qk,red)C .
Moreover

[b(f), b(f)] ⊆ (k2,k)C + V−k + [k2,k,Uk]C ⊆ f⊥

because k2,k ⊆ (qk)f implies f([k2,k,Uk]) = {0} . This means that b(f) is
isotropic. Obviously we have (qk,red)f = k2,k ⊆ b(f). So to prove maximality,
we simply have to check that it has the right dimension. Since (qk,red)C/b(f) ∼=(
V+
k + (g2,k)C

)
/(k2,k)C and b(f)/(qk,red ∩ (qk)f )C ∼= (Uk)C + V−k , the assertion

follows from dimUk = dim g2,k − dim k2,k which in turn follows from the fact
that g2,k acts effectively on Uk with g2,k.X

k = Uk and k2,k = (g2,k)Xk (cf.
Proposition IV.4).
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Remark VI.14. Suppose that Vk = {0} (Proposition IV.21). Put b :=
(g2,r + θUr)C . We claim that b is an algebraic polarization in f , considered
as an element of g∗ .

Since b = b , it is clear that b + b is a subalgebra of gC . Moreover
[b, b] ⊆ g′2,r + θUr ⊆ ker f shows that b is isotropic. Since

dim(b ∩ g)− dim gf = dim g2,r − dim k2,r = dimUr = dim g− dim(b ∩ g),

it follows that b is maximal isotropic, hence an algebraic polarization in f .

Theorem VI.15. If Vk 6= {0} , then f ∈ g∗ has no algebraic polarization for
g .

Proof. For the sake of simplicity we omit the indices k in the following proof,
f.i. we write g2 instead of g2,k etc.

Suppose that b ⊆ gC is a polarization in f . We recall that

gf = k2 + g1 + θV + θU .

In view of the fact that b is maximal isotropic, it follows that (gf )C ⊆ b .

It suffices to show that b = gC . First we claim that g2 ⊆ b .

As a g1 -module the quotient gC/(gf )C is isomorphic to (p2)C⊕VC⊕UC .
The subspace (p2)C ⊕ UC is annihilated by g1 and the action of g1 on VC is
effective because V is an irreducible module for g1 + g2 (cf. Proposition IV.1).
Let π: gC → gC/(gf )C denote the quotient map. Then π(b) is a g1 -submodule
and therefore

π(b) =
(
π(b) ∩ VC

)
+
(
π(b) ∩

(
UC + (p2)C

))
.

The natural symplectic form on gC/(gf )C is given by

(
Y + (gf )C, Z + (gf )C

)
7→ f([Y, Z]).

Hence V is orthogonal to p2 +U . Therefore the fact that b is maximal isotropic
shows that π(b) ∩ VC and π(b) ∩

(
UC + (p2)C

)
are maximal isotropic.

If π(b)∩
(
UC+(p2)C

)
⊆ (p2)C , then counting dimensions therefore shows

that π(b)∩
(
UC+(p2)C

)
= (p2)C , hence that p2 ⊆ b which in turn implies g2 ⊆ b .

Suppose that π(b) ∩ (UC + (p2)C
)
6⊆ (p2)C . The kernel for the map-

ping ãdθX induced by ad θX on gC/(gf )C is given by (p2)C + VC and since

ad θX:U → p2 is bijective (Lemma IV.24), the same holds for ãdθX . Thus our

assumption and the invariance of π(b) under ãdθX yield π(b) ∩ (p2)C 6= {0} ,
i.e., b ∩ (p2)C 6= {0} .

Since g2 = RH ⊕ g′2 , where g′2 is a simple real Lie algebra (Lemma
IV.12, Theorem IV.13]), the k2 -fixed elements in (p2)C are CH and the effective
submodule is (p′2)C , where p′2 := g′2 ∩ p2 . Now we use the k2 -invariance of b to
see that

b ∩ (p2)C = (b ∩ CH)⊕
(
b ∩ (p′2)C

)
.
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Hence one of the two summands must be non-zero. If the first one is non-zero,
then H ∈ b and we can decompose b into adH eigenspaces

b = θUC + θVC + (g1)C +
(
b ∩ (g2)C

)
+ (b ∩ VC) + (b ∩ UC).

If g2 6⊆ b , then b∩(p2)C = CH and consequently b∩UC has codimension 1 since
b is maximal isotropic. Then we apply the injectivity of ad θX:U → p2 a second
time to conclude that dimU = dim p2 ≤ 2. Now p′2 is at most one-dimensional,
so that p′2 = {0} and therefore g2 = RH ⊆ b . This proves that g2 ⊆ b if H ∈ b .

Next we assume that b ∩ (p2)C = b ∩ (p′2)C 6= {0} . The element X is
orthogonal to b with respect to the form (Y, Z) 7→ f([Y, Z]) since f([X,Z]) =
B(θX, [X,Z]) = B([θX,X], Z) = −B(H,Z) and therefore X ∈ b because b is
maximal isotropic. Thus [X, θX] = H ∈ b , a contradiction.

Taking all these cases together, we have proved that g2 ⊆ b . Hence

b = θUC + θVC + (g1)C + (g2)C + (b ∩ VC).

Next we use the fact that b + b is a subalgebra invariant under complex
conjugation, so that it can be written as hC for h := (b + b) ∩ g . Then the
subalgebra h ⊆ g satisfies

θU + θV + g1 + g2 ⊆ h ⊆ θU + θV + g1 + g2 + V

and therefore

(VI.4) h = θU + θV + g1 + g2 + (V ∩ h).

In view of Proposition IV.1, the (g1 + g2)-module V is simple, hence h ∩ V = V
holds because it is non-zero. Finally [V,V] = U (Proposition IV.1) contradicts
(VI.4).

So far we have seen that f has no algebraic polarization for g if Vk 6= {0}
and that b = (g2 + θU)C is a polarization if this is not the case. In [14] we will
construct representations by applying the orbit method to the polarization in
Lemma VI.13. The representations associated to the polarization in Remark
VI.14 have been studied in [31] and also in [30].

The notion of algebraic polarization is closely related to the notion of
strongly integrable complex polarizations (in the terminology of [37, p.92]) which
is defined in terms of Lagrangian distributions.

Lemma VI.16. The Lagrangian distributions L±,k on Mk are involutive.

Proof. Consider the derivative δ: qk,red → CXk,qk,red of the orbit map

Qk,red →Mk, q 7→ ρqk,red(q,Xk)

at the identity. According to [8, p.235], it suffices to show that the preim-
ages of L±,k(Xk) in qk,red under the complex linear extension δC: (qk,red)C →
(CXk,qk,red)C is a subalgebra of (qk,red)C . But from Lemma V.6 we see that

δ(X) = − ad(Xk) ◦ θ ∀X ∈ qk,red.
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Moreover Lemma IV.24 together with [29, III(3.27)] shows that

δ(g2,k) = Uk, δ(Uk) = p2,k, δC(V±k ) = V±k .
Since δ−1

C (0) = (k2,k)C we find

δ−1
C
(
L+,k(Xk)

)
= V+

k + (g2,k)C

and
δ−1
C
(
L−,k(Xk)

)
= (Uk)C + V−k + (k2,k)C

which proves the claim in view of Proposition IV.5(vii).

Consider
D±,k = L±,k ∩ L±,k ∩ T (Mk)

and
E±,k = (L±,k + L±,k) ∩ T (Mk).

Since D±,k(q.Xk) = q.D±,k(Xk), we see that D±,k are distributions and hence
the distributions L±,k are complex polarizations in the sense of Woodhouse (cf.
[37, p.92] and note that the definition of a polarization in [8] is weaker). Similarly
we see that E±,k are distributions. We recall that the polarization L±,k is called
strongly integrable if E±,k is involutive.

Proposition VI.17.

(i) L+,k is strongly integrable iff Vk = {0} .

(ii) L−,k is strongly integrable.

Proof. We use the same reasoning as in the proof of Lemma VI.16 but for
E±,k instead of L±,k . In fact, we see that

δ−1
(
E+,k(Xk)

)
= Vk + g2,k and δ−1

(
E−,k(Xk)

)
= hk + k2,k.

Since Vk + g2,k is a Lie algebra iff Vk = {0} whereas hk + k2,k always is a Lie
algebra, the claim follows.

Recall that integrable real distributions of a real manifold are the same
as real foliations.

Proposition VI.18.

(i) The leaves of the foliation E−,k are precisely the fibers of pUk :Mk → Ωk .

(ii) The leaves of the foliation D−,k are precisely the fibers of phk :Mk →
Ωk + Vk .

Proof. (i) Let E = p−1
Uk (Xk)∩Mk . Then Hk acts transitively on E (Lemma

V.6) and for any q ∈ exp(Uk) exp(Vk) we have

Tq.Xk(E) = q.TXk (E) = q.(p2,k + Vk) = q.E−,k(Xk) = E−,k(q.Xk).

This shows that E is an integral manifold for E−,k . Since G2,k permutes the
fibers and E−,k is G2,k invariant by definition, this proves the claim.

(ii) According to Proposition V.12, the fiber through Z ∈ Mk is Z + ad(X)θUk
with X = pUk(Z). In particular the fiber D over Xk is Xk + p2,k and the
tangent space TXk (D) is p2,k = D−,k(Xk). As in the proof of (i), now the
invariance of D−,k and the equivariance of phk prove the claim.

We denote the space of leaves of D−,k by Mk/D−,k and note that it is
just Ωk + Vk . Similarly the space of leaves of E−,k gets identified with Ωk .
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Remark VI.19. The polarization L−,k is non-positive in the sense of [37,
p.91]. In fact, the symplectic vector space E−,k(Xk)/D−,k(Xk) is isomorphic to

Vk with the symplectic form ω
(k)

Xk
|Vk×Vk . But Proposition VI.12 shows that

γ∗ω(k)
Xk

(Y ′, Y ′′) = γ∗α(k)
Xk

([Y ′, Y ′′], 0) = 〈ϕ(Xk), [Y ′, Y ′′]〉
= −B(Xk, θ[Y ′, Y ′′]) = −4AXk(Y ′, Y ′′),

where AX(Y ′, Y ′′) = − 1
4
(X | [Y ′, Y ′′]) (cf. [29, p.101] ). Since AXkIk + iAXk is

positive definite (cf. [loc.cit.]), the claim follows.

VII. Examples

Let K = R,C,H and E a K -left vector space endowed with a positive
definite hermitean form (· | ·), i.e.,

(v | w) = (w | v), λ(v | w) = (λv | w) and (v | λw) = (v | w)λ

and (v | v) > 0 for all v 6= 0. The standard form on Kn is

(x | y) =
n∑

j=1

xjyj .

We write U(E) for the group of K -linear isometries of E .

In addition to (· | ·) we consider a non-degenerate skewhermitean form
B(·, ·), i.e.,

B(v, w) = −B(w, v), λB(v, w) = B(λv, w) and B(v, λw) = B(v, w)λ.

Here the standard forms are

(1) K = R, E = R2n , B(x, y) =
∑n
j=1(xjyj+n − xj+nyj)

(2) K = C, E = Cp+q , B(x, y) = i
(∑p

j=1 xjyj −
∑p+q
j=p+1 xjyj

)

(3) K = H, E = Hn , B(x, y) =
∑n

j=1 xjJ yj , where 1, I,J ,K are the
standard basis for H .

We write U(B) for the group of k -linear B -isometries of E . The Lie
algebras corresponding to the groups introduced above will be denoted by u(E)
and u(B).

Consider the endomorphism ϕB ∈ EndK(E) defined by

(VII.1) B(v, w) = (ϕBv | w)

as well as the transpose operations ∗ and ] for (· | ·) and B(·, ·). Then we have

(VII.2) u(B) = {X ∈ gl(E):X] = −X}
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and

(VII.3) ϕ∗B = −ϕB, X] = ϕ−1
B X∗ϕB, ϕ]B = −ϕB.

In the standard cases, where elements of EndK(E) are given by right multipli-
cation of matrices on row vectors we have

(1) ϕB =

(
0 1n
−1n 0

)
and u(B) = sp(n,R).

(2) ϕB = i

(
1p 0
0 −1q

)
and u(B) = u(p, q).

(3) ϕB = J 1n and u(B) = so∗(2n).

For each X ∈ u(B) we have a symmetric real bilinear form BX on E
which is given by

(VII.4) BX(v, w) = −B(X.v, w).

We set

(VII.5) WB := {X ∈ u(B):BX positive semidefinite}

and

(VII.6) Wmax,B := {X ∈ u(B): (∀v ∈ E)B(v, v) = 0 ⇒ B(X.v, v) ≤ 0}.

Then WB ⊆ Wmax,B are closed convex cones which are invariant under
conjugation by elements from U(B). We assume that

(VII.7) ϕ2
B = − id .

Then ϕB ∈ WB , so that the cones WB and Wmax,B are non-trivial.

Note that (VII.7) is true for the standard cases. It follows from (VII.7)
that ] and ∗ commute. In fact, up to a renormalization of B the two conditions
are equivalent. From this it follows that 1

2
ϕB is an H -element of the quasiher-

mitean reductive algebra u(B). To see this, note that u(B) is invariant under ∗
and θ(X) = −X∗ defines a Cartan involution on u(B). Therefore the centralizer

(VII.8) k(B) := u(B) ∩ u(E)

of ϕB in u(B) is a maximal compactly embedded subalgebra of u(B). Then the
equality

(VII.9) (adϕB)2X = −2(X∗ +X) ∀X ∈ u(B)

proves the claim.

The complex structure on

(VII.10) p(B) = {X ∈ u(B):X∗ = X}
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is simply given as multiplication by ϕB .

For v ∈ E let Pv be the associated rank one operator, which is defined by
Pvw = (w | v)v . Choose an orthonormal basis {v1, . . . , vm} for E and consider
the map

τ :
m∑

j=1

Rvj → u(B),
m∑

j=1

xjvj 7→
1

2

m∑

j=1

xj(ϕBPvj + PvjϕB).

Then t := τ(E) is a Cartan algebra of k(B) and u(B). Note that τ is injective
for K = C and K = H but not for K = R .

Using the embedding Mat(n× n,H)→ Mat(2n× 2n,C) given by

A+ JB 7→
(
A −B
B A

)

for A,B ∈ Mat(n × n,C) ⊆ Mat(n × n,H) one has the following matrix repre-
sentations for our standard cases:

(1)

sp(n,R) =

{(
A B
C −At

)
:A,B,C ∈ Mat(n× n,R), Bt = B,Ct = C

}

k =

{(
A B
−B A

)
∈ sp(n,R):At = −A,Bt = B

}

t =

{(
0 B
−B 0

)
∈ sp(n,R):B diagonal

}

(2) Here we have complex block matrices according to the partion (p, q) of
p+ q .

u(p, q) =

{(
A B
B∗ D

)
:A∗ = −A,D∗ = −D,

}

k =

{(
A 0
0 D

)
∈ u(p, q)

}

t =

{(
A 0
0 D

)
∈ u(p, q):A,D diagonal

}

(3)

so∗(2n) =

{(
A −B
B A

)
:A,B ∈ Mat(n× n,C), At = −A,B∗ = B

}

k =

{(
A −B
B A

)
∈ so∗(2n):A = A = −A>, B = B = B>

}

t =

{(
0 −B
B 0

)
∈ k:B diagonal

}

Choose a maximal B -isotropic subspace F ⊆ E and an orthonormal
basis {v1, . . . , vr} of F . The number r is the real rank of u(B). We have

(VII.11) F ⊕ ϕBF = (Kv1 ⊕KϕBv1)⊕ . . .⊕ (Kvr ⊕KϕBvr).
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The (Kvj ⊕KϕBvj) are pairwise orthogonal w.r.t. (· | ·) and B . The matrix of

B on (Kvj ⊕KϕBvj) w.r.t. the basis {vj ,−ϕBvj} is

(
0 −1
1 0

)
. All B -isotropic

vectors are contained in F ⊕ ϕBF since

(VII.12) Ered := (F ⊕ ϕBF )⊥ = (F ⊕ ϕBF )⊥B .

We have Ered = {0} iff u(E) is of tube type.

In the standard cases we have

(1) sp(n,R), r = n , Ered = {0} .

(2) u(p, q), p ≥ q , r = q , Ered = Cp−q .

(3) so∗(2n), r =
[
n
2

]
, Ered =

{ {0} for n even
H for n odd

.

For the skewhermitean planes K2 := (Kvj ⊕ KϕBvj), the real rank of
u(B|K2) is 1 and the corresponding (H1)-homomorphism κj : sl(2,R)→ u(B|K2)
is the natural inclusion. We have in particular

Hκj =

(
1 0
0 −1

)
and Xκj =

(
0 1
0 0

)
.

Similarly (VII.11) gives an inclusion u(B|K2)r → u(B) which provides in par-
ticular an inclusion of sl(2,R)r . This makes it rather transparent how the dif-
ferent sl(2,R)-subalgebras sk look like, namely exactly like they are embedded
into sl(2,R)r . Using Proposition II.7, we see that all the Xκj are contained
in −Wmin( 1

2ϕB) and in fact generate it as an invariant closed convex cone. We
claim that

(VII.13) Wmax,B = Wmax

(
1
2ϕB

)
.

The inclusion ⊆ follows from ϕB ∈Wmax,B . For the converse let Y ∈Wmax( 1
2ϕB)

and v ∈ E be non-zero B -isotropic. Then there exists a g ∈ U(B) with g.v = v1

and we can extend {g.v,−ϕBg.v} to a orthogonal basis {w1, w2, . . . , wm} for
E . Then Xκ1

∈ EndK(E) satisfies Xκ1
.w2 = w1 , Xκ1

.wl = 0 for l 6= 2. Thus
Ad(g−1).Xκ1

= g−1Xκ1
g ∈ −Wmin( 1

2ϕB). But now we have

B(Y.v, v) = B
(
gY g−1.(g.v), g.v

)

=
(
ϕBgY g

−1.(g.v) | g.v
)

= −
(
gY g−1.(g.v) | ϕBg.v

)

=
(
gY g−1.w1 | w2

)

=
(
gY g−1Xκ1

.w2 | w2

)

= tr(gY g−1Xκ1
) ≤ 0

which implies the claim.

Now we turn the structure of the Jacobson-Morosow parabolics. The
(H1)-embedding described above shows that

(VII.14) zu(B)(H
k) = zu(B|K2k)(H

k)⊕ u(B|K2(r−k)⊕Ered
).
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Note that Hk belongs to the sl2 -triple of maximal rank in u(B|K2k).

In view of the simple structure of Hk , as an endomorphism of K2k , it is
clear that its commutant consists of those linear mappings leaving the eigenspaces
of Hk invariant. Writing accordingly K2k = Kk ⊕Kk , we see that

zu(B|K2k)(H
k) =

{(
A 0
0 −A∗

)}

so that we find
zu(B|K2k)(H

k) ∼= gl(k,K).

Putting all this together we get

(VII.15) zu(B)(H
k) ∼= u(B|Ek)⊕ gl(k,K) ∼= g1,k ⊕ g2,k,

where Ek = K2(r−k) ⊕Ered.

The corresponding parabolic qk is given by

(VII.16) qk = {X ∈ u(B):X.E(Hk; 1) ⊆ E(Hk; 1)},

where one has to read X.v as the matrix product v ·X since we are dealing with
a skew-field. To prove (VII.16) one checks that qk as above contains the minimal
parabolic, hence is parabolic, and then that it has the correct Levi algebra.

The corresponding flag manifold Mk := SU(E)/Qk is the space of all
k -dimensional isotropic subspaces of E . For k = 1 we find in particular the
isotropic part of the projective space and for k = r the space of all Lagrangian
subspaces. The minimal non-zero nilpotent orbit of convex type O1 is the image
of the map

{v ∈ V \ {0}:B(v, v) = 0} → u(B), v 7→ Xv,

where Xv is defined by

(VII.17) B(Y v, v) = tr(YXv), ∀Y ∈ u(B)

as can be seen from the considerations leading to (VII.13).

Note that the above class of examples covers (ignoring the trivial central
factor in u(p, q)) all simple hermitean Lie algebras up to so(n, 2) and the two
exceptional ones. We conclude with some explicit information on those cases (cf.
[29, pp.115–119]).

Example VII.1. For g = so(2, n) we have r = 2.

For k = 1 we have zg(Hk) ∼= sl(2,R) ⊕ RHk ⊕ so(n − 2), V1 is a real
module of dimension 2(n−2). More precisely, it is the tensor product R2⊗Rn−2 ,
where the factors are endowed with the natural representations.

For k = 2 we have zg(Hk) ∼= RHk ⊕ so(1, n − 1), V2 = {0} , and
U2
∼= Rn is n -dimensional Minkowski space. Here the parabolic corresponds to

the identification of g with the Lie algebra g(U2), where we consider U2 as a
Jordan algebra.
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Example VII.2. For the exceptional hermitean algebra g = e(6,−14) one has
r = 2.

For k = 1 we have zg(Hk) ∼= RHk ⊕ su(5, 1), and V1 is a real module
of dimension 20, hence a real form of

∧
3(C6).

For k = 2 we have zg(Hk) ∼= R ⊕ RHk ⊕ so(7, 1), dimU2 = 8 and
dimV2 = 16. Here V2 = V1 ⊗C V2 , where R acts on V1 = C by multiplication
by i and so(7, 1) acts on V2

∼= C8 according to the spin representation.

Example VII.3. For the exceptional hermitean algebra g = e(7,−25) one has
r = 3.

For k = 1 we have zg(Hk) ∼= RHk ⊕ so(10, 2), and that V1 is a real
module of dimension 32, hence the spin representation.

For k = 2 we have zg(Hk) ∼= sl(2,R)⊕RHk⊕ so(9, 1), dimU2 = 10 and
dimV2 = 32. Here V2 = R2⊗R R16 , where so(9, 1) acts on R16 according to the
spin representation.

For k = 3 we have zg(Hk) ∼= RHk⊕e(6,−26), dimU3 = 27 and V3 = {0} .
This is the Jordan algebra situation, where U3 = Herm(3, IO).
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