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A class of Lp convolutors
on harmonic extensions of H -type groups
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Abstract. Let S be a harmonic extension of an H -type group and call δ
its modular function. We find sufficient conditions on the spherical transform of

a radial distribution k on S , so that δ−zk is a left [resp. a right] convolutor

of Lp(S) , 1 < p < ∞ , for every complex z with 0 ≤ Rez ≤ 1 [resp.

−1 + 1/p ≤ Rez ≤ 1/p ].

1. Introduction

Given an H -type group N , let S = NA be the solvable extension of N obtained
by letting A = R+ act on N by homogeneous dilations; S is nonunimodular,
hence, as a Riemannian manifold, it is of exponential growth.

Geometric properties of these groups were studied by several authors;
among these E. Damek [8,9], who proved that in the general case there is no
group K acting transitively on geodesic spheres, A. Korányi [19], who proved that
the nilpotent algebra in the Iwasawa decomposition of a rank one semisimple Lie
algebra is H -type, and M. Cowling, A. H. Dooley, Korányi and F. Ricci [5,6], who
proved that these manifolds, whose structure is very similar to that of rank one
symmetric spaces, are in fact symmetric only in a few cases. Moreover Damek
and Ricci [10] showed that these extensions provide examples of nonsymmetric
harmonic manifolds, so disproving the Lichnerowicz conjecture [22].

In the very last years, Damek and Ricci [11], Ricci [20] began the study of
spherical analysis, i.e. the analysis of spherical functions and distributions on these
groups. They proved that, despite the lack of a compact group acting transitively
on geodesic spheres, one can define a transform, mapping radial distributions on
S to even distributions on R, analogous to the spherical transform on rank one
symmetric spaces.

A problem which has been studied in spherical analysis on a symmetric
space G/K is the Lp spherical multiplier problem: give sufficient conditions on
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the spherical transform of a K –invariant distribution k on the symmetric space
G/K so that the left-invariant operator f 7→ f ∗ k is bounded on Lp(G/K).

This problem has attracted some attention recently; we only mention a few
results in the case of symmetric spaces of the noncompact type and we refer to [7]
for further references.

The investigation started with the work of J. L. Clerc and E. M. Stein [4]
for multipliers of the Laplace–Beltrami operator (i.e. K –invariant right convo-
lutors) in the complex case; their work was carried on by R. J. Stanton and
P. A. Tomas [21] in the rank one case; they proved that if m extends to a bounded
holomorphic function on the strip T = {λ ∈ C : |Im(λ)| < ρ} and it satisfies Mih-
lin conditions of a suitable order, then m is an Lp multiplier; moreover an Lp mul-
tiplier needs to be holomorphic on the smaller strip {λ ∈ C : |Im(λ)| < |1−2/p|ρ}.

This result was improved by J. Ph. Anker [1] on symmetric spaces and
by S. Giulini, G. Mauceri and S. Meda [14] on rank one symmetric spaces, in
the complex case and on free groups. The first author proved that it is enough
to check that a Hörmander condition holds on the upper edge of the strip T .
The latter considered more general kernels, which are not necessarily integrable
at infinity; in the rank one case (of dimension n), given an even, holomorphic
function m defined on the strip of the complex plane T and defining the function
ω on C via ω(λ) = (λ2+4ρ2)(n−1)/4 , they proved that if (ωm)(·+iρ) is a Euclidean
Fourier multiplier of Lp(R), then m is a multiplier of Lp (i.e. the inverse spherical
transform of m is a right convolutor of Lp ).

A nonholomorphic functional calculus was found by Cowling, Giulini, A.
Hulanicki and Mauceri [7] for multipliers of a distinguished right-invariant laplacian
∆ on symmetric spaces, which is closely related to the Laplace–Beltrami operator
L. A similar result can be obtained also in the case of the harmonic groups we are
considering [2]; we remark that the kernel κ of the operator m(∆) is related to the
radial kernel k of the operator m(L) via the formula κ = δ−1/2k , where δ is the
modular function of the group S . Moreover, since L is a left-invariant operator
and ∆ is a right-invariant operator, we have m(L)f = f ∗ k and m(∆)f = κ ∗ f
for every function f on the group S .

These results suggest the investigation of the following problem: given a
radial distribution k on S and z in C, find sufficient conditions on the spherical
transform m of k , so that δ−zk is a left or a right convolutor of Lp(S) (with
respect to left Haar measure).

Suppose that the function m is holomorphic on the strip

T = {λ ∈ C : |Im(λ)| < Q/2},

where Q is the homogeneous dimension of N , and define the function ω : T → C
by the rule

ω(λ) = (λ2 +Q2)(n−1)/4.

Assume that ωm is bounded (and holomorphic) on T , so that, by the Fatou
Theorem, ωm has nontangential limit on the upper edge of T , i.e., the line
λ+ iQ/2, λ ∈ R; denote by (ωm)Q/2 this nontangential limit.

Our result is the following:
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Theorem 1.1. Let S be a harmonic extension of an H -type group and suppose
that m is an even, holomorphic function on the strip T such that (ωm)Q/2 is a
Euclidean Fourier multiplier of R for some p, 1 < p < ∞. Then δ−zk is a left
convolutor [resp. a right convolutor] of Lp(S) for every complex z , 0 ≤ Re(z) ≤ 1
[resp. −1/p′ ≤ Re(z) ≤ 1/p] with norm bounded by ‖(ωm)Q/2‖Mp(R) .

As we are requiring the function m to be holomorphic, the result in [2]
does not follow from Theorem 1.1; however Theorem 1.1 extends the result in [14]
regarding rank one symmetric spaces to the harmonic groups S we are considering.

As proved in [14] a theorem imposing Hörmander conditions follows from
ours and the condition we impose on m is optimal for k to be a right convolutor
of Lp(S), when S is symmetric.

The methods we employ are closely related to those in [14] and are based
on precise information about spherical functions and a transference result of
C. Herz [16], which lets us link left radial convolutors on S and convolutors on R
in a simple way. Moreover we notice that in the same hypotheses k is also a radial
left convolutor of Lp

′
(S), so that δ−1k is a left convolutor of Lp(S) and our result

follows by an interpolation argument.

Our paper is organized as follows: in Section 2 we introduce some notation
and recall the basic facts about H -type groups and Figà-Talamanca–Herz algebras.

In Section 3 we obtain asymptotic estimates of spherical functions both
when the distance from the identity is small, applying the same techniques of
Stanton and Tomas [21], and when the distance from the identity is large, extending
the results of Harish-Chandra and R. Gangolli [13].

Finally, in Section 4 we prove Theorem 1.1.

I wish to thank the referee for helpful suggestions that greatly improved the
content of this paper.

2. Preliminaries

Let n be a two-step nilpotent Lie algebra equipped with an inner product; n has
a nontrivial centre z and we denote by v its orthogonal complement with respect
to the inner product.

According to A. Kaplan [17], n is said to be an H -type Lie algebra if for
every unitary Z in z the map JZ : v −→ v, defined by the relation

〈JZX, Y 〉 = 〈Z, [X, Y ]〉,
is orthogonal.

An H -type group N is a connected, simply connected Lie group whose
Lie algebra n is H -type. Let S be a one dimensional extension of the group N
obtained by making A = R+ act on N by homogeneous dilations; let H denote
the vector of a ' R, the Lie algebra of A, acting on n with eigenvalues 1/2 and
1; we can extend the original inner product on n to the Lie algebra s = n ⊕ a of
the group S by requiring n and a to be orthogonal and H to be unitary.

The map

v× z× R+ −→ S

(X,Z, a) 7→ expS(X + Z) expS(log aH)
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is a global chart and using these coordinates the group law can be written as

(X,Z, a)(X ′, Z ′, a′) =
(
X + a1/2X ′, Z + aZ ′ +

1

2
a1/2[X,X ′], aa′

)
. (1)

If mv and mz are the dimensions of v and z respectively, then n =
mv +mz + 1 and Q = mv/2 +mz are the dimension of S and the homogeneous
dimension of N . From formula (1), it is easy to check that the left Haar measure
is a−Q−1dXdZda, and the right Haar measure is a−1dXdZda, so that the modular
function is δ(X,Z, a) = a−Q .

Cowling, Dooley, Korányi and Ricci [6] proved that a model for the action
of the group S is the unit ball B = {(X,Z, t) ∈ s : ‖X‖2 + ‖Z‖2 + |t|2 < 1} and
we can identify the group S with the ball B via the map

τ(X,Z, a) =
1

(
1 + a + 1

4
‖X‖2

)2
+ ‖Z‖2

((
1 + a+

1

4
‖X‖2 − JZ

)
X, 2Z,

−1 +
(
a +

1

4
‖X‖2

)2

+ ‖Z‖2

)
.

In this model the geodesics through the identity are the radii in B and geodesic
spheres are the spheres in the norm of s.

We say that a function φ on S is radial if it depends only on the distance
from the identity. A radial function φ is said to be spherical if

(i) φ(e) = 1;

(ii) φ is an eigenfunction of the Laplace–Beltrami operator L.

Let r be the distance of the point (X,Z, a) from the identity and define
the function A : R+ −→ R by

A(r) = 2mv+2mz (sinh(r/2))mv+mz (cosh(r/2))mz;

then the left Haar measure dx of the group S may be normalized so that

dx = A(r) dr dσ(ω),

where dσ(ω) is the surface measure on the unit sphere Ω = ∂B .

For every function f in C∞c (S) define the radial function πf in C∞c (S) by
averaging the values of f over geodesic spheres; the operator π defined in this way
is continuous on C∞c (S), so it extends to distributions. We say that a distributon
T on S is radial if πT = T ; every distribution T can be decomposed uniquely
into the sum T1 + T2 , with T1 radial and πT2 = 0.

As proved in [11], all spherical functions are of the form

φλ = π(δiλ/Q−1/2), λ ∈ C;

the corresponding eigenvalue is −(λ2 +Q2/4) and φλ = φ−λ .

If f is a radial function, its spherical transform is defined by

f̃(λ) =
∫

S
f(x)φλ(x) dx
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for all values of λ for which the integral converges.

Ricci [20] proved an inversion formula for this spherical transform: the rôle
of Harish-Chandra c–function in the case of rank one symmetric spaces is played
here by the function

c(λ) =
2Q−2iλΓ(2iλ)

Γ
(
Q+2iλ

2

)
Γ
(
n
2

)

Γ
(
mv+4iλ+2

4

) , ∀λ ∈ R.

The Plancherel measure is given by dµ(λ) = |c(λ)|−2dλ on R so that, for radial
functions f in Cc(S), the inversion formula reads

f(x) = c
S

∫

R
f̃(λ)φλ(x) dµ(λ),

where the constant c
S

depends only on mv and mz .

We recall some facts about Figà-Talamanca–Herz algebras on locally com-
pact groups G that will be crucial in our proof (see [12,16]). Lp spaces will always
be considered with respect to left Haar measure.

Let p be in (1,∞), and denote by p′ its conjugate index. The space
LCvp(G) of left convolutors of Lp(G) is defined as the space of all bounded linear
operators on Lp(G) which commute with right translations.

For every k in L1(G), let λp(k) denote the operator f 7→ k ∗ f on Lp(G);
clearly λp(L

1(G)) is contained in LCvp(G), and its ultraweak closure in LCvp(G)
is the space of left p-pseudomeasures PMp(G); when p = 2 or G is amenable, we
have PMp(G) = LCvp(G).

PMp(G) is the Banach dual of a space of continuous functions on G
vanishing at infinity; more precisely, the Figà-Talamanca–Herz algebra Ap(G) is
defined as the space of all functions ϕ in Co(G) that can be expressed as a sum∑
i gi ∗ f̌i , with fi ∈ Lp(G), gi ∈ Lp′(G) and f̌i(x) = fi(x

−1).

The norm of a function ϕ in Ap(G) is

‖ϕ‖Ap(G) = inf

{∑

i

‖gi‖Lp′(G) ‖fi‖Lp(G) : ϕ =
∑

i

gi ∗ f̌i, fi ∈ Lp(G), gi ∈ Lp
′
(G)

}
.

The dual Ap(G)∗ is isometrically identified with PMp(G) via the pairing

〈T, ϕ〉 =
∑

i

∫

G
Tfi gi dx T ∈ PMp(G), ϕ ∈ Ap(G),

for any decomposition of ϕ as above.

The Herz restriction Theorem [16] asserts that if H is a closed subgroup
of G, then the restriction to H of functions on G is a continuous operator from
Ap(G) to Ap(H).

3. Asymptotic expansions for the spherical functions

As the action of the Laplace–Beltrami operator L on a smooth radial function f
is

Lradf =
∂2

∂r2
f +

(
mv
2

coth
r

2
+mz coth r

)
∂

∂r
f (2)
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(see [11]), spherical functions may be expressed as hypergeometric functions via
the formula

φλ(r) = 2F1

(
1

2
(Q− 2iλ),

1

2
(Q+ 2iλ),

n

2
,− sinh2 r

2

)
, (3)

or as Jacobi functions (see [18]) φ
(α,β)
λ of parameters α = (mv + mz − 1)/2 and

β = (mz − 1)/2 via

φλ(r) = φ
(α,β)
2λ (r/2).

Our goal is to obtain an expansion of spherical functions φλ in terms of
Bessel functions Jµ as in [21].

It is useful to define the number

c
0

= 2mz π−1/2
Γ
(
n
2

)

Γ
(
n−1

2

)

and the functions on C

Jµ(z) = 2µ π1/2 Γ
(
µ+

1

2

)
Jµ(z)

zµ
,

for every µ ≥ 0.

In the next theorem we examine the local behaviour of spherical functions
and obtain an asymptotic expansion.

Theorem 3.1. There exist R0 , 2 < R0 < 2R1 , such that for any r , 0 ≤ r ≤ R0

and any integer N ≥ 0, we have

φλ(r) = c0

(
rn−1

A(r)

)1/2 N∑

`=0

a`(r)Jn−2
2

+`(λr) r
2` + EN+1(λ, r)

where

a0 ≡ 1 |a`(r)| ≤ C (4R1)−`

and the error term has the following behaviour

|EN+1(λ, r)| ≤ cN





r2(N+1) if |λr| ≤ 1

r2(N+1)|λr|−((n−1)/2+N+1) if |λr| > 1.

Moreover, for every r , 0 ≤ r < 2, the series

φλ(r) = c0

(
rn−1

A(r)

)1/2 ∞∑

`=0

a`(r)Jn−2
2

+`(λr) r
2`

is absolutely convergent.
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We omit the proof of this theorem, which is a straightforward adaptation
from [21], Theorem 2.1.

Now we employ Harish-Chandra method (see [15], p. 427), to study the
asymptotic behaviour of spherical functions φλ when the distance from the identity
is large.

We can write the radial part Lrad of the Laplace–Beltrami operator (2) as

∂2

∂r2
+Q

∂

∂r
+
mv
2

(
coth

r

2
− 1

)
∂

∂r
+mz (coth r − 1)

∂

∂r

and regard the last two terms as perturbations for large r .

So we try to find radial solutions to the equation Lu = −(λ2 + Q2/4)u of
the form ∑

Γµ(λ) e(iλ−Q/2−µ)r.

Substituting this expression into the equation and equating coefficients to the
powers e(iλ−Q/2−µ)r , we find the following recursion formula for the coefficient Γµ :

Γµ(λ) (µ2 − 2iµλ) = mv

µ∑

j=1

Γµ−j(λ) (Q/2 + µ− j − iλ) (4)

+ 2mz

[µ/2]∑

j=1

Γµ−2j(λ) (Q/2 + µ− 2j − iλ),

where [µ/2] is the greatest integer ≤ µ/2.

Let Γ0 ≡ 1; then Γµ(λ) is defined by formula (4) for every µ > 0.

As in [15], p. 428, Lemma 5.3, we can prove that for λ in C \ 1
2
iZ, for any

fixed R > 0, |Γµ(λ)| ≤ Cλ,R e
µR so that the series

∑
Γµ(λ)e(iλ−Q/2−µ)r is absolutely

and uniformly convergent outside a fixed ball and the term by term differentiation
is justified; moreover we can work out the analogue of Harish-Chandra well-known
formula

φλ(r) = c(λ)
∑

Γµ(λ)e(iλ−Q/2−µ)r + c(−λ)
∑

Γµ(−λ)e(−iλ−Q/2−µ)r (5)

for λ in C \ 1
2
iZ.

As in the symmetric case, we can compute the function c by evaluating

lim
r→+∞

e(−iλ+Q/2)rφλ(r)

when −mv/4−1 < Im(λ) < 0 and λ ∈ C\ 1
2
iZ in two different ways; remembering

formula (5), this limit equals c(λ), while remembering formula (3), this limit equals

2Q−2iλΓ(2iλ)

Γ
(
Q+2iλ

2

)
Γ
(
n
2

)

Γ
(
mv+4iλ+2

4

) .

By analytic continuation, we can conclude that

c(λ) =
2Q−2iλΓ(2iλ)

Γ
(
Q+2iλ

2

)
Γ
(
n
2

)

Γ
(
mv+4iλ+2

4

) ∀λ ∈ C \
{

0,
i

2
, i,

3

2
i, . . .

}
. (6)
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Let D be the region of the complex plane consisting of the points λ in C
such that |Im(λ)| ≤ |Re(λ)| or Im(λ) ≥ 0; on D we determine a better control of
the coefficients Γµ(λ) by adapting the method of Giulini, Mauceri and Meda [14],
Lemma 3.3.

Theorem 3.2. There exists a constant d such that

sup
λ∈D
|Γµ(λ)| ≤ C (1 + µ)d, ∀µ ∈ N.

Proof. The theorem is obviously true for µ = 0 with d = 0; so we may assume
that µ > 0.

Let D0 be the region {λ ∈ C : |Im(λ)| ≤ |Re(λ)|}; then D can be written
as the union of the regions D0 + iθ , θ ≥ 0. We will prove the theorem by showing
that, for every fixed θ ≥ 0, there exist constants C and d, independent from θ ,
such that

sup
λ∈D0

|Γµ(λ+ iθ)| ≤ C µd

for every µ ≥ 1.

We notice that for every a, b in R+

sup
z∈D0

∣∣∣∣
a− iz
b− iz

∣∣∣∣ ≤
√

2 max(1, a/b),

so that, remembering formula (4),

sup
λ∈D0

|Γ1(λ+ iθ)| ≤
√

2mv
2

max

(
2θ +Q

2θ + 1
, 1

)
≤
√

2Qmv
2

.

Let c̄ be the constant
√

2Qmv/2. We proceed by induction on µ. Suppose
that the estimate

sup
λ∈D0

|Γν(λ+ iθ)| ≤ c̄ νd

holds for every ν ≤ µ− 1; we will show that

sup
λ∈D0

|Γµ(λ+ iθ)| ≤
√

2(3 +Q)Q

d+ 1
c̄ µd.

This estimate is deduced from the recursion formula (4); in fact for every
complex λ in D0 , we have for the first term

mv
µ

µ−1∑

j=0

|Γj(λ+ iθ)|
∣∣∣∣∣
Q/2 + θ + j − iλ
µ+ 2θ − 2iλ

∣∣∣∣∣ ≤
√

2mv c̄

2µ

µ−1∑

j=0

max

(
1,
Q/2 + θ + j

µ/2 + θ

)
jd.

Approximating the sum with an integral, we obtain

≤
√

2mv c̄

2µ

∫ µ

0

(
Q+ 4θ + µ

2θ + µ
xd +

2

2θ + µ
xd+1

)
dx

≤
√

2mv(3µ+ 4θ +Q)

2(d+ 1)(µ+ 2θ)
c̄ µd ≤

√
2mv(3 +Q)

2(d+ 1)
c̄ µd.
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For the second term we may compute in a similar way that
∣∣∣∣∣∣
2mz

µ

[µ/2]∑

j=1

Γµ−2j(λ+ iθ)
Q/2 + θ + µ− 2j − iλ

µ+ 2θ − 2iλ

∣∣∣∣∣∣
≤
√

2mz(3 +Q)

d+ 1
c̄ µd.

Now we may choose d big enough so that
√

2Q(3 + Q) ≤ d + 1 and the desired
estimate for Γ(λ+ iθ) follows.

Notice that all the constants involved do not depend on θ , so the theorem
is proved.

4. Proof Theorem 1.1

Our first object is to prove that k is a left convolutor of Lp(S). In order to do
this, we proceed as in the paper by Giulini, Mauceri and Meda [14]. We split
up the proof into two parts: the analysis of the kernel near the identity and the
analysis of the kernel away from the identity (Proposition 4.3 and Proposition 4.5,
respectively), where we use the results of the previous section; we deal with left
convolutors first because of the restriction argument of Lemma 4.1.

Afterwards we exploit the duality argument (Mp(R) = Mp′(R)) to prove
that k is also a left convolutor of Lp

′
(S); as radial left convolutors are not self-

adjoint, this fact adds true information and the full result follows from the Stein
interpolation Theorem.

Let k be the inverse spherical transform of m, i.e.,

k(x) =
∫

R
m(λ)φλ(x) |c(λ)|−2 dλ

in distributional sense.

For the sake of brevity, denote by M(λ) the function on R

M(λ) = m(λ)c−1(−λ).

The function M extends to an holomorphic and bounded function in any strip
of the form {λ ∈ C : ε − Q/2 ≤ Im(λ) < Q/2}, ε > 0; in particular M has
nontangential limit on the line λ+ iQ/2, λ ∈ R, which we will call (M)Q/2 .

Our proof relies strongly on the following consequence of the Herz restriction
Theorem [16]:

Lemma 4.1. Let p be in (1,∞) and suppose that h0 is an even distribution on
R such that h0A(| · |) is in Cvp(R). Then the radial distribution h on S , defined
by

〈 h, ϕ 〉S = 〈 h0A(| · |), ϕ(| · |) 〉R
for every radial function ϕ in C∞c (S), is a left convolutor of Lp(S) and

‖h‖LCvp(S) ≤ ‖h0A(| · |)‖Cvp(R).
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Proof. For every ω in the unit sphere Ω of the Lie algebra s define the
restriction operator Rω : C∞c (S) → C∞c (R) restricting the values of a function
on the group S to the one parameter group defined by the vector ω , i.e.,

(Rωf)(r) = f(rω),

for every function f in C∞c (S) and every r in R.

By the Herz restriction Theorem [16], each Rω extends to a bounded
operator from Ap(S) to Ap(R), with norm uniformly bounded by 1.

Define the operator R : C∞c (S)→ C∞c (R) by

Rf =
∫

Ω
Rωf dσ(ω).

Since
‖Rf‖Ap(R) ≤

∫

Ω
‖Rωf‖Ap(R) dσ(ω) ≤ C ‖f‖Ap(S),

R extends to a bounded operator from Ap(S) to Ap(R).

But for every radial test function ϕ on the group S , we have

〈h, ϕ〉S = 〈h0A(| · |), ϕ(| · |)〉R = 〈 tR
(
h0A(| · |)

)
, ϕ〉S.

Moreover the distribution tR (h0A(| · |)) is radial, so that h = tR (h0A(| · |)).

Therefore, as tR is a bounded operator from the dual Ap(R)∗ = Cvp(R) to
Ap(S)∗ = LCvp(S) (remember that S is solvable, hence amenable), we conclude
that h is in LCvp(S) and

‖h‖LCvp(S) =
∥∥∥ tR

(
h0A(| · |)

)∥∥∥
LCvp(S)

≤ ‖h0A(| · |)‖Cvp(R)

as required.

We will have to estimate derivatives of the c-function, so we prove the
following Lemma.

Lemma 4.2. The function λ 7→ |c(λ)|−2 on R satisfies the estimate

∣∣∣∣∣
dα

dλα
|c(λ)|−2

∣∣∣∣∣ ≤ Cα(1 + |λ|)n−1−α

for every integer α ≥ 0.

Proof. This is an immediate consequence of formula (6). Indeed we can easily
check that

if mz = 2κ and mv = 2` are both even,

|c(λ)|−2 = C
κ−1∏

j=0

(
(j + `/2)2 + λ2

) `−1∏

j=0

(j2 + 4λ2);
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if mz = 2κ+ 1 is odd and mv = 4`,

|c(λ)|−2 = C λ tanh(πλ)
`+κ−1∏

j=0

(
(j + 1/2)2 + λ2

) `−1∏

j=0

(
(j + 1/2)2 + λ2

)
;

if mz = 2κ+ 1 is odd and mv = 4`+ 2,

|c(λ)|−2 = C λ coth(πλ)
`+κ∏

j=0

(j2 + λ2)
∏̀

j=1

(j2 + λ2);

so the result follows by straightforward computations.

We start by analyzing the local behaviour of the kernel k .

Let ψ be a smooth cut-off function on the group S supported in the ball
of radius R0 centered at the identity such that 0 ≤ ψ ≤ 1, ψ = 1 in the ball of
radius R

1/2
0 , where R0 is defined in Theorem 3.1.

Proposition 4.3. Let m be an even function on R and suppose that M is a
Euclidean Fourier multiplier of Lp(R), for some p, 1 < p < ∞. Then ψk is in
LCvp(S) and

‖ψk‖LCvp(S) ≤ C ‖M‖Mp(R).

Proof. We claim that it is enough to prove the proposition when m is rapidly
decreasing at infinity.

In fact, for general m, we define the multipliers on R

mt(λ) = m(λ)e−t(λ
2+Q2/4) ∀t ∈ R+.

Then the inverse spherical transform kt of the multiplier mt is given by

kt = ht ∗ k,

where ht is the heat kernel corresponding to etL on S ; moreover mt is rapidly
decreasing at infinity, therefore by this lemma applied to mt , we obtain

‖ψkt‖LCvp(S) ≤ C ‖Mt‖Mp(R).

But ‖Mt‖Mp(R) = ‖M‖Mp(R) for all t in R+ , hence

sup
t
‖ψkt‖LCvp(S) ≤ C ‖M‖Mp(R)

and we conclude

‖ψk‖LCvp(S) = lim
t→0+
‖ψkt‖LCvp(S) ≤ C ‖M‖Mp(R),

as required.
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From now on we will assume that m is rapidly decreasing at infinity. By
Theorem 3.1 for N = 1, we have that ψ(r)k(r) equals

ψ(r) c0

(
rn−1

A(r)

)1/2 ∫

R
m(λ)

(
Jn−2

2
(λr) + r2a1(r)Jn

2
(λr)

)
|c(λ)|−2dλ

+ ψ(r)
∫

R
m(λ)E2(λ, r) |c(λ)|−2dλ

= Ψ0(r) + Ψ1(r) + Ψ2(r).

We split the integrals over R into the sum of the integrals where |λ| < r−1

and |λ| ≥ r−1 , so we rewrite the last sum as Ψ0
0 + Ψ∞0 + Ψ0

1 + Ψ∞1 + Ψ0
2 + Ψ∞2 .

Ψ0
0 is in L1(S), hence it is a left convolutor of Lp(S), for every p in

[1,∞]; indeed, remembering that for small r , A(r) behaves as rn−1 , |c−1(λ)| ≤
(1 + |λ|)(n−1)/2 and |Jµ(z)| ≤ 1 for z ∈ [0, 1], we have

∫

S
|Ψ0

0(x)|dx = c0

∫ R0

0
ψ(r)

(
rn−1

A(r)

)1/2 ∫

|λ|<r−1
M(λ)Jn−2

2
(λr) c−1(λ)dλA(r)dr

≤ C ‖M‖L∞(R).

In a similar way one can check that Ψ0
1 , Ψ0

2 , Ψ∞2 , are in L1(S) with norm
bounded by ‖M‖L∞(R) .

For the other terms, we use the following asymptotic expansions of Bessel
functions,

Jn−2
2

+j(z) =

√
2

π
z

1−n
2
−j
(

cos(z + ε)− βn
sin(z + ε)

2z
+O(z−2)

)
∀z ∈ [1,∞),

where βn =
(
n−2

2

)2 − 1
4

and ε =
(

1−n
4
− j

2

)
π .

So Ψ∞j (j = 0, 1) may be written as the sum of the radial functions kj,0 ,
kj,1 and an error term; more precisely

kj,`(r) = c` ψ(r)

(
rn−1

A(r)

)1/2

r2jaj(r)
∫

|λ|>r−1
M(λ)|λr|−α T`(λr + ε)c−1(λ) dλ,

where α = n−1
2

+ j + `, T0(t) = cos t and T1(t) = sin t.

k1,1 and the error term are easily seen to be in L1(S), with norm controlled
by ‖M‖L∞(R) .

So we have to deal with the case j + ` ≤ 1; we denote by η a smooth
cut-off function on the real line such that 0 ≤ η ≤ 1, η(r) = 1 for |r| ≤ 1/R0 and
η(r) = 0 for |r| > 2/R0 .

We split kj,` into the sum of the functions Ej,` and Kj,` , where

Ej,` = c` ψ(r)

(
rn−1

A(r)

)1/2

r2jaj(r)
∫

|λ|>r−1
M(λ) η(λ) |λr|−α T`(λr + ε) c−1(λ) dλ

Kj,` = c` ψ(r)

(
rn−1

A(r)

)1/2

r2jaj(r)
∫

R
M(λ) (1− η(λ)) |λr|−α T`(λr + ε) c−1(λ) dλ.
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One can compute that Ej,` is in L1(S), so we are left to deal with Kj,` .

By Lemma 4.1, all we need to prove is that the even function on R defined
by

K0
j,`(r) = A(r)Kj,`(r) ∀r ∈ R+

is in Cvp(R).

Since Cvp(R) = Cvp′(R) and Mp(R) =Mp′(R), we can restrict ourselves
to the situation 1 < p ≤ 2.

Equivalently, we shall prove that the even function K∗j,` : R → C, defined
by the rule

K∗j,`(r) = Bj,`(r)
∫

R
M(λ) (1− η(λ)) |λr|−α e−iλr c−1(λ) dλ ∀r ∈ R+ (7)

is a convolutor of Lp(R). The function Bj,` in formula (7) is of the form

Bj,`(r) = r−2`+α ψ′(r),

where ψ′ is a bounded function on R, with compact support and smooth away
from the origin.

Denote by Pα the function on the real line

Pα(λ) = (1− η(λ)) |λ|−α c−1(λ).

By Lemma 4.2, Pα is an Hörmander multiplier for every α ≥ (n− 1)/2.

Assume first that j + ` = 1, i.e., α = (n + 1)/2. Then Bj,` is in Lq(R)
for every q in (1,∞) and Pα is the Fourier transform of a function in Lq(R) for
every q in [1,∞).

In our hypotheses the function M is in Mp(R) = Mp′(R), thus applying
Hölder inequality, we obtain

‖K∗j,`‖L∞(R) ≤ C ‖Bj,`‖Lp(R) ‖F(MPα)‖Lp′(R) ≤ C ‖M‖Mp(R).

This proves that the compactly supported function K∗j,` is in L1(R), with
the appropriate norm bound.

Finally, if j = ` = 0, i.e., α = (n − 1)/2, the function MPα is in Mp(R)

and B0,0 is in the Besov–Lipschitz space Λ
1/2
2,1 (R), therefore (see [3]) B0,0 is in

A2(R) ⊆ Ap(R). Since Cvp(R) is an Ap(R)-module, we deduce that K∗j,` is in
Cvp(R) and

‖K∗j,`‖Cvp(R) ≤ ‖B0,0‖Ap(R) ‖F(MPα)‖Mp(R) ≤ C ‖M‖Mp(R).

This concludes the proof of the proposition.

We now investigate the behaviour of the kernel k at a large distance from
the identity. We will need a refined version of Theorem 3.2, regarding multiplier-
type estimates of the coefficients Γµ in the expansion of spherical functions (5).
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Lemma 4.4. Let 1 < p < ∞. The functions Γµ(· + iQ/2) are Euclidean
Fourier multipliers of Lp(R) and there exists a constant d such that

‖Γµ(·+ iQ/2)‖Mp(R) ≤ C µd ∀µ ≥ 1.

Proof. From Theorem 3.2 it follows that

‖Γµ(·+ iQ/2)‖L∞(R) ≤ C µd ∀µ ≥ 1.

If γλ+iQ/2 denotes the circle in the complex plane centered at λ + iQ/2 and of
radius Q/2, an application of the Cauchy integral formula yields

∣∣∣∣∣
d

dλ
Γµ(λ+ iQ/2)

∣∣∣∣∣ =

∣∣∣∣∣
1

2πi

∫

γλ+iQ/2

Γµ(w)

(w − (λ+ iQ/2))2
dw

∣∣∣∣∣ ≤ C µd,

but we can give a better estimate for the derivative of Γµ(·+ iQ/2) for large values
of |λ|.

Let γ′λ+iQ/2 be the circle in the complex plane centered at λ+ iQ/2 and of

radius |λ|/
√

2. Notice that γ′λ+iQ/2 lies inside the region D . Thus by using the
Cauchy integral formula, we obtain that

∣∣∣∣∣
d

dλ
Γµ(λ+ iQ/2)

∣∣∣∣∣ =

∣∣∣∣∣
1

2πi

∫

γ′
λ+iQ/2

Γµ(w)

(w − (λ+ iQ/2))2
dw

∣∣∣∣∣ ≤ C
µd

|λ| .

Proposition 4.5. Let m be an even function on R and suppose that M and
(M)Q/2 are Euclidean Fourier multipliers of Lp(R), for some p, 1 < p < ∞.
Then (1− ψ)k is in LCvp(S) and

‖(1− ψ)k‖LCvp(S) ≤ C
(
‖M‖Mp(R) + ‖(M)Q/2‖Mp(R)

)
.

Proof. We may assume that M and (M)Q/2 are rapidly decreasing at infinity,
otherwise we can argue as in Proposition 4.3.

By Lemma 4.1, it is enough to show that the even function K on R defined
by

K(r) = A(r) (1− ψ(r)) k(r) ∀r ∈ R+

is in Cvp(R).

Using formula (5) and expanding A(r) = eQr
∑2Q
j=0 cje

−jr , we can write for
every r in R+

K(r) = (1− ψ(r)) eQr/2
∞∑

µ=0

e−µr
2Q∑

j=0

cj

∫

R
M(λ) Γµ−j(λ) eiλr dλ,

with Γµ ≡ 0 if µ < 0.
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Define the functions on the real line

a±µ (r) = (1− ψ(|r|)) χ
[0,+∞)

(±r) e∓µr

b±µ−j(r) =
∫

R
M(λ) Γµ−j(λ) e±(iλ+Q/2)r dλ (8)

Kµ,j = a−µ b
−
µ−j + a+

µ b
+
µ−j.

Then K =
∑∞
µ=0

∑2Q
j=0 cjKµ,j .

As the function λ 7→ c−1(−·)Γµ(·) is analytic for Im(λ) > −mv/4 − 1/2
and M decays rapidly at infinity, we may shift the path of integration in (8) to
the upper edge of T and obtain

Kµ,j(r) = a−µ (r)F((MΓµ−j)Q/2)(r)+a+
µ (r)F (M(− ·+iQ/2)Γµ−j(− ·+iQ/2)) (r),

where F denotes the Fourier transform on R.

If µ > 0, the functions a±µ are in Ap(R), with norm bounded above

by C µ1/2e−µ , because we can control their Ap -norm with their Sobolev norm
‖a±µ ‖L2(R) + ‖(a±µ )′‖L2(R) .

Cvp(R) is an Ap(R)-module, therefore by Lemma 4.4 we have that

‖Kµ,j‖Cvp(R) ≤ ‖a−µ ‖Ap(R) ‖(MΓµ−j)Q/2‖Mp(R) + ‖a+
µ ‖Ap(R) ‖(MΓµ−j)Q/2‖Mp(R)

≤ Cµd+1/2e−µ ‖(M)Q/2‖Mp(R).

We are left with the case µ = 0.

Let η± be the functions on the real line defined by the rule

η±(r) =
(
(1− ψ(r))χ

[0,∞)
(±r)− 1

)
e∓Qr;

then K0,0 can be written as

K0,0 = b−0 + (η− − 1) b−0 + b+
0 + (η+ − 1) b+

0

= F((M)Q/2) + η−F(M) + η+F(M(−·)) + F(M(− ·+iQ/2)).

We notice that we have expressed K0,0 as the sum of the kernels corre-
sponding to the multiplier (M)Q/2 and of other two terms which are the product
of a function in Ap(R) times the kernel corresponding to the multiplier M .

So ‖K0,0‖Cvp(R) ≤ C(‖M‖Mp(R) + ‖(M)Q/2‖Mp(R)) and

‖K‖Cvp(R) ≤ C
2Q∑

j=0

∞∑

µ=1

µC1+1e−µ
(
(‖M‖Mp(R) + ‖(M)Q/2‖Mp(R)

)

= C
(
‖M‖Mp(R) + ‖(M)Q/2‖Mp(R)

)
.

We are now ready to prove our result, Theorem 1.1.

Proof of Theorem 1.1.

We argue as in [14], Theorem 3.1. By Proposition 4.3 and Proposition 4.5,
it is enough to show that in our hypotheses M and (M)Q/2 are Euclidean Fourier
multipliers of Lp(R).
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The function (ωm)Q/2 is in Mp(R) and, since it is even, the same is true
of (ωm)−Q/2 ; hence their kernels ν1 = F−1((ωm)Q/2) and ν−1 = F−1((ωm)−Q/2)
are convolutors of Lp(R).

For every complex z , with |Re(z)| ≤ 1, define the distributions νz on R by

νz = F−1((ωm)zQ/2)

Since for every real y , ν1+iy = eiyQ/2ν1 and ν−1−iy = e−iyQ/2ν−1 , ν1+iy and ν−1−iy
are convolutors of Lp(R), with norm bounded by ‖(ωm)Q/2‖Mp(R) .

We now invoke the Stein complex interpolation theorem, to conclude that
νη is a convolutor of Lp(R) for every η in (−1, 1); therefore (ωm)ηQ/2 = F(νη) is
a Euclidean Fourier multiplier of Lp(R) for every η ∈ (−1, 1), with norm bounded
by ‖(ωm)Q/2‖Mp(R) .

Define the function w : T → C by

w(λ) =
c−1(−λ)

ω(λ)
.

Using Lemma 4.2, we may prove that w and (w)Q/2 are Euclidean Fourier multi-
pliers of Lp(R), because they satisfy Hörmander conditions of arbitrary order on
R. But then M = ωmw and (M)Q/2 = (ωm)Q/2(w)Q/2 are Euclidean Fourier
multipliers of Lp(R) with the appropriate norm bound.

So far we have proved that k is a left convolutor of Lp(S) ; to complete the
proof of the theorem, we need two simple considerations.

Let q be in (1,∞) and let h be a left convolutor of Lq(S); it is easy to
check that if Th denotes the operator defined on Lq(S) by f 7→ h ∗ f , then the
transpose operator tTh coincides with the operator Tδ−1ȟ defined on Lq

′
(S).

The second argument is the relation between left and right convolutors on
nonunimodular groups; more precisely, h is a left convolutor of Lq(S) if and only
if δ−1/qȟ is a right convolutor of Lq(S).

As Mp(R) = Mp′(R) (with equality of norms), we infer that k is also a
left convolutor of Lp

′
(S), hence, as k is radial, δ−1ǩ = δ−1k is in LCvp(S).

For every complex z , Re(z) ∈ [0, 1], define the distributional kernels

κz = δ−zk.

Then if y is real

κ1+iy = δ−iyδ−1k and κiy = δ−iyk.

Since δ−iy is purely imaginary and is a homomorphism of the group S , κ1+iy and
κiy are left convolutors of Lp(S), with the same norm bound ‖(ωm)Q/2‖Mp(R) .

By the Stein complex interpolation Theorem, we conclude that κz is a left
convolutor of Lp(S), for every complex z such that Re(z) ∈ (0, 1).

On the side of right convolutors, we conclude that δ−1/p(δ−zk)∨ = δz−1/pk
is a right convolutor of Lp(S), for every complex z such that Re(z) ∈ [0, 1].
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