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1. Introduction

It is often desirable to apply the theory of Lie groups to more general locally com-
pact groups G. This can be done if G can be represented as some kind of limit
of Lie groups. In this spirit notions like ‘Lie-projective group’ or ‘group approxi-
mated by Lie groups’ have been created since the middle of this century. In the
present paper, we want to compare some of these notions.
We consider three typical notions of approximation (see [12], [3] and [5]), and
characterize them in terms of (projective) limits and of certain families of normal
subgroups. Finally, examples show that the class of Lie groups, the class of locally
compact Hausdorff groups and the three classes of groups approximated by Lie
groups are different. Moreover, we rectify a statement in J. Szenthe’s paper [12]
on Hilbert’s fifth problem.
The author would like to thank K. H. Hofmann, R. Löwen and M. Stroppel
for helpful conversations.

2. Three different notions of approximation

In this and the following sections we will use certain (families of) normal subgroups
frequently. So, we first of all assign short names to them.

Definition 2.1. For a topological group G a family N of (compact) normal
subgroups with

⋂N = {1} is called a (compact) Lie-normal family, if every mem-
ber N ∈ N is Lie-normal, in the sense that the factor group G/N is a Lie group.

Note that only Hausdorff groups can have a Lie-normal family, and that
every group with a locally compact Lie-normal subgroup is neccessarily locally
compact. Furthermore, we may assume that a (compact) Lie-normal family is not
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empty. Talking about order properties for Lie-normal families, we always refer to
the superset order ⊇.
For a start, we recall the usual definition of a Lie-projective group, or a group
approximated by Lie groups (see e. g. [3], p. 57 or [11], p. 58). Many authors used
this notion (e. g. [10], part 2 p. 101, [2], Lemma 1.7 and [9], p. 153, 175).

Definition 2.2. A locally compact Hausdorff group is called Lie-projective, if
every neighbourhood of the identity contains a compact Lie-normal subgroup.

Note that we only need one of the two conditions ‘the group is locally
compact’ and ‘the Lie-normal subgroup is compact’. A weak sufficient condition
for a group to be Lie-projective is the following: the group is a locally compact
Hausdorff group, and its factor group modulo the maximal connected subgroup
is compact. Therefore each locally compact Hausdorff group has an open, Lie-
projective subgroup (see [14], p. 48 together with [2], Lemma 1.4 and 4.5).
The notion of an ‘(L)-group’ in [5] (p. 541) uses a Lie-normal family instead of
small Lie-normal subgroups (which means that each neighbourhood of the identity
contains such a subgroup.) As every Lie-projective group is neccesarily an (L)-
group, we call an (L)-group weakly Lie-projective here.

Definition 2.3. A locally compact Hausdorff group is called weakly Lie-projec-
tive, if it has a Lie-normal family.

Remark 2.4. Let G be a locally compact group. If G has a Lie-normal family
N , then the canonical maps G → G/N with N ∈ N separate the points of G.
Conversely, given Lie groups Gi and continuous homomorphisms fi : G→ Gi for
i ∈ I separating the points of G, the kernels ker fi form a Lie-normal family, as
the induced maps G/ ker fi → Gi are continuous monomorphisms into Lie groups,
and hence G/ ker fi cannot have small subgroups.

Clearly the Hausdorff condition is redundant. However, there are groups
possessing a Lie-normal family which are not locally compact (infinite products of
non-compact Lie groups). On the other hand, a locally compact Hausdorff group
does not neccessarily have a Lie-normal family (see Example 5.3).
A stronger notion of approximation was given in [12], p. 324. There one only
considers well-ordered compact Lie-normal families. We can even assume that the
family is order isomorphic to the natural numbers (see Section 4), and therefore
we use the term ‘countably’ in the following definition.

In the following we shall call a map f : (I,≤)→ (X,�) relation preserving,
if fi � fj holds whenever i ≤ j is valid. The poset I is called directed, if any
two elements of I have a common upper bound. It is called comparing, if any two
elements of I are comparable. A subset C ⊆ I is cofinal, if every element of I
has an upper bound in C .
Note that a relation preserving image of a well-ordered, directed or comparing
set has the same property. The comparing orders are exactly the total orders. A
cofinal subset of a directed set is itself directed.
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Definition 2.5. A Hausdorff group is called countably Lie-projective, if there
exists a compact Lie-normal family (N ,⊇) which is a relation preserving image
of a well-ordered (non-empty) set of indices.

A cofinal subfamily of a Lie-normal family is itself Lie-normal.
It is true, though not obvious from the definition, that a countably Lie-projective
group is in fact Lie-projective.

Lemma 2.6. If (N ,⊇) is a non-empty and directed compact Lie-normal fam-
ily, then every neighbourhood of the identity contains a member of N .

Proof. Let us assume that there exists a (non-empty) directed compact Lie-
normal family (N ,⊇) and an open neighbourhood U of the identity such that
none of the sets N \ U with N ∈ N is empty. Thus we have a filter base of
compact (and hence closed) sets. Therefore their intersection (

⋂N ) \ U is not
empty — which is impossible.

Corollary 2.7. For the three notions of approximation defined in this section,
the following implication chain is valid:

‘countably Lie-projective’ =⇒ ‘Lie-projective’ =⇒ ‘weakly Lie-projective’

3. Limits of Lie groups

A good motivation for the notion ‘Lie-projective’ is given in [2], Lemma 1.7 (using
results of [13]): Lie-projective groups are exactly the locally compact projective
limits of Lie groups. Therefore we recall in this section the categorial definition of
a (projective) limit and some basic properties (see also [1], p. 206–208 for a short
introduction).

Definition 3.1. For an arbitrary category C a diagram is a functor D : I→ C.
A cone (X, fi) over the diagram D consists of an object X ∈ C, the vertex, to-
gether with arrows fi : X → D(i) for each object i ∈ I, such that D(a) ◦ fi = fj
holds for every arrow a : i→ j of I.
A limit cone (X, fi) over D is one with the following universal property: for each
cone (Y, gi) over D there is exactly one arrow g : Y → X factorizing gi = fi ◦ g
for each object i ∈ I. The vertex X is then called a limit of D .

A partially ordered set I = (I,≤) may be viewed as a category such that
one and only one arrow i→ j exists if and only if j ≤ i.

Definition 3.2. A diagram from a partially ordered set I is called a projective
system, if I is directed. A limit (cone) of a projective system is called a projective
limit (cone).
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The projective systems are simply the systems (I, Xi, fji, j ≤ i) with a
directed order ≤ on I , objects Xi for each index i ∈ I , and arrows fji : Xi → Xj

for each pair j ≤ i of indices, where fkk = idXk and fkj ◦ fji = fki holds for all
triples k ≤ j ≤ i (see also [1], p. 208).
It seems to be a strong restriction if we only consider projective limits. However,
there is a canonical way to represent a limit as a projective limit of sublimits. To
keep things simple, we demand that a sublimit is a limit of the diagram restricted
to a full subcategory. Thus this subcategory can be regarded as a set of objects of
the index category.
Moreover, for projective limits it is sometimes very easy to get more than a directed
order by using cofinal subsets of indices.

Lemma 3.3. In any category the following holds:

(a) If they exist, limit cones are unique up to isomorphism. Moreover, every
limit of a projective system which is defined on a cofinal subset of a directed
index set is a projective limit of the whole system.

(b) For a given diagram on a category with a set I of objects, let (F ,⊆) be a
directed family of subsets of I which covers I , and let XF be a sublimit with
index category F for each subset F ∈ F ∪{I}. Then there are, for members
G ⊆ F of F ∪ {I}, canonical arrows fGF : XF → XG , such that (XI , fFI)
is a projective limit cone over the projective system (F , XF , fGF , G ⊆ F ).

Proof. Limits are unique by III.4 in [8]. Dualize XI.3.1 in [8] to see that a
sublimit over a cofinal subset approximates the whole projective system. For the
rest of the lemma we argue as follows:
For a subset G let (XG, f

G
i ) be a limit cone over the diagram restricted to G.

Using its universal property we get the canonical arrow fGF for supersets F ⊇ G.
Thus the system constructed above is projective and (XI , fFI) is a cone over it.
Given another cone (Y, gF ), the morphisms gi := fFi ◦ gF with i ∈ F ∈ F are
well-defined and form a cone with vertex Y over the old diagram. Therefore we
can show the universal property of (XI , fFI) using that of (XI , f

I
i ).

Now we focus on the category TG of topological groups and look at limits
of Lie groups in particular. For a given diagram D : I→ TG we let limD be the
topological subgroup of the direct product

∏
D(i) (where i ranges over the objects

of I) consisting of the points (xi) with D(a)xi = xj for all arrows a : i→ j of I.
If we write pi for the i-th product projection restricted to limD , then we obtain
a limit cone (limD, pi) of D (see [8], V.2.2).
Hence every limit of Lie groups is a closed subgroup of their product, and every
sublimit over a finite set of index objects is a Lie group. Applying Lemma 3.3 to
the family of all finite sets of index objects we therefore conclude:

Corollary 3.4. Every limit of Lie groups with a set I of index objects is a pro-
jective limit of Lie groups with a directed order whose cardinality does not exceed
the cardinality of I .
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4. Characterizations

This section presents two theorems. Each of them states a list of conditions
equivalent to a notion of approximation, involving other notions of approximation,
(projective) limits and Lie-normal families.
We start with a characterization of projective limits of Lie groups with index set
I by Lie-normal families N , showing the interplay between the order on I and
the order on N — see also [13] (p. 23–26). Remember the remarks accompanying
Definition 3.2 concerning the canonical relation.

Lemma 4.1. For a locally compact group G the following implications hold:

(a) Assume that (G, fi) is a limit cone over a diagram of Lie groups with a
directed index category I.
Then the image (N ,⊇) of the relation preserving map I 3 i 7→ ker fi is a
directed Lie-normal family having a cofinal compact Lie-normal subfamily.

(b) Given a directed and ordered index set I , assume that the image (N ,⊇) of
a relation preserving map I 3 i 7→ Ni is a Lie-normal family which has a
cofinal compact Lie-normal subfamily.
Then (G, fi) is a projective limit cone over the projective system (I, G/Ni, fji)
of Lie groups, if we let the maps fi : G→ G/Ni and fji : G/Ni → G/Nj be
the canonical ones.

Proof. (a) We may assume I 6= Ø and (G, fi) = (limD, pi), where D denotes
the given diagram of Lie groups (see the end of Section 3). If j ≤ i holds for two
index objects, we find an arrow a : i→ j of I, and D(a) ◦ fi = fj is valid. Hence
the map i 7→ ker fi is relation preserving, and its image (N ,⊇) is directed.
Therefore each neighbourhood of the identity of limD , being a superset of a finite
intersection of members of N , is a superset of a single member of N . Hence the
intersection

⋂N , being a subset of the intersection of all neighbourhoods of the
identity, is trivial, as limD is a Hausdorff group. Furthermore the subfamily of
all N ∈ N which are contained in a fixed compact neighbourhood of the identity
is cofinal.
It remains to show that G/ ker fi is a Lie group. But there is a continuous mono-
morphism from G/ ker fi into a Lie group, whence it cannot have small subgroups.
(b) As we may assume that N is not empty, every neighbourhood of the identity
contains a member of N (by Lemma 2.6). Now we can use [13] (p. 25).

The characterization of Lemma 4.1 is the main tool for the proof of the two
theorems. However, in order to use it we need directed and compact Lie-normal
families. The following lemma will help to find them (see also [2], Lemma 1.6).

Lemma 4.2. For a locally compact group, every finite intersection of Lie-
normal subgroups is itself Lie-normal.



20 H. Bickel

Proof. For two Lie-normal subgroups N1 and N2 of G, the canonical map
from G/(N1 ∩ N2) into G/N1 × G/N2 is a continuous monomorphism into a Lie
group, and therefore G/(N1 ∩N2) cannot have small subgroups.

For a limit of Lie groups we may assume the index set to be directed (see
Corollary 3.4). Moreover, we may assume a totally ordered index set to be well-
ordered, as every totally ordered index set contains a cofinal, well-ordered subset
(see [7], Theorem IV.3.1). These results are not restricted to limits of Lie groups.
For a limit of Lie groups with a totally ordered index set we can even assume the
indices to be natural numbers, and hence the limit is metric (see Theorem 4.4).
Here we call a group metric, if its underlying topological space is metric.

Theorem 4.3. Conditions (a) to (e) are equivalent for a topological group G:

(a) G is Lie-projective.

(b) G is weakly Lie-projective and has a compact Lie-normal subgroup.

(c) G has a Lie-normal family and a compact Lie-normal subgroup.

(d) G has a directed compact Lie-normal family.

(e) G is a locally compact (projective) limit of Lie groups.

Proof. Clearly (a) =⇒ (b) =⇒ (c), the last implication being merely tau-
tological. If a Lie-normal family N and a compact Lie-normal subgroup M are
given as in condition (c), we use Lemma 4.2 as follows: Intersecting all elements
of N with M we obtain a compact Lie-normal family C . Adding all finite inter-
sections to this family we even get a directed compact Lie-normal family. Thus
(c) implies (d). Finally, by Lemma 2.6, (d) implies (a).
Therefore (a) to (d) are equivalent. Corollary 3.4 shows that the condition ‘pro-
jective’ is redundant in (e). By Lemma 4.1 we have (e) ⇐⇒ (d).

Theorem 4.4. Conditions (a) to (f) are equivalent for a topological group G:

(a) G is countably Lie-projective.

(b) G is Lie-projective and metric.

(c) G has a totally ordered, or equivalently, countable Lie-normal family and a
compact Lie-normal subgroup.

(d) G is a Lie group, or has a compact Lie-normal family which is order iso-
morphic to the natural numbers.

(e) G is a locally compact limit of Lie groups with a comparing, or equivalently,
countable set of index objects.

(f) G is a locally compact projective limit of Lie groups with the natural numbers
as indices.
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Proof. We show the following cycle: (d) =⇒ (f) =⇒ (e countable) =⇒ (b)
=⇒ (c countable) =⇒ (a) =⇒ (e comparing) =⇒ (c totally) =⇒ (d).
By Lemma 4.1 condition (d) implies (f), which obviously implies (e countable). In
this case the limit limD is a subspace of a countable product of metric spaces and
thus is itself metric. By Theorem 4.3 therefore (b) follows from (e countable). If
(b) holds, we choose a Lie-normal subgroup in each element of a countable base of
compact neighbourhoods of the identity, and infer (c countable).
Let (c countable) be valid. Thus, as in the proof of Theorem 4.3, we have a compact
Lie-normal family C = {N1, N2, . . .}. The family of all intersections

⋂n
ν=1 Nν is

then a relation preserving image of the natural numbers, and by Lemma 4.2 it is
Lie-normal. Hence condition (c countable) implies (a). Using Lemma 4.1 we see
(a) =⇒ (e comparing) =⇒ (c totally).
It remains to show that (c totally) implies (d), which is the interesting case. As
in the proof of Theorem 4.3 we may assume that a non-empty and totally ordered
compact Lie-normal family C is given. If the maximum max(C,⊇) exists, we
conclude max(C,⊇) =

⋂ C = {1}, and G = G/{1} is a Lie group. Otherwise
we construct a cofinal subfamily S consisting of different elements Nn ∈ C with
Nn ⊇ Nn+1 by induction over the natural number n:
(1) If the dimensions dimG/N are unbounded for N ∈ C , we fix an arbitrary
element N0 ∈ C and choose members Nn+1 ∈ C with dimG/Nn+1 > dimG/Nn .
Hence Nn+1 is a proper subset of Nn , as C is totally ordered and a canonical map
G/N → G/M is never dimension increasing.
Assume that S is not cofinal in C . As C is totally ordered we find an upper bound
N ∈ C of (S,⊇). This is impossible, as the dimension dimG/N ≥ dimG/Nn ≥ n
would be infinite in this case.
(2) If m is the maximal dimension dimG/N of factor groups for N ∈ C , we
choose N0 ∈ C with dimG/N0 = m. As the totally ordered family (C,⊇) has no
maximum, we can choose a proper subset Nn+1 ∈ C of Nn .
Assume that S is not cofinal in C . Similar to case (a) we get an upper bound
N ∈ C of (S,⊇), and thus m ≥ dimG/N ≥ dimG/Nn ≥ dimG/N0 = m
holds. Therefore the kernels Nn/N of the canonical maps G/N → G/Nn are
zero-dimensional compact Lie groups and hence finite. Now the sets Nn+1/N
are proper subsets of Nn/N . Therefore the sets Nn/N are infinite, which is a
contradiction.

What we have seen implies that the groups ‘approximated by Lie groups’
in the paper [12] are in fact the metric groups approximated by Lie groups in
the usual sense. There are many compact Hausdorff (and therefore Lie-projective)
groups which are not metric (see the next section) — and thus they cannot contain
an open metric subgroup.
In [12] it is stated (above Theorem 2 and at the beginning of the proof of The-
orem 3) that a locally compact Hausdorff group contains an open countably Lie-
projective subgroup. By our results, this is correct only under the hypothesis that
the group is metric (or equivalently, has a countable base of neighbourhoods of
the identity). It therefore appears that this hypothesis should be added to the
assumptions made in Theorem 3, Theorem 4 and the final corollary of [12].
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5. Examples

In this section we present examples showing that none of the implications in
Corollary 2.7 can be reversed, including the additional implications ‘Lie group
=⇒ ’ at the beginning and ‘ =⇒ locally compact Hausdorff’ at the end of the
chain. The deeper we go down the implication chain the more general are the
conditions, and more complicated examples are required.

Example 5.1. We consider a product G =
∏
i∈I Gi of non-trivial Lie groups

Gi , such that almost all of them are compact. Then G is a locally compact group,
and even compact if all its factors Gi are compact. Furthermore, G is a limit of
its factors (when I is viewed as a category with only identical arrows).
If the index set I is infinite, the product G has small subgroups, and thus it can-
not be a Lie group. If the index set is moreover uncountable, the product has no
countable base of neighbourhoods of the identity, and hence it cannot be metric.
Using Theorem 4.3 and 4.4 we conclude: the product G is a Lie group exactly
when the index set I is finite, it is countably Lie-projective exactly when I is
countable, and it is Lie-projective in general.

The following two examples use semidirect products G = A n N of topo-
logical groups A and N . The multiplication is given by (a, n) · (b,m) = (ab, nbm)
where N × A 3 (n, a) 7→ na ∈ N is a given topological action of A on N from
the right. Then we can identify A and N with the corresponding subgroups in
G, and the multiplication is determined by n · a = a · na .
In both of the examples, the groups A and N (and hence G) are totally discon-
nected, locally compact Hausdorff and with a countable base for the open sets (and
thus metric). Therefore, we have dimG = 0 and hence dimG/K = 0 for every
Lie-normal subgroup K , which means that K is open in G. So the Lie-normal
subgroups are exactly the open normal subgroups.

Example 5.2. This example of a weakly Lie-projective group which is not Lie-
projective is due to Ta-Sun Wu (see [4], Example 3.4.ii):
Assume that F is a finite group, and T is a group of automorphisms of F with at
least two elements. We write 1 and id for the identities in F and T , respectively.
For non-negative integers i ≥ 0 let N ⊆ ∏i≥0 F be the group of all finite sequences
in F , endowed with the discrete topology. Then the group A :=

∏
i≥0 T acts on N

componentwise, (ni)
(ai) = (naii ), and we obtain a semidirect product G := AnN .

Then the subgroups Kk := ({id}k × A) n ({1}k × N) with k ≥ 0 are kernels
of projections to discrete groups. Thus they are open and normal and form a
countable Lie-normal family.
We now assume that there exists a compact open normal subgroup K of G. We
choose elements a ∈ T and m ∈ F with n := mam−1 6= 1. Let [m]l ∈ N
denote the sequence in F with m at the coordinate l ≥ 0 and 1 at all other
coordinates (analogously for [a]l ∈ A). As K is open it contains an open subgroup
B = {id}k × A ⊆ A. For l > k we therefore get

K = K · [m]l ·K · [m−1]l 3 [a−1]l · [m]l · [a]l · [m−1]l = ([m]l)
[a]l · [m−1]l = [n]l



H. Bickel 23

as K is normal. Hence K contains the set C :=
⋃
l>kB · [n]l , which is closed (as

B is compact) and thus compact. This is impossible, as a finite number of the
open sets B · [n]l never covers C . Hence G is not Lie-projective.
Analogously we can also use different groups Fi and Ti for each coordinate i ≥ 0.

Example 5.3. The final example of a locally compact Hausdorff group which
is not weakly Lie-projective is a slightly modified version of [9], p. 57:
Let F be a finite group with at least two elements and let A denote the group of
integers. Then A acts on P :=

∏
i∈A F via shifts, (fi)

a = (fi+a). Let the normal
subgroup U of P consist of all sequences (fi) such that fi is the identity for neg-
ative integers i. We endow the subgroup N :=

⋃
a∈A U

a of P with the topology
for which the sets Ua form a base of open neighbourhoods of the identity. This
is possible because the sets Ua form a filter base of normal subgroups. Then all
the open subgroups Ua of N are isomorphic to

∏
i≥0 F . Furthermore, N is con-

tinuously embedded into P , and hence is a totally disconnected, locally compact
Hausdorff group with a countable base for the open sets. The action of A on N
remains topological, and we obtain a semidirect product G := AnN .
We finally show that every open normal subgroup K of G contains N : For a
neighbourhood Ua ⊆ K we conclude that K = (−b) ·K · b ⊇ (−b) · U a · b = Ua+b

for every integer b ∈ A.
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