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Abstract. One of the basic problems for Lie groups is to describe the image

of the exponential map. A Lie group H is called exponential resp. weakly

exponential if its exponential map is surjective resp. has dense image in H .

In this paper we classify all exponential groups which are identity components

of almost simple real algebraic groups. The weakly exponential groups of this

type were determined in our previous paper [15].

0. Introduction

The well-known notion of exponential map in the theory of Lie groups and related
topics is as old as the theory itself. As one of key notions, it plays an important role
in the theory as well as in other branches of mathematics, e.g. differential geometry,
(transcedental) number theory, arithmetic algebraic geometry, functional analysis,
dynamical systems, mathematical physics, etc. (see e.g. [2, 3, 4, 8, 22, 25]).
However, until recently, the problem of describing the image of the exponential
map, one of the basic and difficult problems in the theory, is still open, apart from
partial results for some particular Lie groups (see e.g. [9, 10, 11, 12, 17, 19, 20,
21, 23, 24]). This problem gives rise to the following basic questions :

A) Characterize the Lie groups for which the exponential map has dense
image, and

B) Characterize the Lie groups, for which the exponential map is surjective.

The Lie groups satisfying the condition mentioned in A (resp. B) are called
weakly exponential (w.e.) (after [17, 18], where the question A was also raised)
(resp. exponential).
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Dixmier has carried out in [9] a detailed investigation of the image of the
exponential map for simply connected solvable Lie groups. Therefore the problem
is focused on reductive Lie groups. One of the important classes of connected
reductive Lie groups, which are frequently used in practice, is the class Σ consisting
of real Lie groups G(R)◦ , where G is an almost simple algebraic group defined
over R, G(R) the group of real points of G, and ◦ denotes the identity component.

In our recent paper [15] we have obtained a classification of groups in Σ
which are w.e. (a solution of Question A for Σ). Here, using this result we give a
solution of Question B for the class Σ.

It may be of interest to mention that among all almost simple (connected)
complex Lie groups only the groups PSLn(C) are exponential, see [19, 20, 21].

For connected real semisimple groups H , there is a simple criterion, due
to Borel ([18, Theorem 2.10]), which can be used to decide whether H is w.e. or
not. We have found an analogous criterion for exponentiality of groups belonging
to the class Σ. In order to apply this criterion we need to know the structure
of the centralizers of unipotent elements. In most cases the necessary facts can
be found in the literature. In the case of the classical group SO∗(2n), the group
which preserves a non-degenerate skew-hermitian form on a finite dimensional
quaternionic vector space, the structure of these centralizers is not available in the
sources that we have consulted. We have described these centralizers in detail in
Section 5.

1. Statement of the main result

By Zk we denote a cyclic group of order k , by R the real numbers, by C the
complex numbers, and by H the quaternion algebra over R with standard invo-
lution. For a Lie group G with Lie algebra g we denote by EG the image of the
exponential map exp : g → G. We use also standard notations for classical Lie
groups. In particular, by Spin∗(2n) we denote the double cover of SO∗(2n), which
is also the group of real points of Spin2n(C) for appropriate real structure. If W
is a non-degenerate subspace of V , we denote by Spin∗(W ) the inverse image of
SO∗(2n) in Spin∗(2n). If dim W = k , then Spin∗(W ) ' Spin∗(2k). If k = 1,
then SO∗(W ) is the circle group SO(2), and the same is true for Spin∗(W ). If
k = 2, then Spin∗(W ) ' SU(2)× SU(1, 1).

In our previous paper [15] we have obtained the list of all w.e. groups in Σ.
Our main objective in this paper is to determine which of these groups are in fact
exponential. It is well-known [16] that all compact groups from Σ are exponential.
Moreover, if G → H is a surjective homomorphism of connected Lie groups with
discrete kernel (we write G ≥ H ) and G is (weakly) exponential, then H is also
(weakly) exponential. Thus we need only to describe non-compact exponential
groups which are ”maximal” with respect to ≥.

For convenience of the reader we list in Table 1 all non-compact almost
simple w.e. groups in Σ which are maximal with respect to the above partial
order.
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Table 1

Maximal non-compact almost simple w.e. groups in Σ

A I PSL2(R)

A II SLn(H), n ≥ 2

A III SU(p, q), p > q ≥ 1
SU(p, p)/Z2m, 2p = 2mr, r odd

B I Spin(2n, 1), n ≥ 2

C II Sp(p, q), p ≥ q ≥ 1

Spin(2n− 1, 1), n ≥ 3
D I PSO(2n− 2, 2)0, n ≥ 3, n odd

Spin(2n− 2, 2)/〈z〉, n ≥ 4, n even

Spin∗(2n), n ≥ 3, n odd
D III SO∗(2n), n ≥ 4, n even

Spin∗(2n)/〈z′〉, n ≥ 4, n even

E III, IV G∗

E VII G∗/Z2

F II G∗

In this table z and z′ are elements of order two which generate the center
Z ' Z2×Z2 of Spin2n(C), such that 〈zz′〉 is the kernel of the canonical projection
Spin2n(C) → SO2n(C). It is well-known that in both cases, D I and D III, Z is
contained in the group of real points Spin(2n− 2, 2) and Spin∗(2n), respectively.
Moreover there is an automorphism of Spin(2n − 2, 2) which interchanges z and
z′ , but there is no such automorphism of Spin∗(2n) if n is even. In the latter case
we can distinguish z and z′ by considering any compact torus T of dimension
n/2 which is centralized by a maximal split torus of Spin∗(2n). Then z ∈ T and
z′ 6∈ T (see [15] for details).

We can now state our main result.

Main Theorem. The non-compact exponential groups in Σ are the groups listed
below and their quotients by finite central subgroups :

1. SLn(H), n ≥ 2 ;

2. PSU(p, p) = SU(p, p)/Z2p , p ≥ 1 ;

3. SU(p, q)/Zd , where p > q ≥ 1, d is an odd divisor of n = p + q , and
every odd prime dividing d resp. n/d is ≤ n/(p− q) resp. > n/(p− q) ;
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4. Spin(2n, 1), n ≥ 2 ;

5. Sp(p, q), p ≥ q ≥ 1 ;

6. Spin(2n− 1, 1), n ≥ 3 ;

7. PSO(2n− 2, 2)0 , n odd ≥ 3 ;

8. Spin(2n− 2, 2)/〈z〉, n even ≥ 4 ;

9. Spin∗(2n), n odd ≥ 3 ;

10. SO∗(2n), n even ≥ 4 ;

11. Spin∗(2n)/〈z′〉, n even ≥ 4 ;

12. G∗ of type E IV.

In the last three rows of Table 1 we denote by G∗ the group of real points
of the simply connected algebraic group of indicated type. It is known that
PSL2(R) ' SU(1, 1)/Z2 is exponential and so are the groups listed in the cases 1,
5, and 10, see [10]. Hence we can omit from further considerations the groups of
type A I, A II, and C II listed in Table 1. For all other types, listed in Table 1,
the proof will be given separately in the remaining sections.

2. A criterion for exponentiality

In this section we give a general criterion for exponentiality of groups belonging
to Σ. Theorem 2.2 below plays an important role in our study, just like Borel’s
theorem does in the study of weak exponentiality of Lie groups, see [15], [18,
Theorem 2.10]. It is an analog, in the real case, of [12, Theorem 3.2]. Recall that
a Cartan subgroup of a connected reductive real Lie group G is the centralizer in
G of a Cartan subalgebra of the Lie algebra of G, see [28, p. 108]. First we need
the following mild extension of Borel’s theorem.

Theorem 2.1. A connected reductive real Lie group G is w.e. if and only if
all Cartan subgroups of G are connected.

Proof. If G is w.e. the same holds true for G/R , where R is the radical of
G. If C is a Cartan subgroup of G then C ⊃ R and C/R is a Cartan subgroup
of G/R . By Borel’s theorem [18, Theorem 2.10], C/R is connected. As R is
connected, C is also connected.

Conversely, assume that all Cartan subgroups of G are connected. Since
Cartan subgroups of G/R are images of the Cartan subgroups of G, they are also
connected. By Borel’s theorem G/R is w.e. By [18, Corollary 2.1A, p. 273] G is
w.e.

In the sequel 1-PSG means ”one-parameter subgroup”.

Theorem 2.2. Let G be the identity component of real points of an R-group
H. Then G is exponential if and only if ZG(u) is w.e. for every unipotent element
u ∈ G.

Proof. Assume that G is exponential and let u ∈ G be unipotent. We have
a Levi decomposition Z := ZG(u) = RC , where R is the unipotent radical of Z
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and C is reductive (not necessarily connected). Let s ∈ C be semisimple and set
x = su. Since x ∈ EG , x ∈ P where P is a 1-PSG of ZG(x). Since ZG(x) ⊂ Z
and u is unipotent, it follows that P 〈u〉 is a connected abelian Lie subgroup of Z
containing s = xu−1 . Hence s ∈ EZ , and C ' Z/R implies that s ∈ EC . It is
known [28, Section 1.4] that semisimple elements are dense in C , and so C is w.e.
By using the fact that R is exponential and [18, Corollary 2.1A], we conclude that
Z is w.e.

We now prove the converse. Let x ∈ G and let x = su be its Jordan
decomposition in H(R), with s semisimple and u unipotent. Then necessarily
u ∈ G, and so s ∈ Z := ZG(u). We can choose a Levi decomposition Z = RC
such that s ∈ C . By hypothesis Z is w.e. This entails that C ' Z/R is w.e. As
s is semisimple, it belongs to a Cartan subgroup P of C , which is connected by
Theorem 2.1. Hence x = su belongs to the connected abelian Lie group P 〈u〉 and
so x ∈ EG .

We need the following lemmas in the sequel.

Lemma 2.3. Let G = G1 × · · · ×Gn where Gi are connected Lie groups, and
let zi ∈ Gi be central elements of order 2. Assume that G1 and Gi/〈zi〉, i > 1,
are exponential. Then Ḡ := G/〈z1z2, z1z3, . . . , z1zn〉 is exponential.

Proof. Let x = x1 · · ·xn ∈ G, with xi ∈ Gi , and let x̄ ∈ Ḡ be its image. Since
each of the groups Gi/〈zi〉 is exponential, we can choose ki ∈ {0, 1}, i > 1, such
that xiz

ki
i ∈ EGi . If k1 = k2 + · · ·+ kn and z = zk1

1 · · · zknn then xz ∈ EG because
G1 is exponential. As z̄ = 1, we have x̄ ∈ EḠ .

The group Ḡ in the above lemma will be denoted by
∏∗Gi and we refer to

it as a direct product of Gi ’s with identified subgroups 〈zi〉.

Lemma 2.4. If φ : G→ H is a homomorphism of groups and G is a k -group,
where k is a field, and X ⊂ G is such that Ker φ ⊂ X ∩G(k), then

φ(X ∩G(k)) = φ(G(k)) ∩ φ(X).

Proof. Let y = φ(g) = φ(x), where g ∈ G(k), x ∈ X . Then x = gz , where
z ∈ Ker φ ⊂ G(k). Hence x ∈ X ∩G(k), and y ∈ φ(X ∩G(k)).

3. Groups of type A III

In this section we investigate the exponentiality of groups of type A III listed in
Table 1. In the proof of the following proposition, and also in subsequent sections,
we shall use results and notations of [10]. The readers are advised to consult this
paper before reading further.

Proposition 3.1. Let G = SU(p, q)/Zd , where d | n = p + q , n/d = 2st, t
odd, and p ≥ q ≥ 1. Then G is exponential if and only if one of the following
holds :

(a) p = q and d = n,

(b) p > q and every prime divisor of t is bigger than n/(p− q).

In particular, if n is a power of 2, then G is always exponential.
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Proof. Let Γ be a conjugacy class of G∗ = SU(p, q) and Γ̂ its image under the
projection π : G∗ → G. Then

π−1(Γ̂) = Γ ∪ θΓ ∪ · · · ∪ θd−1Γ,

where θ = e2πi/d is a generator of Zd .

So Γ̂ ⊂ EG if and only if at least one of the conjugacy classes θsΓ is
contained in EG∗ . As in [10, p. 80] we may write

Γ =
r∑

i=1

Γmi−1(λi, λ̄
−1
i ) +

k∑

i=r+1

Γ±mi−1(λi), (3.1)

where |λi| > 1 (resp. |λi| = 1) for i ≤ r (resp. i > r). Let p
Γ

be the greatest
common divisor of the integers 2m1 , ... , 2mr , mr+1 , ... , mk . The integer q

Γ
is

defined by :

2
r∑

i=1

mi argλi +
k∑

i=r+1

mi argλi = 2πq
Γ
,

uniquely mod p
Γ
. We claim that G is exponential if and only if GCD(pΓ, n/d) = 1

for all Γ.

For, we have the following basic relations :

2(m1 + · · ·+mr) +mr+1 + · · ·+mk = n,

(m1 + · · ·+ mr) + [mr+1/2] + · · ·+ [mk/2] ≤ q.

We know that Γ ⊂ EG∗ if and only if p
Γ
| q

Γ
(loc. cit.). Since p

θsΓ
= p

Γ

and q
θsΓ

= q
Γ

+ns/d, it follows that θsΓ ⊂ EG∗ if and only if p
Γ
| q

Γ
+ns/d. Thus

Γ̂ ⊂ EG ⇐⇒ ∃s ∈ Z, p
Γ
| q

Γ
+ ns/d. (3.2)

Hence if GCD(p
Γ
, n/d) = 1 for all Γ then G is exponential.

Conversely, assume that G is exponential and let Γ be as in (3.1). Let
Γ′ ⊂ G∗ be obtained from Γ by replacing each λi by some λ′i . As p

Γ′ = p
Γ

and Γ̂′ ⊂ EG , (3.2) implies that p
Γ
| q

Γ′ + ns/d for some s ∈ Z. Since q
Γ′

can take arbitrary integer values for appropriate choice of the λ′i , it follows that
GCD(p

Γ
, n/d) = 1. Hence our claim is proved.

Assume that p = q . We can choose Γ such that p
Γ

= 2 if n/d is even, and
p

Γ
= 2n/d if n/d is odd. Hence if d 6= n then G is not exponential.

¿From now on we assume that p > q , which implies that p
Γ

is odd for
all Γ, see [7]. Hence if t = 1 then GCD(p

Γ
, n/d) = 1 and G is exponential. It

remains to consider the case t > 1. Assume p−q ≤ n/p0 , where p0 is the smallest
prime divisor of t. Then u = (p− q + n/p0)/2 and v = n/p0 − u are nonnegative
integers. For

Γ = uΓ+
p0−1(1) + vΓ−p0−1(1),

we have p
Γ

= p0 and GCD(n/d, p
Γ
) = p0 > 1. Hence G is not exponential.
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Conversely assume that G is not exponential. Then δ := GCD(n/d, p
Γ
) > 1

for some Γ as in (3.1). We may assume that the mi are odd for r < i ≤ r+ l and
even for i > r + l . From the basic relations we have

q ≥
r∑

i=1

mi +
r+l∑

i=r+1

(mi − 1)/2 +
k∑

i=r+l+1

mi/2 = (n− l)/2,

and so p− q = n− 2q ≤ l ≤ k ≤ kpΓ/δ ≤ n/δ ≤ n/p0 .

The groups SU(p, q)/Zd that satisfy condition (b) of this proposition are
exactly the quotients of the group given in case 3 of the main theorem.

The following corollary is an immediate consequence of the proposition.

Corollary 3.2. The group SU(p, q), p ≥ q ≥ 1, is exponential if and only if
p > q and every odd prime divisor of n = p+ q is bigger than n/(p− q).

4. Groups of types B I and D I

In this section we investigate the exponentiality of groups of types B I and D I
listed in Table 1.

Proposition 4.1. For n ≥ 5, Spin(n− 1, 1) is exponential.

Proof. Let φ : G∗ = Spin(n − 1, 1) → G = SO(n − 1, 1) be the canonical
homomorphism. If u∗ ∈ G∗ is unipotent then by Theorem 2.2 we have to show
that ZG∗(u

∗) is w.e. Let u = φ(u∗) and

ZG(u) = RC, ZG∗(u
∗) = R∗C∗,

where R and R∗ are unipotent radicals and C and C∗ the Levi factors. It is
well-known that R∗ is exponential, hence we have only to show that C∗ is w.e.
As G∗ is w.e. (see Table 1), we may assume that u∗ 6= 1. Then u 6= 1 and the
conjugacy class of u in O(n− 1, 1) is Γ+

2 (1) + (n− 3)Γ+
0 (1) , see [10, p. 83]. Let

Z̃ be the centralizer of u in O(n − 1, 1). We have Z̃ = RC̃ where C̃ is a Levi
factor. By [26, Chapter 4]), C̃ ' O(1)× O(n− 3), and so C̃ ∩ G0 ' SO(n− 3).
By Lemma 2.4, φ(C∗) is a Levi factor of ZG0(u) = Z̃ ∩ G0 and is isomorphic to
SO(n− 3). Hence C∗ = φ−1(C̃ ∩G0) ' Spin(n− 3) is exponential.

Proposition 4.2. For even n ≥ 4, Spin(2n− 2, 2)/〈z〉 is exponential.

Proof. Let φ : G∗ = Spin(2n − 2, 2) → G = SO(2n − 2, 2) and ψ : G∗ →
G′ := G∗/〈z〉 be the canonical maps. For a unipotent u′ ∈ G′ , there is a unique
unipotent u∗ ∈ G∗ such that ψ(u∗) = u′ , and we set u = φ(u∗). We have Levi
decompositions

ZG′(u
′) = R′C ′, ZG∗(u

∗) = R∗C∗, ZG(u) = RC,

where R′ ' R∗ ' R are unipotent, and so exponential. As above, it suffices
to show that C ′ is w.e. and we may assume that u′ 6= 1. From [10, p. 83] it
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follows that there are exactly four non-trivial unipotent conjugacy classes Γ in
O(2n− 2, 2). For each of these classes we list in Table 2 the Levi factors C̃ of the
centralizer of u ∈ Γ in O(2n − 2, 2), and also C̃ ∩ G0 . For the description of Γ
see [10, p. 83] and for C̃ see [26, Chapter 4].

Table 2

Levi factors of centralizers of unipotent elements in SO(2n− 2, 2)◦

Γ C̃ C̃ ∩G0

1 Γ+
4 (1) + (2n− 5)Γ+

0 (1) O(1)× O(2n− 5) Z2 × SO(2n− 5)
2 Γ−2 (1) + (2n− 3)Γ+

0 (1) O(1)× O(2n− 3) Z2 × SO(2n− 3)
3 2Γ+

2 (1) + (2n− 6)Γ+
0 (1) O(2)× O(2n− 6) SO(2)× SO(2n− 6)

4 Γ1(1, 1) + (2n− 4)Γ+
0 (1) Sp2(R)×O(2n− 4) Sp2(R)× SO(2n− 4)

In case 1 resp. 2 we have C∗ = φ−1(C) = 〈z〉×H , where H ' Spin(2n−5)
resp. Spin(2n − 3). Hence C ′ = ψ(C∗) is connected and compact. The same is
true in case 3, because then C∗ ' SO(2)Spin(2n− 6).

In the last case we have C∗ ' Sp2(R)×Spin(2n− 4). Since z is embedded
diagonally in C∗ , C ′ = φ(C∗) = C∗/〈z〉 is exponential by Lemma 2.3.

Proposition 4.3. For n ≥ 3, PSO(2n− 2, 2)0 is exponential.

Proof. If a ∈ SO(2n − 2, 2)0 then by [10, Theorem 6.3] a or −a is an ex-
ponential in this group. Consequently every element of PSO(2n − 2, 2)0 is an
exponential.

5. Centralizers of unipotent elements in SO∗(2n)

Springer and Steinberg [26, Chapter 4] have described the structure of the central-
izers of unipotent elements in unitary, symplectic and orthogonal groups over any
field of characteristic 6= 2. In order to apply our exponentiality criterion, we also
need a description of these centralizers for the group G = SO∗(2n), consisting of
all R-linear automorphisms preserving a nondegenerate skew-hermitian form on a
right H-vector space V of dimension n. We shall use the same method as in [26,
Chapter IV].

For an unipotent element u ∈ G, there exists a unique nilpotent element
X in the Lie algebra g of G such that u = exp(X). It is well-known that the
centralizers of X and u in G coincide. We can choose a basis of V in which X
has the canonical form as follows, see [7] and [11, pp. 224-225].

There are vectors ei, fj , gk in V (i ∈ I , j ∈ J , k ∈ K ) and nonnegative
even (resp. odd) integers αi (resp. βj , γk ) such that Xαi+1ei = Xβj+1fj =
Xγk+1gk = 0, and the vectors

ei, Xei, X
2ei, . . . , X

αiei,
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fj, Xfj, X
2fj, . . . , X

βjfj, (5.1)

gk, Xgk, X
2gk, . . . , X

γkgk

form a basis of V . Moreover their scalar products are

〈Xaei, X
αi−aei〉 = (−1)a

√
−1, 0 ≤ a ≤ αi,

〈Xbfj, X
βj−bfj〉 = (−1)b, 0 ≤ b ≤ βj,

〈Xcgk, X
γk−cgk〉 = (−1)c, 0 ≤ c ≤ γk,

and all other products are zero.

Let i be an even resp. odd integer and let Vi(0) be the R-span of

{er : αr = i}

resp.
{fs : βs = i} ∪ {gt : γt = i}.

We set also
Vi(s) = XsVi(0) for s ≤ i,

and
Vi = Vi(0) + · · ·+ Vi(i).

By Xi we denote the restriction of X to Vi , and by Zi the centralizer of Xi in
SO∗(Vi). Define a one-parameter subgroup λ : R∗ → G by

λ(t)Xaei = t2a−αiXaei,

λ(t)Xbfj = t2b−βjXbfj,

λ(t)Xcgk = t2c−γkXcgk.

¿From above it follows immediately that Vi are X -invariant and V = ⊕iVi .

Lemma 5.1. λ(t) normalizes ZG(X) and all weights of λ in the centralizer z
of X in g are nonnegative.

Proof. We have λ(t)X = t2Xλ(t) by direct computation on basis vectors.
Consequently λ(t) normalizes ZG(X). We prove that the weights of λ in z are
nonnegative. Assume that Y ∈ z has weight p, i.e., Y 6= 0 and λ(t)Y λ(t)−1 = tpY .
Then

λ(t)Y ei = tpY λ(t)ei = tpY t−αiei = tp−αiY ei

and similarly λ(t)Y fj = tp−βjY fj and λ(t)Y gk = tp−γkY gk . As Y 6= 0, at least one
of the vectors Y ei , Y fj , Y gk is nonzero. Say Y ei 6= 0. Assume that Xbfj occurs
in Y ei . Then Xαi+1Y ei = 0 implies that Xαi+1Xbfj = 0, i.e. αi+b ≥ βj . As Y ei
has weight p−αi , the vector Xbfj must have the same weight, i.e. 2b−βj = p−αi .
Hence p = 2b+ αi − βj ≥ b ≥ 0. The other cases are similar.

Now we come to the main result of this section.
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Proposition 5.2. Let Γ ⊂ G = SO∗(2n) be a unipotent conjugacy class,

u ∈ Γ =
∑

i even

kiΓi(1, 1) +
∑

i odd

(piΓ
+
i (1, 1) + qiΓ

−
i (1, 1)),

and let Z := ZG(u) = RC , where R is the unipotent radical and C a Levi factor
of Z . Then C =

∏
i≥0 Ci where

Ci ' SO∗(2ki), i even; Ci ' Sp(pi, qi), i odd .

Proof. Let X ∈ g be the nilpotent element such that u = exp(X). Then it is
well-known that Z is also the centralizer of X in G. By Lemma 5.1, z = z0 ⊕ z+

where z0 is the centralizer of λ in z, i.e., the zero weight space of λ, and z+ is the
nilpotent ideal which is the sum of all other weight spaces. Since the centralizer
of λ in Z is reductive (see [26, Section 2.23]), it follows that z+ is the Lie algebra
of R and we may assume that C is the centralizer of λ in Z .

Let r be the largest αi . Then it is not hard to see that Vr(0) is a weight
space since all basis vectors of V are also weight vectors. Hence Vr(0) is also
C -invariant. (Indeed, if x ∈ C and αi = r then λ(t)xei = xλ(t)ei = t−rxei .)
Therefore all the spaces X t(Vr(0)), t ≤ r are also C -invariant. In particular,
the weight space corresponding to the weight −r is the direct sum of C -invariant
subspaces.

Assume that there exists αi 6= r and let s be the largest such αi . Since r
and s are even, r − s = 2k . By considering the basis vectors as above, one can
see that the space W := Vr(k) + Vs(0) is the weight space of weight −s, and so
W is C -invariant. As C is reductive and Vr(k) is C -invariant, there exists a C -
invariant complement Ws of Vr(k) in W . By replacing Vs(0) by Ws , X

tVs(0) by
X tWs , t ≤ s we may assume that the weight space W corresponding to the weight
−s is the direct sum of C -invariant subspaces. Meanwhile one should note that
the subspace Ws consists of vector of the same weight −s. Thus we may change
the original basis of Vs(0) by a new one via the change Vs(0) by Ws . Therefore
we may assume that Vs(0) is C -invariant. By repeating this argument, we may
assume that all the spaces Vi(0) (and therefore also the spaces X tVi(0), t ≤ i) are
C -invariant subspaces. Consequently C =

∏
Ci , where Ci is the centralizer of λ

in Zi .

Now we define a sesquilinear form φi : Vi(0)× Vi(0)→ H by

φi(v, w) = 〈v,X iw〉.

Then

φi(w, v) = 〈w,X iv〉 = 〈(−X)iw, v〉
= (−1)i+1〈v,X iw〉 = (−1)i+1φi(v, w),

and so φi is skew-hermitian for even i and hermitian for odd i. It is also
non-degenerate. Indeed, if i is even, we have φi(eir , eis) = 0 if r 6= s and
φi(eir , eir) = −

√
−1. If i is odd then the basis fj1 , . . . , fjp, gl1, . . . , glq of Vi(0)

is orthogonal with respect to φi and φi(fjr , fjr) = 1, φi(gls, gls) = −1. Hence φi
has signature (p, q).
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It is clear that Ci preserves φi . Indeed for x ∈ Ci and v, w ∈ Vi(0) we have

φi(x(v), x(w)) = 〈x(v), X ix(w)〉 = 〈x(v), x(X iw)〉
= 〈v,X iw〉 = φi(v, w).

We claim that Ci ' SO∗(φi) for i even, and Ci ' U(φi), the unitary group of φi ,
for i odd.

For, every x in SO∗(φi) (or U(φi)) extends uniquely to an automorphism
x̃ of Vi commuting with X . Say x ∈ SO∗(φi), and let

xer =
∑

s

esbs, αr = i, bs ∈ H, es ∈ Vi(0).

Then

〈x̃Xaer, x̃X
i−aer〉 = 〈Xax̃er, X

i−ax̃er〉
= 〈Xa

∑

s

esbs, X
i−a∑

t

etbt〉

=
∑

s,t

b̄s〈Xaes, X
i−aet〉bt

=
∑

s

b̄s〈Xaes, X
i−aes〉bs

= (−1)a
∑

s

b̄s
√
−1bs

= (−1)aφi(xer, xer) = (−1)aφi(er, er)

= (−1)a〈er, X ier〉
= (−1)a

√
−1

= 〈Xaer, X
i−aer〉.

The same holds for the scalar products of other basis vectors. This means that
this extension x̃ preserves the form 〈., .〉 on Vi , i.e., x̃ ∈ Ci . Hence our claim (and
the proposition) is proved.

We shall need later a certain overgroup of Ci in SO∗(Vi) when i is even.
We shall now describe this overgroup (see (5.2) below). We know that Ci leaves
invariant each of the subspaces Vi(s) and commutes with the action of X . The
space Vi is an orthogonal direct sum of non-degenerate subspaces Vi(s)+Vi(i−s),
for 0 ≤ s < i/2, and Vi(i/2). Hence

SO∗(Vi(i/2))×
∏

0≤s<i/2
SO∗(Vi(s) + Vi(i− s))

is a subgroup of SO∗(Vi).

It is well-known that if V,W are totally isotropic spaces (with respect to
some non-degenerate quadratic or (skew-) hermitian form) of the same dimension
such that V +W is non-degenerate then the intersection

(GL(V )×GL(W )) ∩ SO(V +W )
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is isomorphic to GL(V ). In particular, since Vi(s) and Vi(i − s) are totally
isotropic, the subgroup

Hi(s) = (GL(Vi(s))×GL(Vi(i− s))) ∩ SO∗(Vi(s) + Vi(i− s))

is isomorphic to GL(Vi(s)). The group Ci is a subgroup of

SO∗(Vi(i/2))×
∏

0≤s<i/2
Hi(s) (5.2)

and the projection of Ci in each factor of (5.2) is isomorphic to Ci . Thus Ci is
”diagonally” embedded in the above direct product.

Lemma 5.3. Let φ : Spin∗(2n)→ SO∗(2n) be the canonical projection. If i is
even and Vi 6= 0 then φ−1(Ci) ' Spin∗(2ki).

Proof. Set
V ′i =

∑

0≤s<i/2
Vi(s), V ′′i =

∑

i/2<s≤i
Vi(s). (5.3)

By the above remark, the group

Hi = (GL(V ′i )×GL(V ′′i )) ∩ SO∗(V ′i + V ′′i )

is isomorphic to GL(V ′i ). Put V 0
i = Vi(i/2). Since Ci ⊂ SO∗(V 0

i )×Hi and Hi is
simply connected (see [16]), it follows that

φ−1(Ci) ⊂ φ−1(SO∗(V 0
i )×Hi) = Spin∗(V 0

i )×H∗i ,

where H∗i ' Hi . Hence φ−1(Ci) ' Spin∗(V 0
i ).

6. Special tori in groups of type D III

Let G be a semisimple R-group. An anisotropic R-torus T ⊂ G is called special
if ZG(T ) contains a maximal R-split torus S of G such that ST is a maximal
R-torus of G. Since the maximal R-split tori are G(R)-conjugate (see [5, Section
5], the same is true for special tori.

Let n be even, and G̃ = Spin2n(C) with G̃(R) = G∗ = Spin∗(2n). We
denote by {±1} the kernel of the canonical projection Spin2n(C) → SO2n(C). If
T is special in G̃, then precisely one of the elements of the center of G∗ , distinct
from {±1}, belongs to T , see [15, Proof of Theorem 4.5]. In order to conform
to the notation of that paper, let Z̃ = {1, z, z′, zz′} be the center of G∗ , with
zz′ = −1, z ∈ T , and z′ 6∈ T . We also note that for any maximal R-split torus
S we have S ∩ Z̃ = {1} (loc.cit.). In the next three lemmas, we refer to the real
points of special (resp. split) tori also as special (resp. split) tori, which should
not lead to any confusion. We shall use the notations V, Vi, Vi(s), Ci etc. from the
previous section.

Lemma 6.1. If V = U1 ⊕ U2 and U1 ⊥ U2 , then the product of special tori
of SO∗(U1) and SO∗(U2) is contained in a special torus of SO∗(V ).
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Proof. Let Ti be a special torus of SO∗(Ui), i = 1, 2. Then there is a maximal
split torus Si of SO∗(Ui) centralizing Ti . Since S1S2 is a maximal split torus of
SO∗(V ) which centralizes T1T2 , the lemma follows.

Lemma 6.2. Every special torus of Ci , i even, is contained in a special torus
of SO∗(Vi).

Proof. We define V ′i and V ′′i by (5.3) and set V 0
i = Vi(i/2). The spaces V ′i

and V ′′i are totally isotropic. Their sum and V 0
i are non-degenerate. As above,

the group
Hi = (GL(V ′i )×GL(V ′′i )) ∩ SO∗(V ′i + V ′′i )

is isomorphic to GL(V ′i ). By (5.2) we have

Ci ⊂ SO∗(V 0
i )×Hi ⊂ SO∗(V 0

i )× SO∗(V ′i + V ′′i ) ⊂ SO∗(Vi).

Let P be a special torus of Ci . Since the projection of Ci to SO∗(V 0
i ) is an

isomorphism (see (5.2)), the image P ′ of P under this projection is also a special
torus of SO∗(V 0

i ). Since P is compact, its projection P ′′ to Hi is contained in a
maximal compact torus Q of Hi . Since Q is special in SO∗(V ′i +V ′′i ), the assertion
follows from Lemma 6.1.

Lemma 6.3. Let Pi be a torus of Ci such that Pi is special in Ci for i even,
and Pi is maximal compact in Ci for i odd. Then the product P of all Pi ’s is
contained in a special torus of SO∗(V ).

Proof. By Lemma 6.1 it suffices to show that each Pi is contained in a special
torus of SO∗(Vi). If i is even this was proved in Lemma 6.2. If i is odd, it follows
from the fact that we have the inclusions Ci ⊂ Hi ⊂ SO∗(Vi), where Hi is defined
analogously to the case when i is even. Indeed, Pi is a maximal compact torus of
Hi and every such torus is special in SO∗(Vi).

7. Groups of type D III

In this section we investigate the exponentiality of the groups of type D III listed
in Table 1. We set G∗ = Spin∗(2n) and G = SO∗(2n). Since G is exponential,
there are two cases to consider depending on the parity of n. We first deal with
the case when n is odd.

Proposition 7.1. For odd n ≥ 3, Spin∗(2n) is exponential.

Proof. We use induction on n. If n = 3, then Spin∗(6) ' SU(3, 1) is exponen-
tial by Corollary 3.2. Let n > 3 and assume that the assertion is true for all odd
integers < n. Let u∗ ∈ Spin∗(2n), u∗ 6= 1, be a unipotent element, and u = φ(u∗),
where φ : G∗ → G is the natural projection. The centralizer Z = ZG(u) is de-
scribed in Proposition 5.2. Namely, Z = RC where R is the unipotent radical
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and the Levi factor C =
∏
i≥0 Ci . Furthermore, Ci ' SO∗(2ki) for i even, and

Ci ' Sp(pi, qi) for i odd.

Since n is odd, there is at least one even integer i such that ki is odd
and, necessarily, ki < n (for the notations see Section 5). By Lemma 5.3,
φ−1(Ci) ' Spin∗(2ki) and, by induction hypothesis, Spin∗(2ki) is exponential.
Since

φ−1(
∏

i even

Ci) '
∗∏

i even

Spin∗(2ki),

this group is exponential by Lemma 2.3.

If i is odd then it is well-known that Ci is simply connected, and so
φ−1(Ci) = {±1}×C∗i with C∗i ' Ci . By Lemma 5.3, for i even, C∗i := φ−1(Ci) '
Spin∗(2ki). Consequently we have

C∗ = φ−1(C) =
∗∏

i even

C∗i ×
∏

i odd

C∗i . (7.1)

As each of the groups Ci , i odd, is exponential, it follows from (7.1), that the
group C∗ = φ−1(C) is exponential. Hence G∗ is exponential by Theorem 2.2.

Now we consider the case n is even.

Proposition 7.2. For even n ≥ 4, G′ := Spin∗(2n)/〈z′〉 is exponential.

Proof. Let φ : G∗ → G and ψ : G∗ → G′ be the canonical projections. As we
noted before, z′ does not belong to any maximal R-split torus of G∗ . It follows
from [6, Corollary 4.7] that G′ is the group of real points of the corresponding
R-group Spin2n(C)/〈z′〉. Given a unipotent element u′ ∈ G′ there exists a unique
unipotent element u∗ ∈ G∗ such that u′ = ψ(u∗). Let ZG′(u

′) = R′C ′ , where
R′ is the unipotent radical and C ′ a Levi factor. Then ZG∗(u

∗) = R∗C∗ where
R∗ ' R′ and C∗ = ψ−1(C ′). We shall prove that C ′ is w.e.

If u = φ(u∗) then ZG(u) = RC where R = φ(R∗) and C = φ(C∗). The
Levi factor C is described in Proposition 5.2. We shall use the notations introduced
in that section.

Consider first the case where Ci = 1 for all even i. Then C is simply
connected and so C∗ = {±1} × C∗0 with C∗0 ' C .

We claim that z′ 6∈ C∗0 . To prove this claim, we introduce the subspaces

V ′ =
∑

i odd

∑

0≤s<i/2
Vi(s),

and V ′′ defined similarly except that i/2 < s ≤ i. They are maximal totally
isotropic subspaces and V = V ′ ⊕ V ′′ . We have C ⊂ H ⊂ G, where H :=
(((GL(V ′) × GL(V ′′)) ∩ G) ' GL(V ′). By taking inverse images of the triple
C ⊂ H ⊂ G under φ and by using the fact that H is simply connected, we obtain
C∗ ⊂ {±1} × H∗ ⊂ G∗ , with H∗ ' H . Since maximal compact tori of H∗ are
special in G∗ , we have z′ 6∈ H∗ , and so z′ 6∈ C∗0 . This proves our claim.

Hence C ′ = ψ(C∗) ' C and so C ′ is exponential.
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Now assume that Ci 6= 1 for at least one even integer i. ¿From (7.1) it
follows that if at least one of the ki ’s is odd, the corresponding C∗i ' Spin∗(2ki)
is exponential by Prop. 7.1, and by Lemma 2.3, φ−1(C) and C ′ are exponential.
It remains to consider the case where all ki ’s are even.

By Lemma 2.4 the maximal tori of C ′ are of the form ψ(P ) where P is
a maximal torus of C∗ . Assume that P is not connected. As G is exponential,
φ(P ) is connected. Thus [P : P 0] = 2 and −1 6∈ P 0 . For i even each Pi := P ∩C∗i
is a maximal torus of C∗i and −1 ∈ Pi \ P 0

i . ¿From the known classification of
maximal tori in Ci (see [15]), it follows that Pi is a maximally split maximal torus
of C∗i . Consequently the maximal compact subtorus Qi of Pi is special in C∗i for
i even. For odd i let Qi be any compact maximal torus of C∗i . By Lemma 6.3
the product Q of all Qi ’s is contained in a special torus of G∗ .

For i even let zi , z
′
i be the central elements of C∗i defined analogously to

z and z′ . For i odd let zi be the non-identity central element of C∗i ' Sp(pi, qi).
Let w be the product of all zi . Then φ(w) = −1 and so w ∈ {z, z′}. Since each
ki is even, we have zi ∈ Qi for i even, see [15, Proof of Theorem 4.5], and so
w ∈ Q. Since Q is contained in a special torus of G∗ , we must have w = z . Hence
z ∈ Q ⊂ P 0 . As P has only two components, it follows that ψ(P ) = P/〈z ′〉 is
connected. This completes the proof of the proposition.

8. Exceptional groups

In this short section we investigate the exponentiality of the four types of excep-
tional groups listed in Table 1.

Proposition 8.1. Among the exceptional w.e. groups in Σ only the one of type
E IV is exponential.

Proof. Let g be the Lie algebra of G(R). We claim that for adjoint groups of
type E III, E VII, or F II there is a nilpotent element X ∈ g such that ZG(R)(X)
is not connected (as a Lie group). Then, by Theorem 2.2, G(R) is not w.e.

This claim follows by inspection of tables in [13, 14], which classify nilpotent
orbits in g under the action of the adjoint group, and the description of ZG(X)
for a nilpotent element X ∈ g given in [1], see also [12, Section 5].

If G is of type E III then we choose X to lie in the orbit No. 6 in Table X
of [13]. When G is of type E VII then we use orbit No. 2 in Table VII of [14]. If
G is of type F II there are only two non-zero nilpotent orbits in g, see [13, Table
VIII], and in both cases ZG(R)(X) is disconnected.

Now let G∗ be of type E IV. Since the center of G∗ is trivial (see [T]), we
may assume that G∗ is the group of real points of the adjoint R-group of type E
IV. There are only two non-zero nilpotent orbits in g, see [14, p. 204]. The Levi
factor of ZG∗(X) is compact and connected for all X ∈ g, X 6= 0. By Theorem
2.2, G∗ is exponential.



290 D– oković and Nguyen
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