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Invariant orders in simply connected Lie groups
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Communicated by E. B. Vinberg

In this paper we give a criterion for an invariant cone in a real Lie algebra to
generate a bi-invariant order in the corresponding simply connected Lie group.

Introduction

A convex, closed, pointed, generating cone C in a real Lie algebra which is
invariant under all inner automorphisms will be called an invariant cone. Let S
be the closed semigroup generated by exp(C). If S ∩ S−1 = {e} , where e is the
identity of the group, then the invariant order is defined by g<h⇔ gh−1 ∈ S .

The assumption that a Lie algebra admits an invariant cone is rather
restrictive. Among simple real Lie algebras, only hermitian ones have this
property ([11],[10]). This class recently was described by K.-H. Neeb ([7]). A Lie
algebra admitting an invariant cone is a semidirect product of a reductive Lie
algebra which also admits an invariant cone and a two-step nilpotent ideal, and
all possibilities for the representation which determines the product are known
now. A reductive Lie algebra admits an invariant cone if and only if it is not
compact semisimple and each it’s simple ideal is either compact or hermitian.

In the original paper [11], E.B. Vinberg proved that each simply con-
nected group corresponding to a simple hermitian Lie algebra admits an invariant
order. Among others, he also formulated the problem of a description of invariant
cones which generates an invariant order (these cones are called global).

For simple algebras, this problem was solved by G.I. Ol’shanskǐı who
discovered an obstruction to the globality: an invariant cone is global if and only
if the dual cone contains some special element l . This l is nonzero only for
nontubular simple hermitian algebras, so in tubular ones any invariant cone is
global.

In the solvable case, each invariant cone is global ([5], [1]).

Various results for the general case were obtained by K.-H. Neeb. In
particular, he proved that in a Lie algebra which has no simple nontubular ideals
each invariant cone is global. Furthermore, an invariant cone is global if it’s dual
cone intersects the relative interior of the cone Cl generated by elements l in
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all nontubular simple ideals. It follows also from his results that in semisimple
algebras the condition for the dual cone to intersect Cl is a necessary one.

Let J be a semisimple ideal in a Lie algebra G with nontubular simple
summands only, LJ be the linear span of these elements l in all summands, C
be an invariant cone in G , and πJ be the projection to J ∗ dual to the identical
embedding. By the main result of this paper, the globality of C is equivalent to
the condition

πJ C
∗ ∩ LJ 6= {0}

for all such ideals J . Since (C ∩ J)
∗

= closπJ C
∗ , this condition is close to the

evident necessary one that C∩J is global in J but involves the degree of contact
between C and J .

A cone in a Lie algebra, by left shifts, naturally defines a left invariant
cone field on the corresponding group; if the cone is invariant then the cone field
is bi-invariant. A smooth curve is timelike if it’s tangent vector at any point
belongs to the cone at this point. It is possible to prove that the semigroup
S above is the closure of the set of endpoints of timelike curves starting at e .
Hence the existence of a closed timelike curve implies that the cone is not global.
Another possibility for an invariant cone to be nonglobal is the existence of a
sequence of timelike curves starting at e such that their lengths tend to the
infinity but endpoints tend to e . In the setting of left invariant cone fields this
effect occurs if the cone has a sufficiently high degree of contact with a Heisenberg
subalgebra (Theorem 4.1). For bi-invariant cone fields, one may consider two
different Heisenberg subgroups together with their actions, the first by left shifts
and the second by right ones. Thus a global invariant cone cannot have a high
degree of contact with a sum of two Heisenberg subalgebras. A construction
of special closed curves in Heisenberg groups gives estimates for the degree of
contact; gathered with some technical lemmas on the geometry of cones and
a choice of two Heisenberg subalgebras in nontubular hermitian algebras this
proves the necessity of the globality criterion.

If the interior of the invariant cone intersects a sum of two Heisenberg
subalgebras then the mentioned construction gives an example of a closed timelike
curve. This solves the problem of Ol’shanskǐı formulated in [8] for su(2, 1). In
simple simply connected groups, such a curve exists if and only if the cone is not
global, but even in the algebra su(2, 1)⊕R there exists an invariant cone which
is not global but admits no closed timelike curves.

The proof of the sufficiency is more complicated technically but more
standard. It uses the techniques of increasing functions, in fact, a modification
of the construction of the paper [11]. An essential tool is also Theorem 5.1 which
deals with the delicate situation of an invariant cone whose image in a factor
algebra is included to some global invariant one. The globality problem is reduced
to the reductive case by the consideration of simplectic algebras sp(2n,R).

The material of the paper is organized as follows.

Section 1 contains basic definitions and notations as well as the statement
of Main Theorem and the description of a geometrical procedure which allows to
check the globality; there are also two examples.

In Section 2 the preparatory material on simple hermitian algebras is
given in a form convenient for our purpose. The results of this section are known.
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Mainly, we need a reformulation of the Ol’shanskǐı criterion l ∈ C∗ (Proposi-
tion 2.1). A construction of an increasing function which, in fact, coincides with
the function of Vinberg ([11]) shows that it is naturally connected with some
finite dimensional representation.

In Section 3 it is shown that estimates of lengths of closed curves of a
special kind can give estimates of the degree of contact (Proposition 3.1).

Section 4 is devoted to the consideration of Heisenberg groups. According
to Theorem 4.1 proved in this section, the degree of contact of a global cone with
a Heisenberg algebra at a point of it’s center cannot exceed 2. The necessity of
the criterion of the globality is also proved in this section.

The main result of Section 5 is Theorem 5.1 mentioned above. It is
proved that an invariant cone is global if it’s projection to a factor by an ideal is
included to some global cone and the projection of the dual cone to the dual space
of this ideal includes some cone dual to a global one. The additional hypothesis
is that this ideal admits a comlementary subalgebra.

In Section 6, nonreductive algebras are considered; it is proved in The-
orem 6.3 that the globality of an invariant cone in a nonreductive algebra is
equivalent to the globality of it’s intersection with some reductive subalgebra.

The results formulated in Section 1 are proved in Section 7.

The paper is rather selfcontained. Special results which are given without
proofs concern the structure of Lie algebras admitting an invariant cone (see [3],
[6], [2]; the last article could be a preliminary part to this paper).

The main result of the paper could be understood as follows: the Heisen-
berg group is the unique obstruction to the existence of an bi-invariant order
which is not an obstruction to the existence of an invariant cone. It seems to
be faithful that this obstruction (with general nilpotent groups instead of the
Heisenberg group) is an essential one in a more general situation of homogeneous
spaces.

1. Statement of the main theorem

The identity in a group is denoted by e , in an associative algebra by 1; R+ =
[0,∞). Vector spaces everywhere in this paper are supposed to be finite dimen-
sional and, if the contrary is not supposed in an explicit form, real. For a vector
space V , V ∗ denotes the dual space. We consider only convex cones. A cone
C ⊆ V is called pointed if it is closed and C ∩ (−C) = {0} .

The interior of a set S is denoted by Int(S ), it’s boundary by ∂S ;
RelInt(S ) denotes the interior of a set S ⊆ V in it’s linear span.

A cone C is called generating if Int(C ) 6= ∅ . A closed cone C is pointed
(generating) if and only if the dual cone

C∗ = {λ ∈ V ∗ : λ(x) ≥ 0 for all x ∈ C}

is generating (pointed).

Let M be a smooth manifold (”smooth” everywhere in this paper means
”infinitely differentiable”). A cone field on M is a subset C of the total space
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of the tangent bundle TM such that C(m) = C ∩ TmM is a cone in the tangent
space TmM for all m ∈ M . A cone field on a domain in an Euclidean space
E will be called continuous if the projections of cones to the projective space
PE depends on the point continuously with respect to the Hausdorff distance
between sets; the Hausdorff distance may correspond to any Riemannian metric
in PE . Clearly, diffeomorphisms keep this property, thus the definition of the
continuity naturally extends to smooth manifolds.

A smooth curve γ : [a, b]→ G is called timelike if

(1.1) γ′(t) ∈ C(γ(t)) for all t ∈ [a, b]

For a piecewise smooth curve, one has to replace γ ′(t) in (1.1) with both one-side
derivatives. By T(m) will be denoted the set of all timelike piecewise smooth
curves in M which start at m .

The future F(m) of the point m is the closure of the set of endpoints
of curves in T(m). The past P(m) of m is the future of m with respect to the
cone field −C .

A cone field C is called global if the tangent cone to the set F(m)
coincides with C(m) for each x ∈ M . If the cone field C is global then the
dual cone field C∗ in the cotangent bundle T ∗M defined by C∗(m) = C(m)

∗

will be called exact.

A smooth function f is called increasing at a point m if dgf ∈ C(m)
∗

. If
dgf ∈ Int(C(m)

∗
) then f will be called strictly increasing at m . An increasing

(strictly increasing) function on M is a function which is increasing (strictly
increasing) at each point. Set

(1.2) C?(m) = {dm f : f is an increasing function on M}

Clearly, C?(m) ⊆ C∗(m).

The length of a vector x in an euclidean space E is denoted by |x| ; for
the distance between a point and a set or between two sets we shall use the
notation dist. The length of a curve γ is denoted by l(γ).

For a subalgebra X ⊆ G , let Ad(X) be the subgroup of GL(G) generated
by the set {ead(x) : x ∈ X} . If clos Ad(X) is compact, X is called compactly
embedded.

A pointed generating Ad(G)-invariant cone in a real Lie algebra G will be
called an invariant cone. Each cone C ⊆ G defines the unique left invariant cone
field C on a Lie group G with the tangent Lie algebra G such that C(e) = C .
If C is an invariant cone then C is also right invariant. More generally, a cone
in a tangent (cotangent) space at a point p of a homogeneous space defines an
invariant cone field C if and only if it is invariant under the isotropy group. Such
a cone will be called global (exact) if it generates the global (exact) invariant cone
field. A cone dual to an invariant cone in a Lie algebra will be called an exact
invariant cone.

A simple real Lie algebra is called hermitian if the center of it’s maximal
compactly embedded subalgebra is nontrivial. Simple hermitian Lie algebras
are exactly Lie algebras of groups of holomorphic automorphisms of irreducible
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hermitian symmetric spaces. A simple hermitian Lie algebra G is called tubular if
the corresponding symmetric space is equivalent to a tube domain, i.e. a domain
in Cn of the type Rn + iC , where iC is a pointed generating cone in R n .
Otherwise, G is nontubular. An equivalent algebraic definition is: G is nontubular
if and only if some special element l is nonzero (for the exact definition of l , see
(2.10)).

Let G be a real Lie algebra, J1, . . . ,Jn be all it’s simple hermitian non-
tubular ideals, lk 6= 0 be the element defined by (2.10) for Jk , n = {1, . . . , n} .
For a set I ⊆ n , let JI be the sum of Jk , k ∈ I , LI be the linear subspace
generated by lk , k ∈ I , πI be the projection G∗ → JI dual to the embedding
JI → G , where JI∗ is identified with JI by the Killing form. If I = n , set
πI = π , JI = J , and LI = L . Note that lk are linearly independent.

Theorem (Main Theorem). An invariant cone C in a real Lie algebra G is
global if and only if

(GlC) πI C
∗ ∩ LI 6= {0}

for each subset I ⊆ n . Moreover, the globality of C is equivalent to each of the
following conditions:

(1) the cone πC∗ includes some exact cone in J;

(2) πI C
∗ includes some exact cone in JI for any I ⊆ n.

The globality criterion (GlC) may be checked by the intersection of the
cone πC∗ with a rather small subspace of G . Let Vr be the two-dimensional
subspace generated by lr and mr , where lr and mr are defined by (2.10) for
the nontubular ideal Jr , V = V1 + · · ·+ Vn . Note that V is invariant under all
projections πI , I ⊆ n . Set C ′ = πC∗ ∩ V .

The checking procedure deals with a set I ⊆ n and the cone CI = πI C
′

(if I = ∅ , put LI = CI = {0}). Initially, I = n . Each step consists of two
operations:

(1) find the least subset I ′ ⊆ I such that CI ∩LI ⊆ LI′ ;
(2) replace I by I \ I ′ .

The procedure finishes if either I ′ = ∅ or I = ∅ .

Proposition 1.1. The invariant cone C is global if and only if the procedure
above finishes with I = ∅ .

This section is concluded by two illustrating examples. We use the
notation (2.10).

Among simple nontubular hermitian algebras, su(2, 1) has the least di-
mension. This is a real form of sl(3,C) whose root system is A2 . Recall that
A2 consists of vertices of the regular hexagon. Let α be a compact root, β the
simple noncompact one. Then 3ik = α+ 2β , the automorphism ν transposes α
and β , and (2.10) may be rewritten as follows

il =
1

3
(β − α), im =

1

3
(2α+ β), ip = α+ β
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Note that ip is the second positive noncompact root.

The essential part of possible geometrical effects obstructing to the glob-
ality occurs in algebras su(2, 1)⊕R and su(2, 1)⊕ su(2, 1). By a result of Hilgert
and Hofmann, any closed convex generating Weyl invariant cone c in a Cartan
subalgebra C of a reductive Lie algebra G such that cmin ⊆ c ⊆ cmax is the
intersection of the unique invariant cone C in G with C . So we give examples
of cones c . For su(2, 1), cmin is generated by −iβ and p , cmax by l and m .
The Weyl group of su(2, 1) contains only one nontrivial element, namely, the
reflection ρ with respect to the line orthogonal to α . Since k is a fixed point
of it and ρα = −α , any invariant cone in su(2, 1) is uniquely determined by the
condition that the vector 3k + itα with t ∈ [1, 3] belongs to it’s boundary. The
space V coincides with C .

Example 1.1. Let G = su(2, 1) ⊕ R , C be a Cartan subalgebra of G . Then
C = C′ ⊕ R , where C′ is a Cartan subalgebra of su(2, 1). Let f be a convex
function on (−3, 3) such that

(1) f is even;

(2) f(t) = 0 for t ∈ [−1, 1];

(3) lim
t→3

f(t) = +∞ .

There exists the unique convex homogeneous of degree 1 function F on the
interior of cmax in C′ which coincides with f(t) on the interval k − itα , t ∈
(−3, 3). Set

c = {(x, s) : x ∈ Int(cmax ), s ≥ F (x)} ∪ {(0, s) : s ≥ 0}
Then c is a closed convex generating Weyl invariant cone in C . It’s projection
to C′ is equal to Int(cmax )∪{0} , so (GlC) is not satisfied for the corresponding
invariant cone C . Hence the predual cone is not global while it’s intersection
with su(2, 1) is global because the closure of the projection is cmax . Note that the
degree of contact of the predual cone with C′ at the boundary of cmin depends
on the growth of f as t → 3 but always exceeds 1 (for the exact definition of
the degree of contact, see Section 3).

Example 1.2. Set G = G1 ⊕ G2 , where G1 and G2 are isomorphic to su(2, 1).
Lets denote objects (vectors, cones, subspaces) in an ideal Gr introduced above
for su(2, 1), r = 1, 2, by the same letters with the index r .

For t ∈ [1, 3], let ct be the closed Weyl invariant cone in C generated by

(1.3) p1, l1 + k2, k1 + l2, 3 k2 +it α2

and Ct be the corresponding invariant cone in G . Then

cmin,1 ⊕ cmin,2 ⊆ ct ⊆ cmax,1 ⊕ cmax,2

The projection of ct to Gr contains lr . Let λ be the linear functional on
C = C1⊕C2 such that λ(l1) = λ(l2) = 0, λ(m1) = λ(m2) = 1. If t < 3
then λ is strictly positive on all generating elements (1.3), so ct doesn’t contain
any nonzero element of the type a l1 +b l2 with a, b ∈ R . Hence Ct is not exact
for t < 3 by (GlC). If t = 3 then l2 ∈ ct and the projection of ct to G1 contains
l1 . Thus C3 is exact by Proposition 1.1.
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2. Simple hermitian Lie algebras

Let G be a real simple Lie algebra, κ be a Cartan involution which defines the
Cartan decomposition

G = K⊕M
where κξ = ξ for ξ ∈ K and κξ = −ξ if ξ ∈ M , K is a maximal compactly
embedded subalgebra. Then

K̃ = K⊕ iM
is a compact real form of the complexification GC = G ⊕ iG of G . The group
Ad(K) is irreducible in M .

If τ is the complex conjugation in GC with respect to K̃ in GC then

(2.1) µ = κτ = τκ

is the complex conjugation with respect to G .

The algebra G is called hermitian if Z(K) 6= 0. If this is the case then the
center of K coincides with the centralizer Z(K), dimZ(K) = 1 and M admits
an Ad(K)-invariant complex structure

(2.2) J = ad(k)

for some k ∈ Z(K). This k is unique up to a sign. The automorphism κ admits
an expression by ad(k)

(2.3) κ = eπ ad(k)

A complex Lie algebra GC is simple because G admits no complex structure
(otherwise, its maximal compactly embedded subalgebra would be simple).

Any Cartan subalgebra C of K is a Cartan subalgebra of G . Let ∆
denotes the root system for C . Since C is compactly embedded, ∆ ⊂ (i C)∗ .

Let B be any base of the root system ∆. Then there exists a Chevalley
base B for GC

(2.4) B = {hα : α ∈ B} ∪ {xα : α ∈ ∆}

where xα is the eigenvector of C corresponding to a root α (so [h, xα] = α(h)xα
for all α ∈ ∆ and h ∈ C),

hα = [xα, x−α], α(hα) = 2 for all α ∈ ∆

and structure constants of GC for the base B are integer; in particular, they are
real. Thus {hα, xα, x−α} is a sl2 -triple.

We may also assume that

(2.5) τxα = −x−α
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The union of vectors hα is a root system ∆∨ dual to ∆.

Let q be an invariant symmetric bilinear form in GC which is positive
definite in iC (so q is a scalar multiplier of the Killing form), | | be the corre-
sponding length. Then for all α ∈ ∆ and h ∈ iC α(h) = 2q(hα, h)/q(hα, hα).
Thus we may assume that ∆ is embedded into iC in such a way that

(2.6) α =
2

q(hα, hα)
hα, hα =

2

q(α, α)
α

It will be convenient to normalize q by the condition

(2.7) max{ |α| : α ∈ ∆} =
√

2

If α is a root of the maximal length, we shall say that α is a long one; others
will be called short; short roots are of length 1. The normalization (2.7) and
(2.6) imply that

(2.8) hα = α, |α| =
√

2, and hα = 2α, |α| = 1

Let W be the Weyl group of ∆, V be a Weyl chamber in iC which
contains ik . There exists the unique base B of ∆ such that

(2.9) V = {x ∈ iC : α(x) ≥ 0 for all α ∈ B}
It will be supposed that B in (2.4) satisfies (2.9).

Since V is a fundamental domain for W , there exists the unique δ ∈W
such that δV = −V . This is an involution because δ2V = V . Let ν be an
automorphism of GC which is equal to −δ in C ; then ν is an involution in iC ,
νV = V , and ν is either outer or identical in iC . Set

(2.10) l = k + δk, m = νk, p = k +m

Clearly, l⊥p .

Let Wk and Wm denote subgroups of W generated by reflections in W
which fix points ik and im respectively, Wkm = Wk ∩Wm , Wp be the group
generated by Wkm and ν .

Lemma 2.1. The set of fixed points in iC of a group Wx is equal to iRx ,
x = k,m, p . The group Wkm fixes points of the subspace generated by k and m ,
and only these points.

Proof. Note that Wk includes the Weyl group of the reductive Lie algebra
K which could be naturally identified with the Weyl group of the compact
semisimple algebra K′ = [K, K] corresponding to its Cartan subalgebra K′ ∩ C .
The last group has no fixed points in K′ ∩ C . Therefore, Z(K) = Rk is exactly
the set of fixed points of Wk in C .

For x = m , the assertion is clear because m = νk = −δk and δ ∈ W .
If x = p then an obvious case is k = m . Since iRk is the set of Wk -fixed points
in iC , iR+k is an extreme ray of V . The same is true for m . The cone V is
simplicial, so the subspace generated by ik and im is the intersection of those
boundary hyperplanes of V which contains ik and im ; since all reflections with
respect to these hyperplanes are contained in Wkm , the set of Wkm -fixed points
is exactly this subspace. It remains to note that if k 6= m then iRp is the set of
ν -fixed points in the plane generated by ik and im because ν transposes them.
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Remark 2.1. In fact, Wk is the Weyl group of the reductive Lie algebra K
because any reflection in C with respect to a hyperplane orthogonal to a root
α ∈ ∆0 could be realized by the inner automorphism exp(π2 ad(xα − x−α)).

The following corollary was already used in the proof of the lemma; the
proof is clear.

Corollary 2.1. iR+k and iR+m are extreme rays of V .

By the corollary, ik is proportional to a fundamental weight of the base
B and the dual base B∨ of ∆∨ . Since eigenvalues of ad(k) are 0,±i ,
(2.11) α(ik) ∈ {0, 1,−1}
for all α ∈ ∆. Therefore, ik is a fundamental weight of ∆∨ . Moreover, ik is a
microweight of ∆∨ ((2.11) is a definition).

Set
∆j = {α ∈ ∆ : α(ik) = j}

Then ∆ = ∆−1 ∪ ∆0 ∪ ∆1 . Roots in ∆0 will be called compact, in ∆−1 ∪ ∆1

noncompact, in ∆1 — positive noncompact. Note that there is only one root in
B which is not orthogonal to ik ; this is the simple noncompact root.

By (2.1), (2.3), and (2.5),

(2.12) µxα = −x−α, α ∈ ∆0 and µxα = x−α, α ∈ ∆1 ∪∆−1

So, there are natural bases for K and M in the decomposition G = K⊕M
BK = iB∨ ∪ {xα − x−α : α ∈ ∆+

0 } ∪ {i (xα + x−α) : α ∈ ∆+

0 }

(2.13) BM = {xα + x−α : α ∈ ∆1} ∪ {i (xα − x−α) : α ∈ ∆1}
where ∆+

0 is a subset of positive roots for some ordering (so ∆+

0 ∪ (−∆+

0 ) = ∆0

and ∆+

0 ∩ (−∆+

0 ) = ∅).

Since m is conjugated to k in GC , ad(m) has the same eigenvalues as
ad(k). Put

∆r,s = {α ∈ ∆ : α(ik) = r, α(im) = s}
and denote by G C

r,s the corresponding eigenspace

GC

r,s = {x ∈ GC : ad(ik)x = rx, ad(im)x = sx}
Then GC

0,0 is the complex linear span of C and {xα : α ∈ ∆0,0} , and
other GC

r,s are generated by xα , α ∈ ∆r,s .

Since ik and im belong to the same Weyl chamber V , α(ik) and α(im)
cannot have opposite signs for all α ∈ ∆. Therefore, ∆−1,1 = ∆1,−1 = ∅ . Thus
we obtain an A2 -type gradation

GC = GC

−1,−1 ⊕ GC

−1,0 ⊕ GC

0,−1 ⊕ GC

0,0 ⊕ GC

1,0 ⊕ GC

0,1 ⊕ GC

1,1

For the element p defined by (2.10), ad(ip) has the eigenvalue r+s in the space
GC

r,s . So we have a gradation of GC

GC = GC

−2 ⊕ GC

−1 ⊕ GC

0 ⊕ GC

1 ⊕ GC

2

where GC

r+s = GC

r,s + GC

s,r .

Our aim is to receive the same gradation for G . To do it, we’ll find an
element in M conjugated to ip in GC .
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Lemma 2.2. Let Q(∆) be the lattice in iC generated by ∆ , λ ∈ Q(∆), λ 6= 0 .
Then

(2.14) λ =
∑

α∈E
nαα

for some positive integer nα and E ⊂ ∆ such that q(λ, α) > 0, q(α, β) ≥ 0 for
all α, β ∈ E .

Proof. Consider the class of representations of λ of the type (2.14) with
nonnegative nα and q(λ, α). This class is not empty because these conditions
are satisfied for the unique representation by the base corresponding to a Weyl
chamber which contains λ . Suppose that for the data nα, α ∈ E the sum of
nα attains the minimal value over this class. Then q(α, β) ≥ 0 for all α, β ∈ E
since otherwise α+β is a root and it is possible to decrease the sum. So α ∈ E ,
q(λ, α) = 0 implies nα = 0, and α could be excluded from E .

Lemma 2.3. Let ∆̃ be the subsystem of long roots in ∆ . Then ik − iδk ∈
Q(∆̃) .

Proof. First, note that for any weight λ of a root system ∆ (this means that
q(λ, α∨) is integer for all α ∈ ∆) and w ∈ W , λ − wλ ∈ Q(∆) (for reflections
in W , this is a simple calculation; for any w ∈ W , this is true because W is
generated by reflections).

So, the assertion is clear if roots in ∆ are of equal length. We may
exclude from the consideration G2 and F4 since they have no hermitian real
forms. Thus we have to consider Bn and Cn .

Let W̃ be the Weyl group of ∆̃. If ∆ = Cn then δ = −1 ∈ W̃ since
∆̃ = nA1 . For ∆ = Bn , δ = −1 but δ /∈ W̃ for odd n ; being a microweight of
∆∨ = Cn , ik is a short root ε of Bn , so ik − iδk = 2ε could be represented as
a sum of two long roots in any B2 -subsystem which contains ε .

Lemma 2.4. There exists a subset E ⊆ ∆1,1 consisting of long roots such that

(2.15) ip =
∑

α∈E
hα

and the set E is a maximal in ∆1 subset of pairwise orthogonal roots.

Proof. By Lemma 2.3, Lemma 2.2, and the definition of p , there exists a
representation of ip of the type (2.14), and roots in E may be supposed to be
long. For each ξ ∈ ∆,

2 ≥ q(ip, ξ) =
∑

α∈E
nαq(α, ξ)

If ξ ∈ E then q(ξ, ξ) = 2, so nξ = 1, q(ip, ξ) = 2, and q(α, ξ) = 0 for
α 6= ξ, α ∈ E . Therefore, roots in E are pairwise orthogonal and E ⊆ ∆1,1 . By
(2.11), α = hα for α ∈ E . Thus (2.15) is proved. The maximality of E is a
consequence of (2.15) and the obvious inequality q(ip, α) ≥ 1 for α ∈ ∆1 .
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Lemma 2.5. The linear span of all xα, x−α, hα, α ∈ E , is a subalgebra of GC

isomorphic to the direct sum of sl2 -subalgebras corresponding to roots in E .

Proof. For all α ∈ E , xα and x−α , are annihilated by all summands in
(2.15) which are not equal to hα ; if α, β ∈ E, α 6= β , then ±α±β are not roots
because α, β are orthogonal and long.

Corollary 2.2. The element ip can be embedded into a sl2 -triple in GC .

Proof. Put

(2.16) h = ip, e =
∑

α∈E
xα, f =

∑

α∈E
x−α

Then [e, f] = h , [h, e] = 2e, [h, f] = −2f by the lemma and (2.15).

In sl(2,C), h and e+f are conjugated by an inner automorphism which
may be written explicitly. Set

(2.17) θ = e
1
4π ad(e−f)

Then a calculation with 2-matrices shows that

(2.18) θh = e+ f, θe = −1

2
(h− e+ f), θf = −1

2
(h+ e− f)

By Lemma 2.3 and the same calculation,

(2.19) θxα = −1

2
(hα − xα + x−α), θx−α = −1

2
(hα + xα − x−α)

for all α ∈ E . Thus

(2.20) iθxα, iθx−α ∈ G for all α ∈ E

by (2.13).

Lemma 2.6. For θ defined by (2.17), θE ⊂ M . The real linear span A of
θE is a maximal abelian subspace of M; for B = (E⊥ ∩ C) , A+ B is a Cartan
subalgebra of G .

Proof. By Lemma 2.3 and (2.18), θhα = xα + x−α ∈ M . This implies the
first assertion.

The set of θ -fixed points in C includes E⊥ ; therefore,

(2.21) θC = iA⊕ B

So Z(A+ B) = θ(C+ iC) ∩ G = A+ B and A+ B is a Cartan subalgebra of G .

The remainder is the equality Z(A)∩M = A which is a consequence of
the following lemma.
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Lemma 2.7. Let F be a set of θ -fixed points in Z(A) . Then F ⊆ K and
Z(A) = A⊕ F.

Proof. If β ∈ E and α⊥E then β + α cannot be a root because roots in E
are long. Therefore, [e, xα] = [f, xα] = 0 and θxα = xα for all α ∈ E⊥ .

The centralizer of E in GC is generated by C and root vectors xα ,
α ∈ E⊥ ∩∆. So Z(A) = Z(θE) = A⊕F by (2.21).

By Lemma 2.4, noncompact roots cannot be orthogonal to E . Thus
F ⊆ K .

Corollary 2.3. A simple hermitian Lie algebra G admits a gradation

(2.22) G = G−2 ⊕ G−1 ⊕ G0 ⊕ G1 ⊕ G2

Proof. This is the gradation by eigenvalues of ad(θh) (note that θh ∈ M by
(2.15) and Lemma 2.6).

Let L = K ∩ G0 . Clearly, B ⊆ L . Lets denote by PX the q -orthogonal
projection in G onto the linear subspace X ⊂ G . Then

PM =
1

2
(1− κ), PK =

1

2
(1 + κ)

Set H+ = G1 ⊕ G2 , H− = G−1 ⊕ G−2 , and

P = G0 ⊕H+, H = H+ ⊕H−, H0 = H∩ K

Lemma 2.8. In the decomposition (2.22),

(1) κGj = G−j , j = 0,±1,±2; in particular, κH+ = H− ;

(2) l = 2PLk ;

(3) l ∈ Z(L) ∩ L ;

(4) PKH = PKH+ = PKH− = H0 ;

(5) K = L ⊕H0 , and this decomposition is orthogonal;

(6) G = K+ P ;

(7) if G is nontubular then [G1,G1] = G2 and [G−1,G−1] = G−2 .

Proof. By Lemma 2.6, θh ∈ M , so κθh = −θh . This implies (1).

Since l⊥∆1,1 ⊆ E , l ∈ B ⊆ L . By (2.18), h = −θe− θf . Hence

(2.23) p = iθ(e+ f)

and

(2.24) k =
1

2
(l + p) =

1

2
(l+ iθe+ iθf)

So (2) is true because iθe ∈ G2, iθf ∈ G−2 by (2.20), and L⊥G2⊕G−2 since the
decomposition (2.22) is orthogonal.

It follows from (2) that l is a fixed point of Ad(L). Since l ∈ L , this
proves (3).
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Note that κH = H by (1), so PKH = H ∩ K = H0 ; PKH+ = PKH−
because κH+ = H− . Clearly, H⊥L , so H0⊥L . This implies that H0∩L = {0}
since −q is positive definite in K . By (1), G0 is κ -invariant, so PKG0 = L ;
therefore, K = PK(G0 +H) = L+H0 . Thus (4) and (5) are proved.

By (4) and (5), K+H+ ⊃ H− . This proves (6).

To prove (7), set G′2 = [G1,G1] , G′−2 = [G−1,G−1] , G′0 = [G1,G−1] and

G′ = G′−2 ⊕ G−1 ⊕ G′0 ⊕ G1 ⊕ G′2

Then [G0,G′k] = G′k , k = 0,±2. Since [G2,G−1] ⊆ G1 , [G2,G′−2] ⊆ G′0 ; similarly,
[G′2,G−2] ⊆ G′0 . Clearly, [G±1,G′] ⊂ G′ . Thus G′ is an ideal in G and this ideal is
proper if (7) is not true.

In the theorem below, we summarize known properties of invariant cones
in simple hermitian Lie algebras in the form convenient for our purpose. We
follow papers of Vinberg [11] and Ol’shanskǐı [8], [9]; see also [10].

Recall that the Weyl group of C in G may be identified with the group
Wk of Lemma 2.1 (see Remark 2.1).

Theorem 2.1. Let C be a compactly embedded Cartan subalgebra of G .

(1) Any invariant cone C in G is uniquely determined by C ∩ C = c , and c
is a Wk -invariant generating cone in C .

(2) There exist unique up to a sign maximal and minimal invariant cones
Cmax and Cmin . The cone Cmin may be chosen in such a way that
k ∈ Cmin . Then elements x ∈ Cmax∩K are distinguished by the property
J ad(x) ≥ 0 in M ( for Cmax ⊇ Cmin ; J is defined by (2.2)) .

(3) Let cmax = Cmax ∩ C , cmin = Cmin ∩ C . Then each Wk -invariant cone
c ⊂ C such that

cmin ⊆ c ⊆ cmax

is the intersection of some invariant cone with C .

(4) The cone Cmin is generated by k ; Cmax is the cone dual to Cmin with
respect to the invariant form −q .

(5) The cone icmin is the minimal cone which contains all positive noncom-
pact roots; cmax = {x ∈ C : q(α, ix) ≥ 0 for all α ∈ ∆1} .

In other words, icmax is the union of Weyl chambers which contain ik .
Note that, by (2.10), (5), and (2.15),

(2.25) l,m ∈ cmax, p ∈ cmin

Ol’shanskǐı ([8]) discovered a criterion of the globality of an invariant cone for
simple simply connected Lie groups. For a cone C , let C∗ be the cone dual to
C with respect to −q .

Theorem 2.2. An invariant cone C ⊇ Cmin in a simple hermitian Lie algebra
G is global if and only if l ∈ C∗ .



54 Gichev

If l = 0 then a simple hermitian Lie algebra G is called tubular. Oth-
erwise, it is called nontubular. By the theorem, in a tubular Lie algebra any
invariant cone is global.

In fact, the sufficiency of the condition l ∈ C∗ was proved by Vinberg in
the original paper [11] (he formulated the result for Cmin ). Ol’shanskǐı observed
this and proved the necessity.

Since Vinberg defined the element l by another way, we shall outline a
modified version of his proof.

By (2.11), ik is a weight of ∆; since ik ∈ V , this is a highest weight of
a finite dimensional representation ρ of GC . Weights of ρ lie in the W -invariant
convex polytope M generated by ik . If α ∈ ∆0 then ik belongs to the convex
hull of Wk(ik+α) = ik+Wkα . Since ik is a vertex of M , ik+α is not a weight
of ρ . Clearly, the same is true for α ∈ ∆1 . So, if w denotes the corresponding
highest vector then

(2.26) ρ(xα)w = 0 for all α ∈ ∆0 ∪∆1

The dual representation ρ∗ has the highest weight im = iνk . Therefore,

ρ∗(xα)ω = 0 for all α ∈ ∆0,0 ∪∆−1,0 ∪∆0,1 ∪∆1

where ω is a highest vector for ρ∗ . Note that P+ iP is the complex linear span
of θxα , α ∈ ∆0,0 ∪∆0,1 ∪∆1 , and θC . Hence

(2.27) ρ∗(θ−1x)ω = 0 for all x ∈ P′ = [P,P]

Let GC be the simply connected complex Lie group with the Lie algebra
GC . Subgroups of GC with tangent algebras G , K , P will be denoted by G,K, P .
Note that K is compact.

The representation of GC corresponding to ρ will be denoted by the
same letter. Set

(2.28) Θ = eρ(
π
4 (e−f)) and f(g) = ω(Θρ(g)w)

Lemma 2.9. For the function f , the following conclusions hold:

(1) there exist functions a, b on G such that f(xgy) = a(x)b(y)f(g) for all
x ∈ P , y ∈ K , g ∈ G ;

(2) f(g) 6= 0 for all g ∈ G .

Proof. By (2.26), w is a common eigenvector of ρ(η), η ∈ K ; analogously, ω
is a common eigenvector of ρ∗(θ−1ξ), ξ ∈ P , by (2.27).

So (1) may be verified by a calculation (note that ρ∗(θ−1ξ) = Θ−1ρ∗(ξ)Θ
and ρ∗(g) = ρ(g−1)

∗
).

The function f cannot be identically zero on GC since ρ is irreducible
and on G because f is holomorphic. Thus f(g) 6= 0 for all g ∈ G by (1) and
the following lemma.
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Lemma 2.10. G = KP .

Proof. Let X be the homogeneous space G/P . Consider the action of the
group K in X . By Lemma 2.8, (6), the orbit of the class P in X is open. Since
K is compact, this is closed, so the action of K in X is transitive which proves
the lemma.

Let f be as in Lemma 2.9. We may assume that f(e) = 1. Since f has
no zeroes in G , the definition

(2.29) F (g) = = log f(g), F (e) = 0

of the function F on the universal covering group G̃ is correct.

Lemma 2.11. If l ∈ C∗ then F is an C -increasing function in G̃ . Moreover,

(2.30) F (xgy) = F (x) + F (g) + F (y)

for all x ∈ K̃ , g ∈ G̃ , y ∈ P̃ , where K̃ and P̃ are subgroups in the universal
covering group G̃ corresponding to subalgebras K and P . Furthermore, after
the multiplication on a suitable constant and the identification of G and G∗ by
means of the invariant form q ,

(2.31) deF =
1

2
l + iθe

Proof. First of all, note that (2.30) is a consequence of Lemma 2.9 and (2.29).
Lemma 2.10 and (2.30) imply that the function F is increasing if deF ∈ C∗ .
Thus the lemma will be proved if we’ll prove (2.31) and the inclusion iθe ∈ Cmin .

It follows from (2.28) that def(ζ) = ω(Θρ(ζ)w) for all ζ ∈ GC . Set
ϕ = deF . By (2.28) and (2.26), ϕ has the zero restriction to the semisimple part
K′ = [K,K] of K ; by (2.28) and (2.27), ϕ = 0 on P′ . So restrictions of ϕ to K
and P are scalar multipliers of functionals q(k, ·) and q(=(iθm), ·) respectively,
where = is the imaginary part with respect to the algebra G in GC . Since θl = l ,

=(iθm) = <(θm) =
1

2
<θ(p− l) = −1

2
l

according to (2.23) and Lemma 2.6. Combining this with Lemma 2.8, (2), we
receive the equality k + ξ = 1

2
l + η , where ξ ∈ K⊥ = M , η ∈ P⊥ = H+ .

It follows from Lemma 2.8, (6), that this equality determines ϕ up to a scalar
multiplier. Since iθ(e− f) ∈ M and iθe ∈ G2 , by (2.24),

k +
i

2
θ(e− f) =

1

2
l+ iθe

This proves (2.31).

Since ad2(e)e = 0, ad2(e)f = 2e , by (2.23),

lim
t→∞

1

t2
et ad(iθe)p = 2iθe

hence iθe ∈ Cmin by (2.25) and (2.20).
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The proof of the globality could be concluded by an application of The-
orem 2.1 and Corollary 5.6 (cf. [11]).

If G is tubular then l = 0. Hence l ∈ C∗ . So one may assume that G is
nontubular proving the necessity. It will be done in Section 4 for a more general
setting; in this subsection, some conditions equivalent to l ∈ C∗ are given.

Let V be the inverse image of the group Wkm in the normalizer of
Ad(C) in Ad(G) under the homomorphism of restriction. This is a compact group
isomorphic to a semidirect product of the torus Ad(C) and the finite group Wkm .
The averaging operator over V will be denoted by AV . As in Proposition 1.1,
the two-dimensional subspace of G generated by k and m is denoted by V .

Proposition 2.1. Let G be a nontubular simple hermitian Lie algebra, C
be an invariant cone in G , C ⊆ Cmax . Then AV = PV , where PV is the q -
orthogonal projection to V . Moreover,

(2.32) AV (C∗ ∩ p⊥) = C∗ ∩ R+l

and the condition l ∈ C∗ is equivalent to each of the following ones:

(1) p /∈ Int(C );

(2) Int(C )∩H = ∅ ;

(3) p⊥ ∩ C∗ 6= {0} ;

Proof. Since C is the set of fixed points of Ad(C) and V is the set of fixed
points of Wkm in C by Lemma 2.1, AV = PV because the averaging operator
over a compact group of orthogonal transformations is the orthogonal projection
to the set of fixed points of this group. The group V fixes p , hence p⊥ is V -
invariant. Therefore, AV (C∗ ∩ p⊥) = AV C

∗ ∩ p⊥ and (2.32) folows from the
equality Rl = p⊥ ∩ V and the inclusion C ⊆ Cmax .

It follows from the equality AV = PV that the dual to C ∩V cone in V is
equal to C∗∩V . Note also that RelInt(C ∩ V) = Int(C )∩V since k ∈ Int(C )∩V .
The cone C ∩ V is an angle in the plane V which contains p by (2.25). Thus

(2.33) p ∈ Int(C ) if and only if l /∈ C∗

and the condition l ∈ C∗ is equivalent to (1) as well as to (3). Since p ∈ H by
(2.23), (2) implies (1); the converse is true because l⊥H (recall that l ∈ G0 ).

3. A necessary condition for the globality

In this section, we show that the degree of contact of a cone with some special
subspaces could be an obstruction to the globality (Proposition 3.4). We start
with preparatory lemmas on the geometry of cones.

Let η be an increasing function defined on some interval in R with left
endpoint 0, lim

ε→0
η(ε) = 0, L be a linear subspace of an Euclidean space E . We

shall say that a cone C has the degree of contact with L at the point x ∈ C
greater than η if

dist(C, x+ y) = o(η(|y|)) as y → 0 in L
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The degree of contact of C with L at x is greater or equal to η if there exist a
constant Q > 0 and a neighborhood U of zero in L such that

Qη(|y|) ≥ dist(C, x+ y) for all y ∈ U

Suppose that x /∈ L ; then the degree of contact is equal to η if it is greater or
equal and the inverse inequality holds with some another constant. If x ∈ L then
one has to replace L in this definition to any subspace L′ ⊂ L complementary
to Rx in L ; clearly, the definition doesn’t depend on the choice of L′ .

If η(ε) = εa then a will be called the degree of contact and denoted by
cont(C,L, x); cont(C,L, x) > a (cont(C,L, x) ≥ a) will mean that the degree of
contact is greater than (greater or equal to) εa .

Lemma 2.12. Suppose that cont(C,L, x) > 1 . Then

(1) either x ∈ Int(C ) or x ∈ ∂C and (x+ L) ∩ Int(C ) = ∅ ;

(2) the orthogonal projection of C to Rx + L includes a neighborhood of x
in Rx+ L ;

(3) if ξ ∈ C∗ and (ξ, x) = 0 then ξ ∈ L⊥ .

Proof. If x ∈ ∂C then there exists a hyperplane H in E such that x, 0 ∈ H ,
H ∩ Int(C ) = ∅ . Suppose that (x + L) ∩ Int(C ) 6= ∅ and consider the ray R
in x + L with the origin x which is orthogonal to H ∩ (x + L) and separated
from C by H . Then dist(x+ y, C) > K|y| for y ∈ R and some K > 0 which is
impossible because cont(C,L, x) > 1. The same construction for the projection
of C to Rx + L shows that x cannot be a boundary point of it. To prove (3),
note that u ∈ L and (ξ, u) ≤ 0 imply

0 ≥ (ξ, x+ tu) ≥ −|ξ| dist(x+ tu, C) = o(t) as t→ +0

Lemma 3.1. Let f ≥ 0 be a convex function on a neighborhood of the origin
of an euclidean space E, Gr be it’s graph in R × E endowed with the product
Euclidean distance. Then there exist a neighborhood V ⊂ E of zero and a constant
K > 0 such that f(x) ≤ K dist(x,Gr) for all x ∈ V .

Proof. We may assume that f−1(0) is compact since it is possible to add to
f a convex function vanishing in some neighborhood of the origin and strictly
positive outside it. Then, for sufficiently small ε > 0, the set

Vε = {x ∈ U : f(x) ≤ ε}

is compact. Let ε be such that both Vε and V2ε have this property. Set
δ = inf{|x− y| : x ∈ Vε, y /∈ V2ε} . Then, for any x, y ∈ Vε, x 6= y ,

(3.1)
|f(x)− f(y)|
|x− y| ≤ ε

δ

(to prove it, consider the straight line passing through x and y and the restriction
of f to it).
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Let d(x) = dist(x,Gr). For any x ∈ Vε , there exists the unique x∗ ∈ U
such that |x− x∗|2 + f2(x∗) = d2(x). For this x∗ ,

f(x) ≥ d(x) ≥ f(x∗) and d(x) ≥ |x− x∗|
and the equality in any of these inequalities holds if and only if f(x) = d(x) =
f(x∗) = 0, x = x∗ . By (3.1),

f(x)− f(x∗) ≤ ε

δ
|x− x∗| ≤ ε

δ
d(x)

Thus the assertion of the lemma holds for V = Vε and K = ε
δ + 1.

For x ∈ C , v ∈ E , y ∈ E , set

Φx,v(y) = inf{t > 0 : x+ y + tv ∈ C}
and Φx,v(y) = +∞ if x + y + tv /∈ C for all t > 0. For a subspace L ⊆ E and
x ∈ E , set B(L, x, r) = {x+ y : y ∈ L, |y| ≤ r} ; Br = {y ∈ E : |y| ≤ r} ..

Lemma 3.2. Let C be a generating closed cone in E, x ∈ C , x 6= 0 , and C
has the degree of contact with L at x greater than η(ε) = O(ε) . Suppose that
v ∈ E and x + v ∈ Int(C ) . Then there exists a function ϕ on some interval
(0, ξ) , ξ > 0 , such that ϕ(ε) = o(η(ε)) as ε→ 0 and

(3.2) ϕ(ε)v +B(L, x, ε) ⊂ Int(C )

for all ε ∈ (0, ξ) .

Proof. The assertion is clear if x ∈ Int(C ), so we may assume that x ∈ ∂C .
Let H be a tangent hyperplane to C at x . It follows from the assumption of
the lemma that cont(C,L, x) > 1, hence H ⊇ L + Rx by Lemma 3.1, (3). Let
δ be such that x + v + Bδ ⊂ Int(C ). Then Φx,v(y) < 1 for all y ∈ B(H, x, δ),
∂C ∩ (x + y + [0, 1]v) is a single point, and ∂C ∩ (B(H, x, δ) + [0, 1]v) may be
considered as the graph of the convex function Φx,v(y) on B(H, x, δ). It follows
from Lemma 3.2 that

(3.3) Φx,v(y) ≤ K dist(x+ y, C) = o(η(|y|))
for all y ∈ B(L, x, δ) and some K > 0. Note also that

(3.4) x+ y + tv ∈ Int(C ) if Φx,v(y) < t < 1

Let ψ be any positive increasing function on (0, δ) such that ψ(ε) = o(η(ε)).
Set

ϕ(ε) = ψ(ε) + sup{Φx,v(y) : y ∈ B(L, x, ε)}
By (3.3) and (3.4), ϕ satisfies the lemma for some ξ , 0 < ξ ≤ δ .

Let G be a Lie group endowed with a left invariant Riemannian metric.
For a subspace L of it’s Lie algebra G , any x ∈ G , and ε > o , let Γ(L, x, ε) be
the set of all piecewise smooth curves γ : [a, b]→ G such that, for both one-side
derivatives and all t ∈ [a, b] ,

γ′(t) ∈ deλγ(t)(B(L, x, ε))
where λg(h) = gh is the left shift. It’s subset of closed curves will be denoted
by Γcl(L, x, ε). Let l(γ) be the length of a curve γ . Set

Λ(L, x, ε) = inf{l(γ) : γ ∈ Γcl(L, x, ε)}
and Λ(L, x, ε) = +∞ if Γcl(L, x, ε) = ∅ .
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Proposition 3.1. Suppose that C is pointed and generating cone in G , x ∈ C ,
and

(3.5)
Q

ε
< Λ(L, x, ε) < +∞

for some Q > 0 and all sufficiently small ε > 0 . If there exists v ∈ G such that

(3.6) [v, x] = 0, [v,L] ⊆ L, x+ v ∈ Int(C )

and the degree of contact of C with L at x is greater than η(ε) = Λ(L, x, ε)−1

then C is not global.

Proof. If x ∈ Int(C ) then C ⊃ B(L, x, ε) for small ε and the assertion is
true since Λ(L, x, ε) < +∞ by (3.5). So we may assume that x ∈ ∂C . Another
inequality in (3.5) implies that cont(C,W, x) > 1. By Lemma 3.3, there exists a
function ϕ(ε) = o(η(ε)) satisfying (3.2). For γ ∈ Γcl(L, x, ε), γ : [0, L]→ G , set

(3.7) γ̃(t) = γ(t) exp(ϕ(2ε)tv), 0 ≤ t ≤ L
Then

dγ̃(t)λ
−1
γ̃(t)(γ̃

′(t)) = Ad(exp(−ϕ(2ε)v))dγ(t)λ
−1
γ(t)(γ

′(t)) + ϕ(2ε)v

By (3.6), Ad(exp(τv))x = x and Ad(exp(τv))L ⊆ L for all τ ∈ R . So there
exists µ > 0 such that Ad(exp(τv))B(L, x, ε) ⊆ B(L, x, 2ε) if 0 ≤ τ ≤ µ . Since
dγ(t)λ

−1
γ(t)(γ

′(t)) ∈ B(L, x, ε), by the choice of ϕ , γ̃ is timelike if

(3.8) ϕ(2ε)L ≤ µ
and ε is sufficiently small. Note that

(3.9) |γ̃′(t)− deλγ̃(t)(x)| ≤ 2ε+ ϕ(2ε)|v|
Hence |L|x| − l(γ̃)| ≤ L(2ε + ϕ(2ε)|v|). Analogously, |L|x| − l(γ)| ≤ Lε . Since
l(γ) may be arbitrary close to Λ(L, x, ε), for all sufficiently small ε > 0 there
exists a curve γ ∈ Γcl(L, x, ε) such that (3.8) is true.

We may choose now a sequence {εn} , εn → 0 as n→∞ , and a sequence
γ̃n : [0, Ln]→ G of timelike curves such that γ̃n(Ln) = exp(ϕ(2 εn)Lnv)→ e as
n→∞ . Since εn → 0, by (3.7) and (3.9),

lim
n→∞

γ̃n(Ln−t) = exp(−tx)

for all sufficiently small t > 0. Therefore, the tangent to F(e) cone contains −x .
Thus C is not global.

Remark 3.1. In general, C admits no timelike closed curves. This is true if
L is a normal closed connected subgroup of G with the tangent Lie subalgebra
L , the projection of C to G/L is global, and C ∩ L is global in L .

This is not clear if the converse to the Proposition 3.1 is true in the
setting of left invariant cone fields. It follows from the results of this paper that
for simply connected Lie groups and bi-invariant cone fields the converse is true.

We conclude this section with two geometrical lemmas which will be used
in the proof of the necessity part of the main theorem.
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Lemma 3.3. Let U , V be subspaces of the Euclidean space E , U∩V = {0} , C be
a pointed generating cone, u, v ∈ C , cont(C,U, u) ≥ a ≥ 1 and cont(C,V, v) ≥ a .
Then cont(C,U+ V, u+ v) ≥ a . If cont(C,U, u) > a and cont(C,V, v) > a then
cont(C,U+ V, u+ v) > a .

Proof. This is a consequence of inequalities

|x+ y| ≥ K(|x|+ |y|) for some K > 0

which is true for all x ∈ U , y ∈ V since U ∩ V = {0} ,

dist(u+ v + x+ y, C) ≤ dist(u+ x,C) + dist(v + y, C)

and ta + sa ≤ (t+ s)a for a ≥ 1, t, s ≥ 0.

Lemma 3.4. Let W , L be subspaces of E , W ⊂ L , C be a pointed generating
cone in E, x ∈ W , and the degree of contact of the cone C∩L with W at x in L
is greater or equal to η , where 0 < η(ε) = o(ε) near zero. If PLC

∗ ∩W⊥ = {0}
then the degree of contact of C with W at x is greater than η .

Proof. Suppose that the degree of contact of C with W at x is not greater
than η . Then there exists a sequence {xn} in W and δ > 0 such that

(3.10) dist(x+ xn, C) ≥ δ dist(x+ xn, C ∩ L) > 0, xn → 0 as n→∞

For u ∈ W+ x , let u∗ (u? ) be the nearest to u point in C (C ∩ L). Then

(3.11) u∗ − u ∈ C∗, u∗ − u⊥u∗, and u? − u ∈ L

In the triangle with vertices u, u∗, u? , the angle at the vertex u∗ cannot be acute
since there is no points which are closer to u than u∗ in the interval [u∗, u?] .
Hence

(3.12) |u? − u| cosα ≥ |u∗ − u|

where α is the angle at the vertex u . Set

yn = (x+ xn)
∗ − (x+ xn)

Then (3.12) and (3.10) imply that |PLyn| ≥ δ|yn| . Thus the normalized sequence
|yn|−1yn has a limit point y with the nonzero projection to L . By (3.11), y ∈ C∗
and y⊥x , so PLy ∈ (C ∩ L)

∗
and PLy ∈ W⊥ ; the last inclusion (which gives a

contradiction) follows from Lemma 3.1, (3), since cont(C ∩ L,W, x) > 1 by the
assumption of the lemma.

4. Heisenberg group as an obstruction to the globality

A Lie group will be called a Heisenberg group if it is simply connected, two-
step nilpotent, and has no abelian direct factors. At the level of Lie algebras,
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it means that the center of the algebra coincides with it’s commutator algebra.
We shall receive estimates for lengths of closed curves of the type considered in
Proposition 3.1.

A cone field on a manifold M is called controllable if the future F(m) of
any point in M coincides with M . For simply connected nilpotent Lie groups,
a criterion of controllability for a left invariant cone field defined by a generating
cone C in it’s Lie algebra N is as follows (see [3])

(4.1) [N,N] ∩ Int(C ) 6= ∅

The results of this section could be considered as a more precise version of (4.1)
for Heisenberg groups; certainly, similar estimates for lengths of timelike closed
curves could be done for all nilpotent groups.

Let H be a Heisenberg algebra, i.e. the Lie algebra of a Heisenberg group,
Z be it’s center; by the definition above, [H,H] = Z . If W is any complementary
to Z subspace of H then the multiplication in H is uniquely determined by the
bilinear skew-symmetric form [ , ] : W×W→ Z . Conversly, any bilinear skew-
symmetric form ω : W×W → Z defines the Heisenberg algebra by the setting
[H,Z] = 0 and [u, v] = ω(u, v) for all u, v ∈ W if the linear span of ω(W,W)
is equal to Z . For a linear space W , there exists a free Heisenberg algebra
HW =W⊕ZW with the center ZW =W∧W and ω(u, v) = u∧v . Clearly, every
Heisenberg algebra is isomorphic to a factor algebra of a free Heisenberg algebra
by a subspace of it’s center.

Lemma 4.1. In a free Heisenberg algebra HW , there exists an Euclidean norm
| | such that ZW⊥W and every z ∈ ZW admits a representation

(4.2) z = u1 ∧ v1 + · · ·+ un ∧ vn
where 2n ≤ dimW , uk, vk ∈ W , k = 1, . . . , n , and

(4.3) |z|2 = |u1|4 + |v1|4 + · · ·+ |un|4 + |vn|4

Proof. Let | | be any Euclidean norm in W and ( , ) be the corresponding
scalar product. Elements of W ∧W could be identified with skew-symmetric
bilinear forms on W by

(4.4) (u ∧ v)(ξ, η) = (ξ, u)(η, v)− (ξ, v)(η, u) for all ξ, η, u, v ∈ W
So, there is the natural isomorphism z → Az between ZW and the space of all
skew-symmetric linear operators in W defined by the formula (Azξ, η) = z(ξ, η).
Lets extend | | to HW by the setting |z|2 = −TrA2

z . Then |z|2 = λ2
1 + · · ·+λ2

n ,
where λk > 0 and ±iλ1, . . . ,±iλn are nonzero eigenvalues of Az (so 2n ≤
dimW). For every k = 1, . . . , n , there exists a pair of vectors uk, vk ∈ W such
that

Azuk = λkvk, Azvk = −λkuk, |uk| = |vk| =
√
λk, uk ⊥ vk

and uk, vk⊥uj , vj if k 6= j . Since Au∧vξ = (ξ, u)v − (ξ, v)u by (4.4),

Auk∧vkuk = λkvk, Auk∧vkvk = −λkuk, k = 1, . . . , n

This data satisfies the assertion of the lemma because Az =
n∑
k=1

Auk∧vk .
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Corollary 4.1. In any Heisenberg algebra H = W ⊕ Z , where W is a
complementary to the center Z of H subspace, and every Euclidean norm | | in
it, there exists a constant K > 0 such that each z ∈ Z admits a representation
of the type

(4.5) z = [u1, v1] + · · ·+ [un, vn]

where uk, vk ∈ W, k = 1, . . . , n , 2n ≤ dimW , and

(4.6) max{|uk|2, |vk|2 : k = 1, . . . , n} ≤ K|z|

Proof. Clear.

The Heisenberg group H may be identified with H endowed with a
multiplication given by the Campbell-Hausdorff formula

(4.7) xy = x+ y +
1

2
[x, y]

Then the mapping exp is identical, x−1 = −x , and the multiplicative commuta-
tor coincides with the Lie product

(4.8) {x, y} = xyx−1y−1 = [x, y]

Let | | be an Euclidean norm in H , z ∈ Z, r > 0. We keep the notation of
Proposition 3.1 with G = H .

Lemma 4.2. There exists a constant K > 0 such that for any z ∈ Z\{0} and
some x1, . . . , x4n ∈ B(W, z,

√
K|z|)

(4.9) z−1 = x1 . . . x4n

where 2n ≤ dimW .

Proof. Let uk, vk be as in Corollary 4.1. For k = 1, . . . , n , set

x4k−3 = z + vk, x4k−2 = z + uk, x4k−1 = z − vk, x4k = z − uk
Then x4k−3 x4k−2 x4k−1 x4k = {vk, uk} = −[uk, vk] by (4.7) and (4.8). Since the
group multiplication in Z is the addition, the assertion follows from Corollary 4.1
(with the same K ).

Lemma 4.3. For x ∈ H , lets consider the parametrized interval x : [0, 1] →
H , x(t) = tx , as a curve in H . If x ∈ B(W, z, r) for z ∈ Z and r > 0 then
x ∈ Γ(W, z, r) and l(x) = |x| .
Proof. Since exp is identical, Rx with the natural parametization is an one-
parametrical group. So the left invariant Riemannian and the Euclidean metrics
coincide on it, l(x) = |x| , and the restriction of the left invariant vector field on
H with the vector x at the indentity to Rx is the constant vector field x .

Suppose that γ1, γ2 ∈ Γ(W, z, r), γk : [0, Lk]→ H , γk(0) = 0, k = 1, 2.
Then the curve γ1 · γ2 : [0, L1 +L2]→ H which coincides with γ1 on [0, L1] and
with γ1(L1) γ2(t− L1) on [L1, L1 +L2] also belongs to Γ(W, z, r). Note that

(4.10) l(γ1 · γ2) = l(γ1) + l(γ2)

because the metric is left invariant.
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Proposition 4.1. For any left invariant Riemannian metric on a Heisenberg
group H and a subspace W complementary to the center Z of it’s Lie algebra
H , there exists Q > 0 such that for every ζ ∈ Z \ {0} and ε ∈ (0, |ζ|)

(4.11) Λ(W, ζ, ε) ≤ Q|ζ|2
ε2

Proof. Let z ∈ Z \ {0} and x1 . . . x4n be as in Lemma 4.4. Then, by
Lemma 4.5,

γ = z · x1 · . . . · x4n ∈ Γcl(W, z,
√
K|z|)

and (4.10) together with (4.6) give the estimate

(4.12) l(γ) = |z|+ |x1|+ · · ·+ |x4n| ≤ (4n+ 1)|z|+ 4n
√
K|z|

Note that the change t→ rt of the parameter defines one-to-one correspondence
between Γcl(W, rζ, rε) and Γcl(W, ζ, ε) for any r > 0. Set z = rζ , where
r = Kε−2|ζ| . Then rε =

√
Kr|ζ| , so (4.12) implies that

Λ(W, ζ, ε) ≤ (4n+ 1)K
|ζ|2
ε2

+ 4nK
|ζ|
ε
≤ Q|ζ|2

ε2

for Q = (8n+ 1)K .

Theorem 4.1. Let C be a pointed generating cone in a Lie algebra F, H ⊆ F
be a Heizenberg subalgebra, H = W⊕Z , where Z is the center of H and W is
a complementary to Z subspace of H . Suppose that z ∈ C ∩ Z , z 6= 0 , and set

N = {x ∈ F : [x,W ] ⊆ W, [x, z] = 0}

If (z +N) ∩ Int(C ) 6= ∅ and cont(C,W, z) > 2 then C is not global.

Proof. Combine Proposition 3.1 and Proposition 4.1.

We are ready now to prove the necessity of (GlC) and this is convenient
to do it here because the proof of the sufficiency uses other methods.

The simply connected Lie group with the Lie algebra G is denoted by G ,
it’s connected subgroup corresponding to a subalgebra is denoted by the same
Latin letter with the same indices as the subalgebra. We keep the notation of
Section 2, the Main Theorem, and Proposition 1.1 up to the end of this section.
For any subspace or vector in a simple hermitian nontubular Lie algebra which
was introduced in Section 2 the sum of these subspaces or vectors for all simple
summands of an ideal JI will be denoted by the same letter with the index I .
We need also some preparatory lemmas.

Lemma 4.4. Let G be a simple hermitian nontubular Lie algebra, C be any
invariant cone in G which includes cmin , W = G1 + G−1 , where p is defined by
(2.10). Then cont(C,W, p) ≥ 2 .
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Proof. By (2.23), Lemma 3.3, and the equality κθe = θf , this is sufficient to
prove that cont(C,G1, iθe) ≥ 2. For any x ∈ C

(4.13) t−2ead(tiθe)x = t−2x+ t−1 ad(iθe)x+
1

2
ad2(iθe)x ∈ C

If x = k + u , u ∈ G−1 then, by (2.22), (2.23), and (2.24),

t−2ead(tiθe)x = t−2x+ t−1 ad(iθe)u+ t−1 ad(iθe)k + iθe

Replacing e with f and u ∈ G−1 with v ∈ G1 and summarizing these two
formulas we obtain

t−2(2k + u+ v) + t−1(ad(iθe)u+ ad(iθf)v) + p ∈ C

for all sufficiently small t > 0. Note that ad(iθe)G−1 = G1 and ad(iθe) is
invertible on G−1 because

ad(iθh)y = [ad(iθe), ad(iθf)]y = ad(iθf) ad(iθe)y

for y ∈ G−1 . An analogous assertion is true for f and G1 . Thus, for any compact
neighborhood U of zero in W , dist(C, e+ tU) = O(t2).

Lemma 4.5. For any simple hermitian nontubular Lie algebra G with the
gradation (2.22), l , p , H+ , H− , and cmin defined in Section 2, the following
conclusions hold:

(1) ad(l) keeps the gradation (2.22);

(2) p+ l ∈ Int(Cmin );

(3) H+ and H− are Heizenberg subalgebras of G ;

(4) ad(l)G±2 = {0} .

Proof. The first assertion is true because l ∈ G0 by Lemma 2.8. To prove the
second, note that p + l = 2k by (2.10) and that the averaging procedure over
Ad(K) shows that Rk ∩ Int(C ) 6= ∅ for any invariant cone C in G . The third
is a consequence of Lemma 2.8, (7). The forth is true because l is orthogonal to
all roots in ∆1,1 and ∆−1,−1 by the definition of these sets and is a fixed point
of the automorphism θ .

Lemma 4.6. If I is a simple noncompact ideal of a Lie algebra with an in-
variant cone C then C ∩ I 6= {0} ; moreover, C ∩ I is an invariant cone in
I .

Proof. Note that in (4.13) x ∈ C need not be an element of I . Thus
C ∩I 6= {0} . Since the linear span of C ∩I is an ideal in I , C ∩I is generating;
clearly, this cone is pointed and Ad(I)-invariant.

Proposition 4.2. Suppose that for some nontubular semisimple ideal JI of
a real Lie algebra G with an invariant cone C πI C

∗ ∩ LI = {0} . Then C is
not global.
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Proof. Set W̃ = W + Rp where W is as in Lemma 4.5. By Lemma 4.6 and
(2.25), p ∈ C . So, by Lemma 4.5 and Lemma 3.3, for any nontubular ideal JI
of G cont(C, W̃I , pI) ≥ 2. Our aim is to prove that

(4.14) cont(C, W̃I , pI) > 2

Suppose (4.14) is not true. Then, by Lemma 3.4 with L = JI , W = W̃I ,
there exists x ∈ C∗ such that πI x 6= 0 and πI x⊥W̃I . Let VI be the group
generated by groups V of Proposition 2.1 for all simple summands of JI . The
averaging procedure AVI over this group which clearly commutes with πI , by
Proposition 2.1, shows that

0 6= πI AVIx ∈ LI =WI
⊥ ∩ VI

Since AVIx ∈ C∗ , this contradicts with the assumption of the proposition. Thus
(4.14) is proved.

Let N = Z(JI). Set F = HI
− × PI ×N (the direct product of groups).

There is the unique action of F on G such that HI
− and N act by lefts shifts

and PI acts by right ones. Since G = HI
−⊕PI⊕N , the orbit of e is open and the

stabilizer is discrete. The restriction of the bi-invariant cone field corresponding
C to this orbit is an invariant cone field on it. The universal covering space of
the orbit coincides with the universal covering group F̃ of F . This is sufficient
to prove that the left invariant cone field on F̃ defined by the cone C is not
global.

By Lemma 4.5, (3), HI = HI
+ ⊕ HI

− is a Heizenberg subalgebra of F .
By the same lemma, (1), [lI,WI ] ⊆ WI , where the Lie product is taken in F . By
(2.23), pI belongs to the center of HI ; by (2.23) and Lemma 4.5, (4), [lI, pI] = 0.
Since WI ⊂ W̃I , (4.14) implies that cont(C,WI , pI) > 2. Thus it remains to
prove that

(pI + lI +N) ∩ Int(C ) 6= ∅

to satisfy the assumption of the Theorem 4.1.

If (pI + lI +N)∩ Int(C ) = ∅ then pI + lI is a boundary point of the pro-
jection of the cone C to JI along N . This is a contradiction with Lemma 4.5, (2),
since C includes the sum of cones Cmin for all simple summands by Lemma 4.6.

5. A sufficient condition for the globality

Let G1 be a closed connected normal subgroup of a Lie group G , G2 =
G/G1 , ι : G1 → G and π : G → G2 be the corresponding homomorphisms of Lie
algebras.

Theorem 5.1. Suppose that G1 admits a complementary as a vector space
subalgebra in G . If C is an invariant cone in G such that πC is included to
some global invariant cone in G2 and ι∗C∗ includes some exact invariant cone
in G∗1 then C is global.
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Note that neither ι∗C∗ is closed nor clos(ι∗C∗) is pointed in general. We need
some lemmas to prove this theorem.

We shall say that a smooth function f on a Lie group G has a left
bounded differential if the set {de(f ◦ λg) : g ∈ G} , where λg(h) = gh is a left
shift, is bounded in G∗ .

Lemma 5.1. For any global invariant cone C ⊂ G there exists an increasing
strictly increasing at e smooth function f on G with the left bounded differential.

Proof. Let χ be the characteristic function of the set F(e), ϕ be a non-
negative nonzero smooth function with a compact support, U be a bounded
neighborhood of zero in G , < denotes the invariant order on G generated by C ,
and ∗ denotes the convolution. For ξ ∈ G , let Lξ be the left invariant vector
field on G such that Lξ(e) = ξ . Clearly, f has the left bounded differential if
and only if

(5.1) sup{|Lξf(g)| : g ∈ G, ξ ∈ U} <∞

Set f = χ ∗ ϕ . Then Lξf = χ ∗ Lξϕ and (5.1) implies that the differential of
f is left bounded. Since χ has the property that χ(g) ≥ χ(h) if g<h , f is
increasing. If suppϕ = exp(V ), where V is a sufficiently small neighborhood
of zero in G , then the convolution is close the abelian one, hence f is strictly
increasing at e if suppϕ is a ball in a suitable Euclidean metric.

Lemma 5.2. Let L, M be linear spaces, α : L → M a linear mapping, and
C be a closed cone in L . The cone αC is closed if and only if there exist compact
neighborhoods of zero Q in M and K in L such that

α(C ∩K) ⊇ (αC) ∩Q

Proof. If x ∈ clos(αC) \ αC then the same is true for any point in the
ray R+x . Hence αC is closed if and only if (αC) ∩ Q is compact. Standard
compactness arguments show that this condition is equivalent to the following
one: for any compact convex neighborhood K ′ of zero in L and all sufficiently
great integer n > 0, α(C ∩ (nK ′)) ⊇ αC ∩Q .

Lemma 5.3. Let C be a pointed generating cone in a linear space L =M⊕N ,
µ be the projection to M in L along N . Suppose that µC is closed and C ∩N
is generating in N . Then for any bounded subset Q ⊂ µC and every compact
Q′ ⊂ RelInt(C ∩ N) there exists t > 0 such that Q + tQ′ ⊂ C . Moreover, for
this t , Q ∩ RelInt(µC ) +tQ′ ⊂ Int(C ) .

Proof. It follows from Lemma 5.2 that, for some compact K ⊂ C , µK ⊇ Q .
Let ν = 1 − µ . Then νK ⊂ N and Q ⊆ K − νK . For some sufficiently
great t > 0, tQ′ − νK ⊂ RelInt(C ∩ N) since νK is compact; therefore,
Q + tQ′ ⊆ K − νK + tQ′ ⊂ C . By a suitable choice of K , we may assume
that for any x ∈ RelInt(µC )∩Q there exists y ∈ K ∩ Int(C ) with µy = x ; for
this y , x+ tQ′ ⊂ y + tQ′ − νK ⊂ Int(C ).
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Lemma 5.4. Let C be a continuous pointed cone field on a smooth manifold
M . Suppose that C?(m) ∩ Int(C(m)

∗
) 6= ∅ for all m ∈M , where C? is defined

by (1.2). Then the cone field C is global.

Proof. The assumption of the lemma could be reformulated as follows: for
each m ∈M there exists an increasing function on M which is strictly increasing
at m . Let f be such a function for m ∈ M . We may assume that f(m) = 0.
Set Fε = {x ∈M : f(x) ≥ ε} .

Choose a local Euclidean coordinate system near m . Let

λ ∈ Int(C∗(m))

Then λ considered as a function on the chosen neighborhood of m is strictly
increasing in some smaller neighborhood because C is continuous. Hence, for
any λ1, . . . , λn ∈ Int(C∗(m)), it is possible to find a neighborhood U of m , and
ε > 0 such that

F(m) ⊆ Fε ∪ {x ∈ U : λk(x) ≥ 0, k = 1, . . . , n}

and the tangent to F(m) cone cannot be greater than C(m) by the Hahn-Banach
theorem.

Corollary 5.1. If C is an invariant cone in a Lie algebra G such that C ? is
generating then C is global.

Corollary 5.2. If ι : G1 → G2 is an isomorphic embedding of a Lie algebra
G1 to G2 such that ιC1 ⊂ C2 , where Ck is an invariant cone in Gk , k = 1, 2 ,
and C?

2 is generating then C1 is global.

Corollary 5.3. An invariant cone C is global if and only if C ?∩Int(C∗ ) 6= ∅
Proof. The first corollary is a consequence of the inclusion C ? ⊆ C∗ , the
second is true because the operation dual to the intersection is the projection
which clearly keeps the property of a cone to be generating, the third follows
from Lemma 5.1.

Proof of Theorem 5.1. Let Ck ⊂ Gk , k = 1, 2, be global invariant
cones such that ι∗C∗ ⊇ C∗1 , C2 ⊇ πC . We may assume that G is equipped
by a scalar product in such a way that V = G⊥1 is a subalgebra of G . Let
V be an open neighborhood of zero in V such that the mapping (g, v) →
g exp(v) is a diffeomorphism between the inverse image E of exp(πV ) under
the homomorphism G→ G/G1 and G1 × V . Note that it is possible to replace
V by a smaller neighborhood of zero if it would be necessary. Since the cone C2

is global, we may assume that V has the property that any C2 -timelike curve
starting at e which leave V cannot come back (the construction of Lemma 5.4
implies the existence of such V ). Hence any C -timelike curve in G which leaves
E cannot come back and it is sufficient to prove the globality of the bi-invariant
cone field C corresponding to C on the set E .

Since C2 is pointed, C∗ ∩V is generating in V . Choose ϕ ∈ RelInt(C∗2 )
and put ϕ̃(g exp(v)) = ϕ(v). Then ϕ̃ is a C2 -strictly increasing near e function
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on V . Let ρg(h) = hg be a right shift. Replacing V by a smaller neighborhood,
we may assume that

Q′ = clos{de(ϕ̃ ◦ ρexp(−v)) : v ∈ V }

is a compact subset of RelInt(C∗2 ) ⊂ C∗ ∩V . Then ϕ̃ is a C -increasing function
on E since ϕ̃ ◦ λg = ϕ̃ for all g ∈ G1 .

Let η be a C1 -increasing strictly increasing at e smooth function on G1

with the left bounded differential. Set η̃(g exp(v)) = η(g). Then

η̃ ◦ ρexp(u)(g exp(v)) = η(g)

for u and v sufficiently close to zero in V because V is a subalgebra. Put

Q = clos{de(η ◦ λg ◦ ρexp(−v)) : g ∈ G1, v ∈ V }

Since functions η ◦ λg ◦ ρexp(−v) are constant in exp(V ) near e , Q ⊂ V⊥ = G1 ,
so Q ⊂ C∗1 .

Let C ′ = (ι∗)−1(C∗1 ) ∩ C∗ ; note that C ′ ∩ V = C∗ ∩ V since ker ι∗ = V .
By Lemma 5.3, Q + tQ′ ⊂ C ′ ⊆ C∗ for some t > 0. The cone field C is left
and right invariant, so f = η̃ + tϕ̃ is an increasing function on E . By the same
lemma and the choice of η and ϕ , f is strictly increasing at e , hence near e in
V ; replacing once more V by a smaller neighborhood, we may assume that this
is true in V . Thus for any p = g exp(v) ∈ E the function f ◦λg is increasing on
E and strictly increasing at p . By Lemma 5.4, C is global in E .

6. Globality of invariant cones in nonreductive algebras

This section contains the reduction of the problem to the reductive case. We
use the known material on the structure of Lie algebras admitting an invariant
cone formulated in Theorem 6.1. The reduction is based on the consideration of
special cases of algebras sp(2n,R) and their semidirect products with Heizenberg
algebras.

Recall that the simplectic Lie algebra sp(2n,R) is a hermitian tubular
one and that an invariant cone in it is unique up to a sign. A homomorphism
ρ of two algebras G1,G2 with invariant cones C1, C2 will be called positive if
ρ(C1) ⊆ C2 .

Theorem 6.1. Let G be a Lie algebra which admits an invariant cone C .
Then

(1) G = R0⊕W⊕Z , where Z is the center of G , R0 is a reductive subalgebra
of G , N =W⊕Z is the maximal nilpotent ideal, [W,W ] ⊆ Z , and W is
the unique Ad(R0)-invariant subspace of N complementary to Z which
contains no nontrivial fixed points;

(2) if W 6= {0} then C ∩Z 6= {0} and, for any w ∈ W , ad2(w)C ⊆ C ∩Z ;
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(3) if λ ∈ Z∗ is strictly positive on C ∩ Z then the skew-symmetric bi-
linear form ωλ(u, v) = λ([u, v]) on W is nondegenerate; moreover,
ωλ(ad(h)w,w) > 0 for every h ∈ Int(C ) and w ∈ W , w 6= 0;

(4) the representation of G in W ∼= N/Z with the form ωλ induced by ad is
a positive simplectic representation with the kernel Is ⊕N , where Is is
the maximal semisimple ideal of G ;

(5) for any simple noncompact ideal J of G and the natural projection π to
J along it’s centralizer Z(J) , closπC and C ∩J are invariant cones in
J ;

(6) for any simple compact ideal J of G and the natural projection π to the
centralizer Z(G) along J , πC = C ∩ Z(J) ; moreover, J ∩ C = {0} ;

(7) any h ∈ Int(C ) is compact (i.e. ad(x) has purely imaginary eigenvalues
and is semisimple).

The statement of the theorem is close to [2]; these results are known (see
[6] or [3]). We keep the notation of Theorem 6.1 with an addition

(6.1) R = R0⊕Z

up to the end of this section. The subalgebra R defined by (6.1) will be called
the main reductive subalgebra of G .

Lemma 6.1. Let π be the projection onto R along W , h ∈ Int(C ) . Then

(1) there exists the unique u ∈ W such that ead(u)h ∈ RelInt(C ∩R);

(2) πh ∈ RelInt(C ∩ R) .

Proof. Let h = r0 + w + z be the decomposition of h ∈ Int(C ) as in
Theorem 6.1, (1). Then, for any u ∈ W ,

ead(u)h = r0 + (w + [u, r0]) + (z + [u,w] +
1

2
[u, [u, h]])

Since ad(h) is nondegenerate on the factor space W/Z by Theorem 6.1, (3),
ad(r0) is nondegenerate on W , hence there exists the unique u ∈ W such
that w = −[u, r0] . So h is conjugated with h′ = r0 + z − 1

2 [u, [u, h]] ; clearly,
h′ ∈ Int(C )∩R = RelInt(C ∩R). By Theorem 6.1, (2), [u, [u, h]] ∈ C ∩ Z ,
hence

πh = h′ +
1

2
[u, [u, h]] ∈ RelInt(C ∩ R)

Let U be a real linear space with a nondegenerate skew-symmetric bilin-
ear form ω . The Lie algebra sp(U, ω) of the Lie group Sp(U, ω) of linear trans-
formations keeping ω could be realized as the Lie algebra Q2(U) of quadratic
forms on U with the Poisson brackets as a Lie product. Recall that ω defines the
Poisson brackets of functions f and h by {f, h}(w) = ω(Jdwf, Jdwh), where
J : U∗ → U is defined by ω(Jξ, x) = −ξ(x) for all x ∈ U . The natural iso-
morphism between Q2(U) and sp(U, ω) corresponds to q the linear vector field
Jdq .

Fix u ∈ U and consider the isotropy subgroup Stu of u . This group
keeps the hyperplane u⊥ which contains u ; it’s Lie algebra stu is the centralizer



70 Gichev

of the form ω(u, x)2 . Choose v ∈ U , v /∈ u⊥ , such that ω(u, v) = 1 and set
W = u⊥ ∩ v⊥ . Then ω is nondegenerate in W . The space Q2(U) restricted
to W + v may be identified with the space P2(W) of polynomials of degree
≤ 2 which is also a Lie algebra with respect to the Poisson brackets in W . Set
p̃(w + v) = p(w). Then, for any p ∈ P2(W), p̃ admits the unique extension
q ∈ Q2(U) from W + v to U such that duq = 0. This construction defines
an isomorphic embedding ι : P2(W) → Q2(U) with the image stu . This
construction may be realized up to an isomorphism in suitable coordinates as
follows:

{f, h} =
n+1∑

k=1

(
∂f

∂xk

∂h

∂yk
− ∂h

∂xk

∂f

∂yk

)

and ι corresponds to the polynomial p2(w) + p1(w) + p0 the quadratic form
p2(w) + xn+1 p1(w) + p0 x

2
n+1

which doesn’t depend on yn+1 .

Each of these algebras admits an invariant cone — the cone of nonnega-
tive functions. In Q2(U), this is the unique up to a sign invariant cone, in P2(W)
it is not unique.

The natural decomposition

P2(W) = Q2(W)⊕Q1(W)⊕Q0(W)

where Qk(W) is the space of homogenious polynomials of degree k, k = 0, 1, 2,
is the decomposition of Theorem 6.1, (1), for P2(W).

The algebra P2(W) is the basic example of a nonreductive Lie algebra
with an invariant cone. The subspace P1(W) of polynomials of degree ≤ 1 is
the Heisenberg algebra with the center P0(W) consisting of constant functions.

Let C
+

q and C
+

p be cones of nonnegative functions in Q2(U) and P2(W)
respectively.

The multiplication in N could be defined by the Campbell-Hausdorff
formula (4.7). Let α be the representation of the simply connected group R0

in W with the tangent representation ad. Since G is the semidirect product of
N and R0 via ad, a calculation leads to the following multiplication low in the
simply connected group G = R0 ×W×Z

(6.2) (r1, w1, z1)(r2, w2, z2) = (r1 r2, w1 +α(r1)w2, z1 + z2 +
1

2
[w1, α(r1)w2])

Set g0 = (e, w0, 0), gk = (rk, 0, zk), k = 1, 2, g = (r, w, z). Then g0
−1 =

(e,−w0, 0). Hence

(6.3) g0
−1g g0 = (r, (1− α(r))w0 +w, z +

1

2
[w0, w]− 1

2
[w0 +w,α(r)w0])

Put β(r) = (1− α(r))−1 ; then

(6.4) α(r)β(r) = β(r)− 1 = −β(r−1)

Lemma 6.2. Let gk , k = 0, 1, 2 be as above. Suppose that 1−α(r) is invertible.
Then

(6.5) g0 g1 g0
−1 g2∼(r1 r2, 0, z1 + z2 +

1

2
[(β(r2)− β(r1 r2))u, u])
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where ∼ means that left and right parts of (6.5) are conjugated by an element
of G of the type (e, ξ, 0) .

Proof. Put w0 = −β(r)w in (6.3). Then

(6.6) g0
−1g g0 = (r, 0, z − 1

2
[α(r)w0, w0]) = (r, 0, z − 1

2
[β(r)w,w])

The setting w = 0 and u = (1− α(r))w0 in (6.3) gives the equality

(6.7) g0
−1g g0 = (r, u, z +

1

2
[β(r)u, u])

By (6.2), (6.3), and (6.7),

g0 g1 g0
−1 g2 = (r1 r2, u, z1 + z2 +

1

2
[β(r2)u, u])

Thus (6.6) implies (6.5).

Lemma 6.3. Suppose that 1 − α(r) is invertible. Then for any w ∈ W and
x ∈ R0 such that (x+ Is ⊕N) ∩ C 6= ∅

(6.8) −[β(r) ad(x)α(r)β(r)w,w] ∈ C ∩ Z

Proof. By the definition of α , [α(r)u, α(r)v] = [u, v] for all u, v ∈ W . Hence
[α(r)u, v] = [u, α(r−1)v] and [(1 − α(r))u, v] = [u, (1− α(r−1))v] which implies
that [β(r)u, v] = [u, β(r−1)v] . By (6.4),

[β(r) ad(x)α(r)β(r)w,w] = −[ad(x)β(r−1)w, β(r−1)w] = − ad2(u)x

where u = β(r−1)w ∈ W . If ξ ∈ Is ⊕ N then ad2(u)ξ = 0. Thus Theorem 6.1,
(2), and the assumption of the lemma implies (6.8).

For a linear operator X , let σ(X) denotes the set of eigenvalues of X ,
ρ(X) = max{|λ| : λ ∈ σ(X)} be the spectral radius of X . We identify sp(U, ω)
and Q2(U) by

qX(u) =
1

2
ω(Xu, u), X ∈ sp(U, ω)

Lemma 6.4. Let U be a real linear space equipped by a skew-symmetric bi-
linear nondegenerate form ω and an Euclidean norm | | . Then there exists a
neighborhood Q of zero in U and a norm ‖ ‖ in sp(U, ω) such that for every

X ∈ Q ∩ Int(C
+

q ) and u ∈ U

(6.9) ω(β(eX)u, u) ≥ |u|
2

‖X‖

where β(t) = (1− t)−1 .
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Proof. We may assume that ω(u, v) = (Ju, v), where ( , ) is a scalar product

in U such that |u|2 = (u, u), J : U → U , J2 = −1, J∗ = −J , and X∗J+JX = 0

for all X ∈ sp(U, ω). If X ∈ C+

q then JX is a nonnegative symmetric linear

operator in U . Note that X ∈ Int(C
+

q ) implies ((JX)−1)
∗

= −JX−1 ∈ Int(C
+

q ).
Hence

(6.10) (−JX−1u, u) ≥ |u|2
ρ(JX)

for all u ∈ U . Since JX is symmetric, ρ(JX) coincides with the operator norm
of JX . The equality β(et) = −t−1 + 1

2 +o(1) implies that, for a suitable choice of
a sufficiently small bounded neibourhood Q and a norm ‖ ‖ as a scalar multiplier
of the operator norm, (6.9) is a consequence of (6.10).

Lemma 6.5. Let π be the natural homomorphism G → G′ = G/(Is⊕N) . Then
the cone closπ(C) is global in G′ .
Proof. Theorem 6.1, (4), defines an embedding of πG to Q2(W) such that

π Int(C ) ⊆ Int(C
+

q ). Recall that Q2(W) is tubular. Hence, by Corollary 5.8,

(C
+

q )
? 6= {0} ; since Q2(W) is simple, (C

+

q )
? 6= {0} is generating. Thus Corol-

lary 5.7 implies the globality of closπ(C).

We need once more a known result; for a proof, see [6], Chapter 6.

Theorem 6.2. Let C be an invariant cone in a Lie algebra G , S be the
semigroup topologically generated by exp(C) . If C is global then there exists a
neighborhood V of zero in G such that exp(C ∩ V ) = S ∩ exp(V ) .

Lemma 6.6. Let π be as in Lemma 6.5. There exists a neighborhood U of zero
in R0 such that r1 = exp(ξ1) , r2 = exp(ξ2) , ξ1, ξ2 ∈ U , and π ξ1, π ξ2 ∈ Int(πC )
implies

(6.11) [(β(r2)− β(r1 r2))w,w]) ∈ C ∩ Z

for all w ∈ W .

Proof. It follows from the matrix equality

(1−BA)−1 − (1−A)−1 = (1− A)−1(B − 1)A(1− BA)−1

that
d

dt
(1− etXA)

−1

t=0 = (1− A)−1XA(1−A)−1

Hence for any x ∈ R0 and r ∈ R0 such that 1− α(r) is invertible in W ,

d

dt
β(exp(tx)r)t=0 = β(r) ad(x)α(r)β(r)

Put x = ξ1 and r = r2 . Since π ξk ∈ πC , k = 1, 2, by Lemma 6.3,

− d

dt
[β(exp(t ξ1) r2)w,w] ∈ C ∩ Z
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for all w ∈ W . Note also that π ξk ∈ π Int(C ), k = 1, 2, implies invertibility of
1− α(rk) by Theorem 6.1, (3), and Lemma 6.4 if U is sufficiently small.

Set rt = exp(t ξ1) r2 . The integration by t and the same consideration
show that (6.11) is true if rt = exp(ξt) with ξt ∈ U such that π ξt ∈ Int(πC )
for all t ∈ [0, 1].

By Lemma 6.5, the cone clos(πC) is global. Let V be as in Theorem 6.2
for the algebra G′ in this lemma and chose a convex neighborhood U of zero in
R0 with the property exp(πU) exp(πU) ⊆ exp(V ). It follows from Theorem 6.2
that exp(Int(πC )∩V ) = Int(exp(πC ∩ V )). Therefore,

exp(Int(πC )∩U) exp(Int(πC )∩U) ⊆ exp(Int(πC )∩V )

Thus ξt has the desired property if ξ1, ξ2 ∈ U , π ξ1, π ξ2 ∈ Int(πC ), and U is
sufficiently small.

Lets denote by S◦
R

the semigroup in R algebraically generated by the
set exp(RelInt(C ∩R)), SR = clos(S◦R),

(6.12) S◦ = {g0 sg0
−1 : s ∈ S◦R, g0 = (e, w0, 0), w0 ∈ W}

We keep the notation of the Lemma 6.5. The semigroup topologically generated
by exp(πC) in the simply connected group G′ corresponding to the Lie algebra
G′ will be denoted by S′ . Let p denotes the homomorphism of simply connected
groups with the tangent homorphism π .

Lemma 6.7. There exists a neighborhood V of zero in G′ such that

(6.13) S0 = S◦ ∪ p−1(S′ \ exp(V ))

is a semigroup in G .

Proof. Set gk = (rk, 0, zk), k = 1, 2, and suppose that g1, g2 ∈ S◦R . Since S0

is invariant under all inner automorphisms and p(S0) ⊆ S′ , this is sufficient to
find U such that

(6.14) g0 g1 g0
−1g2 ∈ S0

if p(g1), p(g2) ∈ U and g0 is as in (6.12).

Note that SR ⊃ C ∩ Z since exp is identical in N . Let U be as in
Lemma 6.6. Then, by (6.5) and (6.11),

g0 g1 g0
−1 g2∼(r1 r2, 0, z1 + z2 +

1

2
[(β(r2)− β(r1 r2))u, u]) ∈ g1 g2 exp(C ∩ Z)

if r1 r2 ∈ exp(U). Note that g2 exp(C ∩ Z) ⊂ S◦R since g2 ∈ exp(Int(C )∩U) by
the choice of U and Theorem 6.8, (1). Hence g1 g2 exp(C ∩Z) ⊂ S◦

R
. It remains

to set V = πU to satisfy (6.14).
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Theorem 6.3. Let G be a nonreductive Lie algebra with an invariant cone
C , R be the main reductive subalgebra of G . Then C is global in G if and only
if C ∩R is global in R .

Proof. If C is global in G then C ∩ R is global in R by Lemma 6.1 and
Corollary 5.2.

Suppose that C ∩R is global. Let S be the closed semigroup in G gen-
erated by exp(C), S̃ = clos(S0), where S0 is defined by (6.13). By Lemma 6.1,
(1), S̃ ⊇ exp(Int(C )), so Lemma 6.7 implies that S̃ ⊇ S . Clearly, S ⊃ S◦ ,
hence

(6.15) S̃ ∩ p−1(exp(V )) = S ∩ p−1(exp(V ))

where p and V are as in Lemma 6.7. Furthermore, by Theorem 6.2 there exists
a neighborhood U of zero in R such that

(6.16) exp(U) ∩ SR = exp(C ∩ U)

We may assume that U is convex, open in R , exp is diffeomorphic on U , and
πU ⊆ V , where π = dep . Moreover, the existence of an increasing strictly
increasing at e function (Lemma 5.3) implies the existence of a neighborhood
U ′ of zero in R such that

(6.17) g1, g2 ∈ SR, g1 g2 ∈ exp(U ′) =⇒ g1, g2 ∈ exp(U) ∩ SR

We may also assume that U ′ has the same properties as U . Set

Ũ = {(r, w, z) : (r, 0, z) ∈ exp(U ′), w ∈ W}

Let g = (r, w, z) ∈ S◦ ∩ exp(Ũ). The neighborhood V in Lemma 6.7 could be
supposed to be a diffeomorphic image of a sufficiently small neighborhood of zero
in G′ by exp. By Theorem 6.1, (3), we may assume that 1− α(r) is invertible
for all r ∈ Int(exp(C ∩ U ′)). Then, by (6.6) and the definition of S◦ ,

(6.18) g∼h = (r, 0, z − 1

2
[β(r)w,w]) ∈ S◦R

and there exists the unique u ∈ W such that g = (e, u, 0)−1h(e, u, 0). It follows
from Lemma 6.4 and Theorem 6.1, (3), that λ([β(r)w,w]) ≥ 0 for any strictly
positive on C ∩ Z linear functional λ ∈ Z∗ if V is sufficiently small. Hence

ζ =
1

2
[β(r)w,w] ∈ C ∩ Z

Recall that exp is identical on N . Thus

(6.19) exp(ζ) ∈ SR

and

(6.20) (r, 0, z) = h exp(ζ) ∈ S◦
R
∩ exp(U ′)
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By (6.20), (6.19), (6.18), and (6.17), h ∈ exp(U) ∩ S◦R . Hence h ∈ exp(C ∩ R)
by (6.16). Therefore,

(6.21) g ∈ exp(Int(C ))

Lets fix λ ∈ Z∗ strictly positive on C ∩ Z . It follows from Lemma 6.4 that

(6.22) |w|2 ≤ Kλ(ζ)

for some K > 0. Hence (6.21) together with (6.22) imply that S◦ ∩ Ũ can be
included into a neighborhood Q of e in G which is a diffeomorphic image of a
neighborhood of zero in G if U ′ is sufficiently small. By (6.21),

Q ∩ clos(S◦) ⊆ exp(C)

Thus (6.15) implies the globality of C .

7. Proof of the Main Theorem

In this final section we deal with the remainder of the proof of the Main Theorem.
Recall that the necessity of (GlC) was proved in Section 4. The sufficiency was
partially reduced to the reductive case in Section 6; for the complete reduction,
we need two more lemmas. We keep the notation of the Main Theorem and
Theorem 6.1. So Is is the maximal semisimple ideal of G . Let I = Is ⊕ Z , π
be the projection in G to I dual to the embedding. The dual space R∗ to the
main reductive subalgebra R is identified with R by an invariant bilinear form
which is positive definite on it’s maximal compactly embedded subalgebra, hence
on Z . Then the projection π restricted to R is an orthogonal one.

Lemma 7.1. Suppose that πC∗ includes some exact invariant cone. Then C
is global.

Proof. By Lemma 6.5, the projection of the cone C to G′ = G/(Is ⊕ N) is
included to some global invariant cone in G′ . Lemma 6.1, (2), implies that the
same is true for the cone C ∩R . Note that (Is⊕N)∩R = I . Thus Theorem 5.1
and the assumption of the lemma implies the globality of C∩R . By Theorem 6.3,
C is global in G .

Clearly, a convex cone is exact if and only if it is closed and the dual cone
is global. Thus the following lemma shows that if (GlC) implies the globality for
reductive algebras then the assumption of Lemma 7.1 is satisfied.

Lemma 7.2. Let G = I⊕J , where I , J are ideals of G , π be the projection to
I along J, C be an invariant cone in G . Suppose that I is reductive and has no
compact simple ideals. Let Λ ⊂ πC be a finite set consisting of compact nonzero
elements which could be included into some pointed cone. Then πC includes the
closed Ad(I)-invariant cone generated by Λ ; moreover, this cone is pointed.
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Proof. Suppose first that I is semisimple. It follows from Theorem 6.1, (5),
that closπC is a pointed generating cone which includes the sum of minimal
cones and is included to the sum of maximal ones. Therefore, for all x ∈ Λ
ρ(ad(x)) > 0 (the spectral radius ρ is defined in Section 6). Hence the set Ad(I)Λ
could be separated from zero by a neighborhood U which may be choosen in such
a way that πC \ U is convex since closπC is pointed. Thus the closure K of
the convex hull of Ad(G)Λ doesn’t contain zero.

Let Λ′ be a finite subset of C such that πΛ′ = Λ, C ′ be the closed
Ad(J)-invariant cone generated by Λ′ , Q be a compact convex neiborhood of
zero in J such that P = Q⊕K ⊃ Λ′ . Then clos(R+P ) is a pointed cone with
the trivial intersection with J and C ′ ⊆ clos(R+P ), so C ′ ∩J = {0} . Thus πC ′

is pointed and the closed Ad(I)-invariant cone generating by Λ coincides with
πC ′ .

For a reductive I , let Λ0 be the intersection of Λ with the center of I ,
Λ1 = Λ\Λ0 . By the assumption of the lemma, Λ0 is included into some pointed
cone in the center. By the consideration above, the Ad(I)-invariant closed cone
generated by the projection of Λ1 to the semisimple part of I is pointed. Hence
Λ1 is included to the sum of the two cones above, Ad(I)-invariant cone generated
by Λ is pointed, and the closed convex hull of the orbit of Λ1 can be separated
from zero. It remains to repeat once more the construction of the previous
paragraph.

In the last lemma we consider a special case of a reductive algebra R .
Let R = S ⊕ A , where S is semisimple and A abelian. We identify R and R∗
as above. Let σ be the orhogonal projection R → S .

Lemma 7.3. Suppose that each simple ideal of S is nontubular. Let L be the
same as in (GlC) for S . If dimA ≤ 1 and σC ∩ L has nonempty interior in L
then C is exact.

Proof. Let l ∈ σC ∩ L . Then l = s1l1 + · · · + snln , where lk are defined
by (2.10) for the simple summand Jk . Since σC ∩ L has a nonempty interior
in L , by a choice of a sign of lk , we may assume that sk > 0, k = 1, . . . , n .
Let fk be the function (2.29) for Jk , f = 2(s1f1 + · · ·+ snfn). It follows from
the construction of f that for all x ∈ S , u ∈ K , and v ∈ P ′ , where K,P ′ are
products of subgroups K,P in Lemma 2.10 for all simple summands,

(7.1) f(uxv) = f(x) + f(u) + f(v) and def = l + ξ

where ξ ∈ Cmin , Cmin is the sum of minimal cones in all simple summands.
Since any invariant cone includes the minimal one, Theorem 6.1, (5), (7), and
Lemma 7.2 imply that ξ ∈ σC . Set P = P ′ × Z . There exists l0 ∈ C such
that σl0 = l . Put l1 = l0 − l . Then l1 ∈ A and could be considered as a
homomorphism R→ R .

If l1 = 0 then l ∈ C . By Theorem 6.1, (5), Ad(R)-invariant closed cone
generated by l is generating in S . Hence C ∩ S is exact by Corollary 5.7. This
implies that the projection of the predual cone to S is included to the global
cone (C ∩ S)

∗
. Since the projection of C to A clearly includes some exact cone,
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the assumption of the Theorem 5.1 is satisfied for the predual cone, and C is
exact.

Suppose that l1 6= 0. The function F (x) = f(x)+ l1(x) satisfies (7.1) for
all u ∈ K , v ∈ P , and deF = l0+ξ . By Lemma 2.11, F is an increasing function
on R . By the definition of l, l0, l1 , deF has nonzero projections to each simple
summand of S . By Theorem 6.1, (5), the intersection of the Ad(G)-invariant
cone C0 generated by deF with S is generating in S . Since codimS = 1, C0

is generating in R . Therefore, the cone generated by the orbit of deF has a
nonempty interior in R (although it need not be closed). By Corollary 5.6, C
is exact.

Proof of Main Theorem. The necessity of (GlC) was already proved
(Proposition 4.2). If (GlC) is true for G then for any I ⊆ n there exists
lI ∈ πI C ∩ LI . Set Λ = {lI : I ⊆ n} . By Lemma 7.2, there exists a closed
invariant cone in I = Is + Z which includes Λ. For this cone (GlC) is satisfied.
Hence, by Lemma 7.1, this is sufficient to prove that (GlC) implies the globality
in I . Thus we may assume that G is reductive proving the necessity.

If J is a compact simple ideal of G then the averaging procedure over
the corresponding compact normal subgroup and Theorem 6.1, (6), show that
the projection of C ? to the centralizer Z(J) coincides with C ? ∩Z(J). So C is
global in G if and only if C ∩Z(J) is global in Z(J) and it is possible to assume
that G has no simple compact ideals.

Suppose that G is semisimple and each simple ideal of G is noncompact
tubular. Then Theorem 6.1, (5), Theorem 5.1, and induction arguments show
that each invariant cone in G is global.

Since in abelian algebras any pointed generating cone is exact, Theo-
rem 5.1 implies that the same is true for reductive algebras with the semisimple
part which contains no nontubular ideals.

We prove the sufficiency of (GlC) by the induction on the number of
simple nontubular summands in G ; it’s base is provided by the consideration
above.

Recall that J1, . . . , Jn denote all nontubular ideals of G . We keep the
notation of Main Theorem.

Suppose that (GlC) is satisfied for G . Let π be the projection to the
semisimple part of G and l ∈ πC ∩ Ln , l 6= 0, n = {1, . . . , n} , I be the set of
indices k such that l has the nonzero projection to Jk , K = n \ I . Note that,
by Theorem 6.1, (5), l generates a nontrivial invariant cone in JI , hence πI C
has the nonempty interior in JI .

Choose l0 ∈ C such that πI l0 = l . Then the assumption of Lemma 7.3 is
satisfied for the cone C∩R0 in the linear span R0 of JI and l0 . Hence C∩R0 is
exact. This means that the projection of the predual cone to R0 is included to a
global one. Let π1 be the orthogonal projection to R1 = R0

⊥ . By Theorem 5.1,
this is sufficient to prove that C1 = π1 C includes some exact cone in R1 .

Note that the element l defined by (2.10) is compact. Using the averaging
over the maximal compact subgroup of a complementary semisimple summand
and Theorem 6.1, (7), one may find a compact inverse image for each lI ∈ LI , I ⊂
n . So there exists a finite set Λ ⊂ C1 consisting of compact elements such that for
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any J ⊂ K πJ Λ∩LJ 6= {0} . Since it is possible to add to Λ any finite number
of points with compact projections to R1 , we may also assume that the convex
closed generated by Λ Ad(R1)-invariant cone in R1 is generating and has
trivial intersection with the center of R1 if R1 is not abelian. By Lemma 7.2,
this cone is pointed. Since (GlC) is satisfied for it, this cone is exact by the
induction hypothesis.

The nontrivial part of assertions (1) and (2) of the theorem is that πI C
includes some closed invariant cone satisfying (GlC) for any I ⊆ n . This is a
consequence of Lemma 7.2 and could be proved as above.

Proof of Proposition 1.1. Note that the procedure analogous to the
procedure of the proposition for global invariant cones in G finishes with I = ∅
if (GlC) is true since πI C

∗ ∩LI 6= ∅ in each step. Conversly, if πK C
∗ ∩KI = ∅

for some K ⊆ n then K ⊆ I in each step because K ∩ I ′ = ∅ , hence the
procedure finishes with I ′ = ∅ .

The averaging over Ad(C) for a compactly embedded Cartan subalgebra
C and, after that, over groups Wkm for each simple summand as in the proof of
Proposition 2.1 show that the projection of C to the sum of any family of spaces
Vk coincides with the intersection with this sum. Therefore, πI C = πI C

′ and
the procedure of the proposition must finish with the same result as for invariant
cones.
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