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Abstract

The concepts of weakly exponential and spacious groups have been intro-
duced by Hofmann and Mukherjea in [7] where they investigate the den-
sity of the image of the exponential function of a Lie group. The question
whether being weakly exponential and not being spacious are equivalent has
been answered affirmatively by Jaworski in [8]. Weakly exponential groups
have also been investigated by Djokovič and Thǎńg in [4] and by Neeb
in [12]. These papers contain classifications of simple weakly exponential
Lie groups. The present paper deals with a special form of being spacious
which we call completely spacious. A Lie group is completely spacious if
it possesses an open subsemigroup S which lies in the complement of the
exponential image. The motivation for investigation of this question comes
from a problem in topological dynamics. We will give a characterization of
completely spacious groups which is very similar to the result of Jaworski.
He proves that a semisimple Lie group is spacious if and only if the minimal
paraboloic subgroups are disconnected. We will prove that a semisimple Lie
group is completely spacious if and only if the minimal parabolic subgroups
have infinitely many components.

1. Statement of the problem

We start with the definitions of the basic concepts.

Definition 1.1. A locally compact group G is called spacious, if there exists
an open subset U such that Un ∩ Un+1 = Ø for all n ∈ N. The group is called
weakly exponential if the union of all one-parameter subgroups is dense in G. A Lie
algebra g is called weakly exponential if there exists a weakly exponential group
G with Lie algebra L(G) = g. It is called completely weakly exponential if the
corresponding simply connected Lie group is weakly exponential. Finally we call
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a Lie group completely spacious if there exists a nonempty open subsemigroup S
with S ∩ exp g = Ø.

The last definition is motivated by a problem in topological dynamics. Let
S be a subsemigroup of a topological group G that acts on a manifold M . For
a point p ∈ M we consider the stabilizer group Gp and its orbit S.p under the
action of S . A control set for the S -action on M is a set D with nonempty interior
such that D ⊆ S.x for all x ∈ D , cf. [15]. There it is proven that the interior of
D consists of those points p for which the stabilizer group Gp intersects int(S).

If G is a Lie group, then it is natural to ask if there is an infinitesimal
counterpart for int(S) ∩ Gp 6= Ø. Therefore we define for a subsemigroup S of a
Lie group G the set

L∞(S) = {X ∈ g | (∃t > 0) exp(tX) ∈ int(S)} .

This notation was introduced by Lawson in [11]. Now let H be a subgroup of G,
then L(H)∩L∞(S) 6= Ø implies H ∩ int(S) 6= Ø. We would actually like to know
for which Lie groups the converse is also true. Thus we must solve the following
problem:

Problem 1.2. Suppose that G is a connected Lie group, H ⊆ G a connected
Lie subgroup and S ⊆ G a subsemigroup with nonempty interior.

(P) Is it possible that int(S) ∩H 6= Ø and exp h ∩ int(S) = Ø?

(P ′ ) Is it possible that 1 ∈ int(S), int(S) ∩H 6= Ø and exp h ∩ int(S) = Ø?

The condition that H is connected may be weakened to H having only
finitely many connected components, i.e., |H/H0| <∞, for then int(S) ∩H 6= Ø
implies int(S) ∩ H0 6= Ø. Conversely, if we allow H to have infintely many
connected components, then the question of Problem (P) must be answered ‘Yes!’
as the following simple example shows. Let G = (R2,+), H = R × Z and
S = R+(1, 1) + R+(−1, 1) = {(x1, x2) | x2 ≥ |x1|}. Then

int(S) ∩H =
⋃

n∈N
(−n, n)× {n}, but exp h ∩ int(S) = H0 ∩ int(S) = Ø.
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This example even satisfies the condition of Problem (P ′ ) that 1 ∈ int(S). One
realizes moreover that this phenomenon appears quite often. For example, let g be
a Lie algebra and n a hyperplane ideal. Assume that on the group level G/N ∼= R.
Then pick a pointed generating cone W transversal to n, i.e., W ∩ n = {0},
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so S := 〈expW 〉 is a semigroup satisfying S ∩ N = {1}. For an arbitrary
subalgebra h ⊆ n and an arbitrary point X ∈ int(W ) let H = H0 exp(ZX).
Then H ∩ int(S) 6= Ø but H0 ∩ int(S) = Ø.

Since we assume that both H and G are connected, Problem (P) only has
to be considered for H = G. In this case it can be rephrased as:

Does G possess an open subsemigroup that does not intersect the
exponential image?

Thus we are led to the problem of classifying the completely spacious Lie groups.

Another interesting object that was introduced by Lai to study the image of
the exponential function is the index function of a Lie group, see. [10] and also [2],
as it may happen that an element x ∈ G does not lie in exp g but some positive
power xn does.

Definition 1.3. For a Lie group G we define the index function indG:G→ N
by indG(x) = inf {n ∈ N | xn ∈ exp g}. Moreover we let

dom indG = {x ∈ G | indG(x) <∞} .

The following proposition is immediate from the definitions.

Proposition 1.4. If G is completely spacious, then dom indG 6= G. If G is
weakly exponential, then dom indG = G.

It may happen that dom indG 6= G for weakly exponential groups. The
universal cover of the group of euclidean motions of the plane, G = S̃E(2) provides
an example of a weakly exponential group with indG(G) = {1,∞}, so dom indG =
exp g 6= G. Let us call a Lie group nice, if dom indG is dense in G. Then the
following is obvious:

Lemma 1.5. If G1 and G2 are nice groups, then so is G1 ×G2 .

We will see in the end that G is nice iff G is not completely spacious. It
is clear that a completely spacious group cannot be nice. But the converse still
needs to be proved. For example, there is no obvious way to prove the statement
of the previous lemma if one replaces ‘nice’ by ‘not completely spacious.’

2. Reductions

Throughout the whole text we will assume that the Lie group G is connected. All
results remain true if we relax this to G/G0 being finite. As a first step, we reduce
the problem to the case that G is semisimple. A completely spacious Lie group
cannot be solvable because all solvable Lie groups are weakly exponential, hence
nice. The reduction arguments in the following two lemmas are nearly a transcript
of the proof in [7] that a Lie group is weakly exponential if and only if the quotient
modulo its radical is weakly exponential.
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Lemma 2.1. If G is a Lie group, N a closed normal subgroup and G/N
completely spacious, then G is completely spacious.

Proof. Let π:G→ G/N be the quotient map. Then π(im expG) = im expG/N .
Let S0 ⊆ G/N be an open semigroup with S0 ∩ im expG/N = Ø, and let S =
π−1(S0). Then S is an open subsemigroup of G, π(S) = S0 and therefore

π(S ∩ im expG) ⊆ π(S) ∩ π(im expG) = S0 ∩ im expG/N = Ø.

Thus S ∩ im expG = Ø follows.

Lemma 2.2. Let G be a connected Lie group, R its radical, i.e., the largest
connected solvable normal subgroup, and Gs = G/R . Then G is completely
spacious iff Gs is completely spacious.

Proof. The if-part is proved in Lemma 2.1. Conversely suppose that Gs is not
completely spacious and let S ⊆ G be an open subsemigroup. Then π(S) ⊆ Gs

is an open subsemigroup, hence it intersects exp gs . So we obtain X ∈ gs with
expRX ∩ π(S) 6= Ø. Next let H = exp(RX)R ⊆ G, then H ∩ S 6= Ø is an open
subsemigroup in H . Let r denote the radical of g, then L(H) = RX + r. Since
H is connected and solvable, it is weakly exponential. Thus exp(RX + r) must
intersect H ∩ S . Therefore exp g ∩ S 6= Ø follows.

The reduction in the semisimple case is a little bit more delicate. If G is a
semisimple Lie group, then its Lie algebra g is the direct sum g = g1⊕ · · ·⊕ gn of
simple ideals. If we let Gi = 〈expG gi〉, then G = G1 · · ·Gn as a set, and each Gi is
a normal subgroup, but G need not be a direct product of the Gi . Nevertheless we
will prove that for a nice group Gk , the factor group G/Gk is completely spacious
if and only if G is completely spacious.

Lemma 2.3. Suppose G has Lie algebra g = g1⊕g2 and let G2 = 〈expG g2〉 be
the corresponding normal subgroup. If G2 is nice, then G is completely spacious
if and only if G/G2 is completely spacious.

Proof. Again the if-part is proved in Lemma 2.1. Conversely, let S ⊆ G be an
open semigroup and π:G→ G/G2 the quotient map. Then π(S) ∩ π(expG g1) is
nonempty, i.e., we find X1 ∈ g1 and g ∈ G2 such that expG(X1)g ∈ S . Since S is
open, we have expG(X1)gU ⊆ S for a sufficiently small identity neighborhood U .
Since G2 is nice, dom indG2 is dense in G2 , i.e., we can find g′ ∈ gU ∩G2 , k ∈ N
and X2 ∈ g2 such that (g′)k = expG2

(X2) = expG(X2) ∈ expG g2 . Hence

S 3 (expG(X1)g′)k = expG(X1)k(g′)k = expG(kX1) expG(X2) = expG(kX1 +X2).

Thus G is not completely spacious.

Next we have to determine some nice groups.

Lemma 2.4. Suppose that G is semisimple connected and that all Cartan sub-
groups have finitely many connected components. Then G is nice. In particular,
G is not completely spacious.
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Proof. We recall that an element g ∈ G is called regular if the nilspace

N(Ad(g)− id) = {X ∈ g | (∃n ∈ N)(Ad(g)− id)nX = 0}

has minimal dimension. The set Reg(G) of all regular elements is open and
dense in G. Pick g ∈ Reg(G) and let h = ker(Ad(g) − id), then h is a Cartan
algebra and its centralizer H = C(G, h) is a Cartan subgroup. By our assumption
n := |H/H0| < ∞. Since H0 = exp h ⊆ im exp and g ∈ H , we obtain that
gn ∈ H0 ⊆ exp g, i.e., g ∈ dom indG . Thus Reg(G) ⊆ dom indG . Since Reg(G) is
dense, G must be nice.

Lemma 2.5. Suppose that G is semisimple with finite center. Then the Cartan
subgroups have finitely many components.

Proof. Let H be a Cartan subgroup and h = L(H). Then there exists an
adapted Cartan decomposition g = k+p such that with hk := h∩k and hp := h∩p
we have h = hk + hp , cf. [16, Proposition 1.3.1.1]. Now G = K exp p and K
is compact because the center of G is finite. Let HK = H ∩ K , then by [16,
Proposition 1.4.1.2] H = HK exp hp . As K is compact, so must be HK . Hence it
has finitely many connected components. Since H/H0 = HK/(HK)0 this proves
that H has only finitely many components.

As an immediate corollary of the previous two lemmas we obtain:

Corollary 2.6. If G is semisimple with finite center, then G is nice, hence
not completely spacious.

3. The simple case

Now we consider the case that G is simple. From Corollary 2.6 we immediately
obtain:

Corollary 3.1. Suppose that G is simple and completely spacious. Then its
center contains an infinite cyclic subgroup and its Lie algebra g is hermitian.

Up to isomorphism the simple hermitian Lie algebras are

su(p, q) (p ≥ q ≥ 1), sp(n,R) (n ≥ 1), so(p, 2) (p 6= 2), so∗(2n) (n ≥ 3),

and the exceptional algebras e6(−14) , e7(−25) . These can be divided into two dif-
ferent classes, namely the Cayley type algebras and the non-Cayley type algebras.
The Cayley type algebras are

su(n, n), sp(n,R), so(p, 2), so∗(4n), e7(−25).

The terminology is taken from [13]. The simple hermitian Lie algebras are sym-
metric Lie algebras, i.e., one has decompositions

g = k⊕ p = h⊕ q = (h ∩ k)⊕ (h ∩ p)⊕ (q ∩ k)⊕ (q ∩ p),
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where g = k + p is the Cartan decomposition coming from a Cartan involution θ
and h and q are the +1- resp. −1-eigenspaces of an involution τ that commutes
with θ . The decompositions are orthogonal with respect to the bilinear form
Bθ(X, Y ) = − trace(ad(X), ad(θY )). It was shown in [9] that for the corresponding
symmetric spaces there exists a generalized Cayley transform, C. For the Cayley
type algebras it turns out that the involution τ is actually the square of the
associated Cayley transform: τ = C2 . There are two causality concepts, namely
compactly causal and non-compactly causal, see [6, Definition 3.1.23]. All simple
hermitian Lie algebras give rise to compactly causal symmetric spaces. But the
Cayley type algebras give also rise to non-compactly causal spaces.

It turns out that for our problem we only have to consider the Cayley type
algebras because the non-Cayley type groups are nice.

Theorem 3.2. The hermitian non-Cayley type algebras are completely weakly
exponential, i.e., the corresponding simply connected group is weakly exponential.

Proof. [12, Theorem IV.6].

In particular, all other groups with such a Lie algebra are weakly exponential
too. On the other hand, it turns out that a Cayley type group with infinite center
is completely spacious. The proof requires several lemmas. The first one is an
immediate consequence of the proof in [7] that a spacious group G cannot be
weakly exponential. It is a simple consequence of the fact that the additive group
of reals (R,+) is not spacious.

Lemma 3.3. If U ⊆ G is an open subset such that Un ∩ Un+1 = Ø for all
n ∈ N, then U ∩ im exp = Ø.

The next lemma due to Azencott, cf. [1, Lemme III.6, p.66], is crucial
because it provides a general semigroup construction. But first we have to fix
some terminology. For a semisimple Lie group G let G = KAN be an Iwasawa
decomposition, g = k + a + n. Let M be the centralizer of A in K . Then
P := MAN is a minimal parabolic subgroup, and all minimal parabolic subgroups
are conjugate under innner automorphisms. Let M ∗ be the normalizer of A in
K , then M∗/M is isomorphic to the Weyl group W of the pair (g, a). One has
G =

⋃
w∈W PwP , this is the Bruhat decomposition of G. For fixed w ∈ W the

double coset PwP is called a Bruhat cell. All these cells are disjoint, and there
is precisely one Bruhat cell which is open and dense in G. If we denote N− the
nilpotent subgroup opposite to N with respect to the Cartan involution θ , i.e.,
N− = θ(N), then the open Bruhat cell is given by N−MAN .

Lemma 3.4. Let G be a semisimple Lie group and MAN a minimal parabolic
subgroup. Then there exist a semigroup S ⊆ G, an identity neighborhood V and
an element a ∈ A such that V aM0 ⊆ S ⊆ N−M0AN .

The following lemma is due to Jaworski.

Lemma 3.5. Let Q̂ be a closed subgroup of Ad(K), and let Q = Ad−1(Q̂).
Then Q has finitely many components if and only if Z(G)Q0/Q0 is finite.
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Proof. First we observe that Q̂/Q̂0 is finite because Q̂ is compact. Since
Q̂0 = Ad(Q0), there is a homomorphism f :Q/Q0 → Q̂/Q̂0 . As Q̂/Q̂0 is finite,
Q̂/Q̂0 = f(F ) for a finite subset F ⊆ Q/Q0 . From ker f = Z(G)Q0/Q0 , we obtain
Q/Q0 = F (Z(G)Q0/Q0), proving the claim.

This lemma applies, of course, to M , thus M/M0 is finite if and only if
Z(G)M0/M0 is finite. Since the center Z(G) is always contained in K , we have
Z(G) ⊆M . If G is semisimple with infinite center, then the intersection Z(G)∩M0

plays a crucial role. The proof of the following lemma is due to G. Ólafsson.

Lemma 3.6. If g is a simple Cayley type algebra, g = k + a + n an Iwasawa-
decomposition and m + a + n a minimal parabolic subalgebra, then m ⊆ k′ .

Proof. Let c = {X ∈ q ∩ k | (∀Y ∈ q ∩ k) [X, Y ] = 0}. Since g is hermitian, we
obtain from [13, 1.1, 1.2] that0 6= c ⊆ z(k). Since g is simple hermitian, we have
dim z(k) = 1, thus z(k) = c ⊆ q ∩ k. As k′ ⊕ z(k) = k = (h ∩ k) ⊕ (q ∩ k) is an
orthogonal sum, we deduce from z(k) ⊆ q ∩ k that h ∩ k = (q ∩ k)⊥ ⊆ z(k)⊥ = k′ .

Since g is of Cayley type, it is also non-compactly causal. Thus we can find
a nonzero Y0 ∈ q ∩ p which is fixed under ead k∩h , and moreover its centralizer is
zg(Y0) = (h ∩ k) + (q ∩ p), cf. [14, Theorem 2.6]. Now let a ⊆ p be a maximal
abelian subspace containing Y0 . If m is the centralizer of a in k, then we obtain

m ⊆ zg(Y0) ∩ k =
(
(h ∩ k) + (q ∩ p)

)
∩ k = h ∩ k ⊆ k′.

Since all minimal parabolic subalgebras are conjugate, this proves the claim.

Corollary 3.7. If G is a simple Cayley type group, G = KAN an Iwasawa
decomposition and MAN a minimal parabolic subgroup, then M0 ⊆ K ′ is compact.

Proof. Since m and k′ are compact Lie algebras, we obtain from the previous
lemma that M0 = exp m ⊆ exp k′ = K ′ . But K ′ is a semisimple group, hence
compact.

Lemma 3.8. If G is a simple Lie group, then M/M0 is infinite if and only if
G is of Cayley type and Z(G) is infinite.

Proof. If G is a simple Lie group and M/M0 infinite, then in view of Lemma 3.5
it must have infinite center. Thus it is hermitian. If G is a hermitian non-
Cayley type group, then by Theorem 3.2 it is weakly exponential. But then
Jaworski’s characterization of spacious groups [8, Theorem 12] proves that the
minimal parabolic subgroups are connected, thus M = M0 . Hence the group
G must be of Cayley type. Conversely, if G is a simple Cayley type group with
infinite center, then its center is isomorphic to Z(G) ∼= Z⊕torZ(G), and M0 ⊆ K ′

is compact, hence M0∩Z(G) ⊆ torZ(G). Let x ∈ Z(G)\torZ(G), then 〈x〉 ∼= Z,
and

〈x〉 ∩M0 = 〈x〉 ∩ Z(G) ∩M0 ⊆ 〈x〉 ∩ torZ(G) = {1}.
Since Z(G) ⊆M , we deduce M/M0 ⊇ 〈x〉M0/M0

∼= Z, i.e., M/M0 is infinite.

In the sequel a tilde will always be used to denote the corresponding simply
connected group.
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Lemma 3.9. If G is semisimple and M/M0 is infinite, then there exists an
element x ∈ Z(G) ∩ (M \M0) such that 〈x〉 ∼= Z and 〈x〉 ∩M0 = {1}.

Proof. We have G = G̃/D and G̃ =
∏
i G̃i . Let G̃1, . . . , G̃k be the Cayley type

factors and G̃k+1 . . . G̃k+l the hermitian, non-Cayley type factors. Then Z(G̃) ∼=
A1⊕A2⊕torZ(G̃) with A1

∼= Zk and A2
∼= Zl . In the proof of the previous lemma

we have seen that the hermitian non-Cayley type groups are weakly exponential
and that their minimal parabolic subgroups are connected. Thus if M̃ is a minimal
parabolic subgroup of G̃, then A2 ⊆ M̃0 ∩Z(G̃) ⊆ A2⊕ torZ(G̃) follows. In view
of Lemma 3.5 we already know that Z(G̃)M̃0D/M̃0D must be infinite. Therefore
A1A2D/A2D is infinite. Thus we can find an x ∈ A1 such that 〈x〉 ∩A2D = {1},
hence 〈x〉∩A2 torZ(G̃)D = {1} whence 〈x〉∩M̃0D ⊆ 〈x〉∩A2 torZ(G̃)D = {1}.
If π: G̃ → G denotes the quotient map, then π(x) has the desired properties
because

Z ∼= π(〈x〉) ⊆ M̃D/M̃0D ∼= M/M0.

Jaworski proves in [8, Lemma 5] that G is spacious if M is disconnected.
A modification of his proof allows us to prove the following lemma. In fact, the
proof becomes much simpler due to the very special situation we consider here.

Lemma 3.10. If the group M has infinitely many components, then G is
completely spacious.

Proof. By the previous lemma we can find an element x ∈ Z(G) ∩ (M \M0)
such that 〈x〉 ∼= Z and xn 6∈ M0 for all n ∈ N. By Lemma 3.4 we can find
an element a ∈ A, an identity neighborhood V , and a semigroup S such that
V aM0 ⊆ S ⊆ N−M0AN . Let S1 = xS . Then we obtain for all n, p ∈ N

Sn1 ∩Sn+p
1 = xn(Sn∩xpSn+p) ⊆ xn(S ∩xpS) ⊆ xn(N−M0AN ∩N− xpM0AN) = Ø.

The latter is true because the map from N−×M×A×N → G is a diffeomorphism
from its domain onto its image, the open Bruhat cell in G, cf. [5, p. 407]. Thus
(Sk1 )n∩(Sk1 )n+1 = Ø for all n, k ∈ N. Hence Lemma 3.3 proves that Sk1∩exp g must
be empty for all k ∈ N. Therefore S̃ :=

⋃
k∈N S

k
1 is a semigroup with nonempty

interior such that int(S̃) ∩ exp g = Ø.

Theorem 3.11. A simple Lie group G is completely spacious if and only if its
Lie algebra g is of Cayley type and Z(G) is infinite.

Proof. The if-part is proved in the previous lemma. The only-if-part follows
from Theorem 3.2 and Corollary 2.6 which prove that all other simple groups are
nice.

Corollary 3.12. A simple Lie group is nice if and only if it is not completely
spacious.
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Proof. The statement that a nice group G cannot be completely spacious
follows immediately from the definitons. Conversely, if G is simple and not
completely spacious, then either its center is finite or G is weakly exponential.
In both cases, G is nice.

Problem 3.13. Prove the same statement with G semisimple instead of sim-
ple. Describe the semisimple groups which are nice.

Finally, combining the reduction arguments with the classification of simple,
completely spacious groups, we can now describe the fully reduced group Gred that
one obtains from a group G after all possible reductions have been carried out. So
Gred does not contain any nice semisimple normal subgroups.

Lemma 3.14. If G is a semisimple group and fully reduced, then its Lie algebra
is g = g1⊕· · ·⊕gk , where all gk are of Cayley type, Z(Gk) is infinite and G = G̃/D
with D ∩ Z(G̃i) ⊆ torZ(G̃i) for all i = 1, . . . , k .

Proof. Let G be semisimple and fully reduced. Its Lie algebra g = g1⊕· · ·⊕gn
is a direct sum of simple ideals. By Lemma 2.3 we could factor all semisimple
subgroups which are nice. As G is fully reduced, there are no nice normal
subgroups. Since all simple non-Cayley type Lie groups are nice, this implies
that all the gi have to be of Cayley type and that the groups Gk = 〈exp gk〉 must
have infinte center. Since G = G̃/D , the latter means that the kernel D can
intersect Z(G̃i) only in its torsion part, D ∩ Z(G̃k) ⊆ torZ(G̃i).

4. The final result

First we cite Jaworski’s result [8, Theorem 12]:

Theorem 4.1. For a connected semisimple Lie group G the following state-
ments are equivalent:

(1) G is weakly exponential.

(2) The Cartan subgroups are connected.

(3) The minimal parabolic subgroups are connected.

(4) G is not spacious.

We recall from Lemma 2.2 that a Lie group G is completely spacious if and
only if its quotient modulo the radical G/R is completely spacious.

Theorem 4.2. For a semisimple Lie group G the following statements are
equivalent:

(1) G is completely spacious.

(2) The fully reduced group Gred is completely spacious.

(3) The minimal parabolic subgroups of Gred have infinitely many components.

(4) The minimal parabolic subgroups of G have infinitely many components.
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Proof. The equivalence (1) ⇔ (2) follows from our reduction Lemmas 2.1
and 2.3. The implication (4) ⇒ (1) follows by Lemma 3.10. Thus we still have
to prove (2) ⇒ (3) ⇒ (4). The implication (3) ⇒ (4) is quite obvious because
the minimal parabolic subgroups of G are mapped onto the minimal parabolic
subgroups of Gred by the quotient maps used to carry out the reduction. As
the quotient maps are continuous, each reduction step decreases the number of
components. Thus if the minimal parabolic subgroups of Gred have infinitely
many components, the same has to be true for the minimal parabolic subgroups
of G.

Finally we prove (2) ⇒ (3). So let Gred be fully reduced, then by
Lemma 3.14 its Lie algebra gred is the direct sum of simple ideals gred =

⊕
i gi each

of which is of Cayley type and the corresponding subgroup Gi ⊆ Gred has infinite
center. Let G̃i denote the universal covering groups, then G̃red = G̃1×· · ·×G̃k and
Gred = G̃red/D for some D ⊆ Z(G̃red) ∼= Zk⊕ torZ(G̃red). Moreover M̃red ⊇ Z(G̃)
and (M̃red)0 ∩ Z(G̃) ⊆ torZ(G̃) by Corollary 3.7. Since Gi

∼= G̃iD/D ∼=
G̃i/(Z(G̃i)∩D) has infinite center, we deduce that D∩Z(G̃i) ⊆ torZ(G̃i). Hence
ZkD/D is infinite. Thus we can find x ∈ Z(G) \ tor(G) such that 〈x〉 ∼= Z and
〈x〉 ∩D = {1}. Since (M̃red)0D ∩ Z(G̃) = ((M̃red)0 ∩ Z(G̃))D ⊆ torZ(G̃)D , and
since 〈x〉 ∩ torZ(G̃)D = {1}, we deduce that 〈x〉 ∩ (M̃red)0D = {1}. Thus if
π:Mred → Mred/(Mred)0 denotes the quotient map, then 〈π(xD)〉 ∼= Z, proving
that Mred/(Mred)0 is infinite.

A characterization by the types of the simple factors does not work in
general. It may happen that one of the simple factors Gi is completely spacious
but G itself is not. This is shown by the following example due to K.-H. Neeb. It
is very much in the spirit of Example 2.2 in [7], where it is shown that a weakly
exponential group may possess a simple factor which is not weakly exponential.

Example 4.3. Let G = G1 × G2 be simply connected, g = g1 ⊕ g2 with
g1 = su(2, 1) and g2 = sl(2,R). Let z2 ∈ S̃L(2,R) = G2 be a generator for
Z(G2), so 〈z2〉 = Z(G2). Let z1 ∈ Z(G1) be the generator of an infinite cyclic
subgroup 〈z1〉 ∼= Z and D = 〈(z1, z2)〉 ⊆ Z(G). Then G1 ∩D = G2 ∩D = {1}, so
GiD/D ∼= Gi is simply connected. But our reduction lemma may be applied.
Since G1 is nice and the factor group G/G1

∼= PSL(2,R) is not completely
spacious, G is not completely spacious. In fact, one can even show that G/D
is weakly exponential although the simple normal subgroup G2D/D ∼= S̃L(2,R)
is completely spacious.

Finally we can solve Problem 3.13 using the following lemma the proof of
which is due to W. Jaworski.

Lemma 4.4. If G is a semisimple Lie group, then the minimal parabolic sub-
groups have finitely many components if and only if the Cartan subgroups have
finitely many components.

Proof. “⇐”: Suppose the Cartan subgroups have finitely many components,
then Lemma 2.4 shows that G is a nice group, hence not completely spacious.
Thus Theorem 4.2 proves that the minimal parabolic subgroups must have finitely
many components.
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“⇒:” In view of [16, Proposition 1.3.1.1] it suffices to consider Cartan subgroups
H(h) where h is stable under the Cartan involution θ , and hp ⊆ a. We must
prove that HK = H ∩ K has finitely many components. In view of Lemma 3.5
we only have to prove that for all z ∈ Z(G) there exists n ∈ N such that
zn ∈ (HK)0 . As M/M0 is finite, we can find an n ∈ N such that zn ∈ M0 .
Thus zn = exp(Z) for some Z ∈ m. Let Ha denote the set of all θ -stable Cartan
algebras h containing the Iwasawa-a, then m =

⋃
h∈Ha

hk , [8, Lemma 6]. Thus

we can find h̃ ∈ Ha such that Z ∈ h̃k . Since hp ⊆ a = h̃p , there exists k ∈ K
such that Ad(k)|hp = idhp and Ad(k)h̃k ⊆ hk , [16, Proposition 1.3.1.3]. Thus
zn = kznk−1 = exp(Ad(k)Z) ∈ exp hk follows, proving our claim.

Thus we can conclude with the following characterization theorem which is a
counterpart of Theorem 4.1.

Theorem 4.5. For a semisimple Lie group G the following are equivalent:

(1) G is nice, i.e., dom indG is dense in G.

(2) The Cartan subgroups have finitely many components.

(3) The minimal parabolic subgroups have finitely many components.

(4) G is not completely spacious.

(5) Every open subsemigroup intersects the exponential image.

(6) For every nonempty open subset U we can find n < m ∈ N such that
Un ∩ Um 6= Ø.

Proof. The implications (1) ⇒ (4) ⇒ (3) ⇒ (2) ⇒ (1) follow using Propo-
sition 1.4, Theorem 4.2, the previous Lemma, and Lemma 2.4. The equivalence
(4) ⇔ (5) follows by the definition. The semigroup construction in the proof of
Lemma 3.10 shows that ¬(4)⇒ ¬(6). Finally Lemma 3.3 proves ¬(6)⇒ ¬(5).
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