
Journal of Lie Theory
Volume 5 (1995) 173–178
C©1995 Heldermann Verlag

Regular Lie groups and a theorem of Lie-Palais
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Abstract. In 1984 Milnor had shown how to deduce the Lie-Palais theo-

rem on integration of infinitesimal actions of finite-dimensional Lie algebras

on compact manifolds from general theory of regular Lie groups modelled on

locally convex spaces. We show how, in the case of effective action, one can

eliminate from Milnor’s argument the abstract Lie-Cartan theorem, making

the deduction rather elementary.

1. Introduction

A well-known result dated back to Lie and finalized by Palais [7] states that
every infinitesimal action of a finite-dimensional Lie algebra on a compact smooth
manifold, X , is derived from a smooth action of a finite-dimensional Lie group
on X . Milnor [4] gives a proof of this theorem based on theory of regular
Lie groups. This proof, however, is only partial (in Milnor’s own words), not
being self-contained: by necessity, it invokes the abstract Lie-Cartan theorem.
One definitely cannot hope to circumvent this landmark result while proving
the Lie-Palais theorem (which simply turns into the Lie-Cartan theorem in the
degenerate case of a trivial action). However, things are different in the most
important particular case where the infinitesimal action is effective, that is, one
deals with finite-dimensional Lie algebras of vector fields. We show how under
this assumption the Lie-Cartan theorem can be eliminated from the Milnor’s
argument, which therefore becomes quite elementary in the sense that it does
not invoke anything advanced beyond the scope of theory of regular Lie groups
(like the structure theory of Lie algebras).

Call a Banach-Lie algebra coming from a Lie group enlargeable. The
Lie-Cartan theorem essentially says that every finite-dimensional Lie algebra is
enlargeable; in infinite dimensions non-enlargeable Banach-Lie algebras can be
found [13]. However, a Banach-Lie algebra is enlargeable as soon as it admits a
continuous monomorphism into an enlargeable Banach-Lie algebra [1, 11, 13].

For more general Lie groups and algebras the situation is much harder
to deal with. A closed Lie subalgebra of the Lie algebra of a Fréchet-Lie group G
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need not have an associated Fréchet-Lie group even if G meets certain conditions
of regularity [2, 4]. For some recent positive advances in this direction, see [3].

We show that the above result on Banach-Lie algebras can be pushed
somewhat further to absorb a restricted version of the Lie-Palais theorem. Let
h be the Lie algebra of a regular Lie group modelled on a locally convex space,
and let g be a Banach-Lie algebra with finite-dimensional centre admitting a
continuous monomorphism into h . Then g is enlargeable. The result is deduced
from regular Lie group theory by means of the concept of a free Banach-Lie
algebra introduced by us earlier [8].

Since the group of diffeomorphisms of a compact manifold forms a reg-
ular Fréchet-Lie group, an application of our main result yields a theorem on
integration of finite-dimensional Lie algebras of vector fields. The latter theorem
thus merges fully in the realm of regular Lie group theory.

2. Preliminaries

We first recall a few basic facts about regular Lie groups. A C∞ (Gâteaux)
smooth Lie group G modelled on a bornological sequentially complete locally
convex space, with a corresponding locally convex Lie algebra Lie (G), is called
regular if every smooth path v : I = [0, 1]→ Lie (G) has a left product integral
p: I → G , that is, a solution to the differential equation Dp(t) = p(t) · v(t), and
if furthermore the correspondence v 7→ p(0)−1 · p(1) defines a smooth map from
the locally convex space C∞(I,Lie (G)) to G . (This definition is taken from
Milnor’s survey [4], where regularity is understood in a somewhat less restrictive
sense than by Kobayashi et al [2]. Notation is self-explanatory.)

The condition of regularity seems indispensable if one wants to derive
substantial results, and all examples of Lie groups modelled on locally convex
spaces known up to date are regular. Such are: the groups of diffeomorphisms
of smooth compact manifolds, certain subgroups of these, the groups of currents
(and their central extensions), Banach-Lie groups, and many more [2, 3, 4]. The
following is a basic result about regular Lie groups.

Theorem 2.1. ([4]; cf. [2]) Let G and H be smooth Lie groups modelled
on bornological sequentially complete locally convex spaces. Let G be simply
connected and H be regular. Then every continuous Lie algebra morphism
Lie (G) → Lie (H) is tangent to a (necessarily unique) Lie group morphism
G→ H .

We also need a test for enlargability of Banach-Lie algebras. As is
well known (cf., e.g., [12]), to every Banach-Lie algebra one can associate in a
canonical way a group germ; to put it simply, there is in any Banach-Lie algebra
a neighbourhood of the origin that can be converted via the Campbell-Hausdorff-
Dynkin multiplication into a local analytic group. The following theorem can be
found in [1, 11], and it also follows from the Cartan-Smith theorem as presented
in [14] if one observes that every injective morphism of local groups from a local
analytic group associated to a Banach-Lie algebra, restricted, if necessary, to an
open local subgroup, is automatically a submersion.
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Theorem 2.2. Let g be a Banach-Lie algebra such that there exist a group
G , a neighbourhood, U , of the origin in g , and a map φ:U → G which is an
injective morphism of local groups. Then g is enlargeable. Moreover, a subgroup
of G generated by φ(U) can be given a unique structure of a Banach-Lie group
associated to g in such a way that φ becomes the restriction of an exponential
map.

3. Free Banach-Lie algebras

Theorem 3.1. [8, 9] Let E be a normed space. There exist a complete normed
Lie algebra FL(E) and a linear isometry iE :E ↪→ FL(E) such that:

1. The image of iE topologically generates FL(E) .

2. For every complete normed Lie algebra g and an arbitrary contracting
linear operator f :E → g there exists a contracting Lie algebra homo-
morphism f̂ :FL(E)→ g with f̂ ◦ iE = f .

The pair (FL(E), iE) with the properties 1 and 2 is unique up to an
isometrical isomorphism.

We call FL(E) the free Banach-Lie algebra on E . It is shown in [9] that
if dimE ≥ 2 then FL(E) is centreless. (An original proof of this fact presented
in [8] is unsatisfactory.) The following is a direct corollary.

Theorem 3.2. Every free Banach-Lie algebra on a normed space is enlarge-
able.

Let Γ be a set. We denote the Banach-Lie algebra FL(l1(Γ)) simply
by FL(Γ) and call the free Banach-Lie algebra on a set Γ. It is easy to see
that the above algebra possesses the following universal property: every map f
sending Γ to the unit ball of a Banach-Lie algebra g extends in a unique way
to a contracting Lie algebra morphism from FL(Γ) to g . The well-known fact
that a Banach space of density character ≤ Card (Γ) is a factor space of l1(Γ)
implies that an arbitrary Banach-Lie algebra is a factor Banach-Lie algebra of a
free Banach-Lie algebra of the form FL(Γ) [8]. We denote by G(Γ) the simply
connected Banach-Lie group attached to the free Banach-Lie algebra FL(Γ).
It is couniversal among all connected Banach-Lie groups of density character
≤ Card (Γ) (cf. [8]).

4. Extension of Lie-Palais theorem in the case of effective action

Lemma 4.1. Let g be a Banach-Lie algebra with finite-dimensional centre z .
Let U be a neighbourhood of the origin in g such that the Campbell-Hausdorff-
Dynkin multiplication is defined on U × U . Let f be a continuous map from U
to a Hausdorff topological group G which is a morphism of local groups. Suppose
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that for every x ∈ z there is a λ ∈ R with λx ∈ U and f(λx) 6= eG . Then g is
enlargeable.

Proof. The restricted map f |U∩z extends to a continuous abelian group

homomorphism, f̃ : z → G . The set ker f̃ forms a closed additive subgroup of a
finite-dimensional vector space z , containing by hypothesis no one-dimensional
linear subspaces; in other words, it is a discrete lattice, and there exists an open
neighbourhood of zero, V ⊆ U , in z such that V ∩ ker f̃ = {0} . Choose an open
Ũ ⊂ g with 0 ∈ Ũ ∩ z ⊆ V . As a corollary, if x ∈ Ũ \ {0} , then f(x) 6= eG .

Let φ: Ũ → F be a universal morphism of a local group to a group.
(That is, any other such morphism, g: Ũ → A , is a composition of φ and a
group homomorphism F → A ; cf. [12, 14].) Let x ∈ Ũ \ {0} ; it suffices
to prove that φ(x) 6= eG and to apply Theorem 2.2. Now, if x /∈ z , then x
is separated from zero by the composition of the adjoint representation x 7→
ad x and the exponentiation End (g+) → GL (g+). (Both mappings preserve
the Campbell-Hausdorff-Dynkin multiplication in suitable neighbourhoods of
identity, and therefore determine morphisms of appropriate local groups.) If
x ∈ z , then x ∈ Ũ \ {0} and f(x) 6= eG .

The following is the main result of our note.

Theorem 4.2. Let g be a Banach-Lie algebra having the finite-dimensional
centre and admitting a continuous monomorphism into the Lie algebra of a
regular Lie group. Then g is enlargeable.

Proof. Let H be a regular Lie group and h: g→ Lie (H) be a continuous Lie
monomorphism. Denote by B the unit ball in g , and by i the contracting Lie
algebra morphism FL(B) → g extending the identity map B → B . According
to Theorem 2.1, the composition morphism h ◦ i:FL(B) → Lie (H) is tangent
to a morphism of Lie groups î:G(B) → H . Denote I = ker(h ◦ i), J = ker î ,
and let A be a subgroup of G(B) algebraically generated by the exponential
image of I . Let G denote the Hausdorff topological group G(B)/J , and let
f : g → G be a map defined by f(x + I) = (expx) · J . Since A ⊆ J and the
restriction of expG(B) to a sufficiently small neighbourhood of the origin is a
morphism of local groups, the map f is well-defined and is a morphism of local
groups; diagrammatic search shows that it is continuous. The canonical group
monomorphism ψ:G → H is continuous as well, and ψ ◦ φ = expH ◦h . Since
for every x ∈ Lie (H) one surely has expH(λx) 6= eH for an appropriate λ ∈ R ,
and the centre of g is finite-dimensional, the triple (g, G, f) falls within the
conditions of Lemma 4.1.

Corollary 4.3. Every continuous monomorphism from a Banach-Lie algebra
with finite-dimensional centre to the Lie algebra of a regular Lie group is tangent
to an appropriate Lie group morphism.

Proof. Results from direct application of Theorems 4.2 and 2.1.

As a corollary, we can now prove a restricted version of the Lie-Palais
theorem by means of regular Lie group theory.
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Theorem 4.4. (Lie-Palais) Let M be a compact closed manifold and let g be
a finite-dimensional Lie algebra. Then every effective infinitesimal action of g
on M is derived from a smooth global action of a finite-dimensional Lie group
on M .

Proof. An effective infinitesimal action of g upon M can be viewed as a Lie
algebra monomorphism from g to the algebra vectM of smooth vector fields on
M endowed with the C∞ -topology. Clearly, the conditions of the Main Theorem
4.2 and Corollary 4.3 are satisfied, therefore there exists a Lie group G attached
to g (no Lie-Cartan theorem needed!), and the resulting Lie group morphism
from G to the diffeomorphism group diff M (which is a regular Lie group with
the Lie algebra vectM , [2, 4]) determines a desired global smooth action.

Remark 4.5.1. We stress that the proposed proof of the Lie-Palais theorem
neither is simpler than nor is put forward as a substitute for the original proof
contained in the classical Palais’s Memoir [7]. Rather, it exhibits new links
between (at least, three) different levels of Lie theory.

Remark 4.5.2. We do not know whether the condition upon the centre being
finite-dimensional can be relaxed in the Main Theorem 4.2. However, our Ex-
ample in [10] can be remade easily to show that the key Lemma 4.1 is no longer
valid for Banach-Lie algebras with infinite-dimensional centre.

Remark 4.5.3. A reputed open problem, which might well fall within this
circle of ideas, is that of existence of a (connected) infinite-dimensional Banach-
Lie group acting effectively and transitively on a compact smooth manifold [5,
6].
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