A connected complex simple centerfree Lie group whose exponential function is not surjective

Michael Wüstner

Communicated by M. Moskowitz

Abstract. We discuss the example of a complex simple Lie group G, with trivial center, whose exponential map is not surjective and with dim_C G = 10.

In [2] I have characterized solvable Lie groups and complex semisimple Lie groups with surjective exponential function. In particular I have proven the following Theorem (See [2, Satz IV.3.27] and [3]):

Theorem 1. A semisimple complex Lie groups has surjective exponential function if and only if it is isomorphic to a finite product of groups $PSl(n(i), \mathbb{C})$.

Independently, in [1] MOSKOWITZ also has proven that finite products of $PSl(n(i), \mathbb{C})$ have surjective exponential map. In the context of this work it is informative to observe that for the exponential map on a connected complex simple Lie group to be surjective it is not enough that it is centerfree. In the following I shall discuss the smallest counterexample known, namely $PSP(2, \mathbb{C})$. Here $PSP(2, \mathbb{C}) \cong SP(2, \mathbb{C})/Z(SP(2, \mathbb{C}))$ is the adjoint Lie group of $SP(2, \mathbb{C})$ of all matrices $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sl(4, \mathbb{C})$ with $A, B, C, D \in \mathbb{C}^{2 \times 2}$ such that $C^TA - A^TC = 0, D^TB - B^TD = 0, A^TD - C^TB = I$, where I is the identity of $Gl(2, \mathbb{C})$.

Theorem 2. The complex simple Lie group $PSP(2, \mathbb{C})$ is centerfree and its exponential map is not surjective.

Proof. The center of $PSP(2, \mathbb{C})$ is trivial since it is an adjoint Lie group. We claim that there is an element $\gamma \in PSP(2, \mathbb{C})$, for which there is no $x \in sp(2, \mathbb{C})$ such that $\gamma = \exp_{PSP(2,\mathbb{C})} x$. First, we consider the group $SP(2,\mathbb{C})$.

Let $p: \operatorname{SP}(2, \mathbb{C}) \to \operatorname{PSP}(2, \mathbb{C})$ be the quotient map. We claim that there is no $g \in p^{-1}(\gamma)$ which is in the image of $\exp_{\operatorname{SP}(2,\mathbb{C})}$. Then we will have finished the proof. We shall prove the claim in the following lemma.

WÜSTNER

Lemma 3. There is a $\gamma \in PSP(2, \mathbb{C})$ such that no element of $p^{-1}(\gamma)$ lies in the image of $\exp_{SP(2,\mathbb{C})}$.

Proof. We set $g = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$. The proof that g is in SP(2, \mathbb{C}) is straightforward. Now we set $\gamma := p(g)$.

The elements of the Lie algebra $\operatorname{sp}(2,\mathbb{C})$ of $\operatorname{SP}(2,\mathbb{C})$ are exactly those elements $\begin{pmatrix} A & B \\ C & D \end{pmatrix}$ of $\operatorname{sl}(4,\mathbb{C})$ with 2×2 complex matrices A, B, C and D, for which the following conditions hold: $A = -D^T, B = B^T, C = C^T$.

We assume that there is an $x \in \operatorname{sp}(2, \mathbb{C})$ such that $g = \exp_{\operatorname{SP}(2,\mathbb{C})} x$ and consider $\operatorname{SP}(2,\mathbb{C})$ as a group of endomorphisms of \mathbb{C}^4 . Since a subspace which is invariant under x must be invariant under g and since g possesses two 2dimensional eigenspaces for two different eigenvalues, respectively, x must possess two 2-dimensional eigenspaces. By the Spectral Mapping Theorem one eigenvalue must be in $2\pi i\mathbb{Z}$ and the other must be of the form $(2z + 1)\pi i$ with $z \in \mathbb{Z}$. But then the trace of x is equal to $(4z_1 + 2(2z_2 + 1))\pi i$ with $z_1, z_2 \in \mathbb{Z}$. On the other hand, $\operatorname{tr} x = 0$ because $x \in \operatorname{sp}(2, \mathbb{C}) \subseteq \operatorname{sl}(4, \mathbb{C})$. But this implies $2 \in 4\mathbb{Z}$ and this is impossible. Now we consider $\operatorname{PSP}(2, \mathbb{C})$. The center of $\operatorname{SP}(2, \mathbb{C})$ is equal to $\{1, -1\}$. So, $p^{-1}(\gamma) = \{g, -g\}$. We saw a moment ago that $g \notin \operatorname{im}(\exp_{\operatorname{SP}(2,\mathbb{C})})$. But the proof of the assertion $-g \notin \operatorname{im}(\exp_{\operatorname{SP}(2,\mathbb{C})})$ is analogous to that for g.

The argument shows that g and -g have no preimage in $sl(4, \mathbb{C})$. But in this case, the center of $Sl(4, \mathbb{C})$ is equal to $\{I, -I, iI, -iI\}$ and, indeed, ig

has a preimage in sl(4, \mathbb{C}), namely $\begin{pmatrix} \frac{\pi}{2}i & 0 & -1 & 0\\ 0 & -\frac{\pi}{2}i & 0 & 1\\ 0 & 0 & \frac{\pi}{2}i & 0\\ 0 & 0 & 0 & -\frac{\pi}{2}i \end{pmatrix}$. So, of course, we

have not constructed a counterexample to the result in Theorem 1 that $PSl(n, \mathbb{C})$ possesses a surjective exponential function.

References

- [1] Moskowitz, M., The surjectivity of the exponential map for certain Lie groups, Ann. Mat. Pura Appl. (4) **166** (1994), 129-143.
- [2] Wüstner, M., "Beiträge zur Strukturtheorie auflösbarer Lie-Gruppen", Dissertation, Technische Hochschule Darmstadt, 1995.
- [3] Wüstner, M., On the surjectivity of the exponential function of complex algebraic, complex semisimple and complex splittable Lie groups, submitted.

WÜSTNER

Michael Wüstner Fachbereich Mathematik Technische Hochschule Darmstadt Schloßgartenstraße 7 D-64289 Darmstadt wuestner@mathematik.th-darmstadt.de

Received June 20, 1995