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1. Introduction.

The present paper deals with the classical results of A. Weil [11] on regularization
of pre-groups and pre-transformation spaces (see Definitions 3.1 and 4.1). As
pointed out in [4], those purely algebraic results appear to be very useful in the
following complex analytic setting.

Let D ⊂ Cn be a bounded domain and Aut(D) the group of all holomorphic
automorphisms of D . By a theorem of H. Cartan ([1], see also [8]), Aut(D) is a real
Lie group. In [10], Webster gave the conditions on D , such that all automorphisms
extend to the birational transformations of the ambient Cn . Moreover, as shown in
[13], the group Aut(D) has finitely many components in this case. Such properties
are also valid for the automorphisms of bounded homogeneous domains, if they
are realized as Siegel domains ([5]). The graph of every birational transformation
defines an n-dimensional compact cycle in P2n . Thus we obtain an embedding
of Aut(D) in the space Cn of n-dimensional cycles in P2n (the Chow scheme).
The space Cn is a countable collection of projective varieties parameterized by
the degrees of the cycles. In fact, it is proven in [4], that the degree of possible
cycles is bounded, which means that Aut(D) lies in finitely many components of
Cn (Theorem 3). The group operation of Aut(D) extends rationally to the Zariski
closure Z of it in Cn and endows Z with a structure of a pre-group, which is in
general not a group. The action Aut(D) × D → D extends also to a rational
action Z × Cn → Cn . Again, this is a pre-transformation space which is not a
transformation space in general.

The pre-groups and pre-transformation spaces can be obtained by passing
from algebraic groups and their regular actions on algebraic varieties to birationally
equivalent algebraic varieties. The mentioned results of Weil imply that in this
way we obtain all possible pre-groups and pre-transformation spaces ([11], p. 375).
In the case of connected pre-groups and homogeneous pre-transformation spaces,
a similar proof is given in the book of Merzlyakov [6]. The regularizations of pre-
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transformation spaces were generalized by Rosenlicht to the case of non-connected
algebraic groups ([9], page 404). Both papers [11, 9] and the book [6] utilize the
“algebraic language of generic points” which is mainly developed in the classical
book of Weil [12].

In view of the above applications of analytic nature, we propose here a more
geometrical way to study pre-groups and pre-transformation spaces. This allows to
reprove the above classical results without use of generic points and to generalize
them to the case of several components (Theorems 3.4 and 4.9).

These results are used in [4] to establish the following type of linearization
(see Theorems 1 and 2 there):

Let G be a real connected Lie group operating on a domain D ⊂ Cn by
holomorphic automorphisms, which extend to birational transformations of the
ambient Cn . Then there exists a linear representation of G on some CN+1 together
with a birational (onto its closed image) G-equivariant mapping from Cn into PN .

Furthermore, we investigate the points of pre-groups and pre-transformation
spaces, where the above regularizations are biregular (Propositions 3.10 and 4.10).
These are the regular points of certain rational mappings. This description allows
to construct the above linearization of G, such that the embedding of D into PN
is biholomorphic.

Another application of Theorem 4.9 and Proposition 4.10 is the following
type of a complexification:

Let G be a real algebraic group operating on a complex algebraic variety
X by complex regular transformations. Then X is embedded as a Zariski open
and dense subset in a (complex) algebraic variety Y such that the G action on X
extends to a regular action of the complexification GC on Y .

In fact, the action of G extends uniquely to a rational action of the com-
plexification GC , which makes X to a pre-transformation GC -space. The space
Y is obtained by Theorem 4.9 as a regularization of X and Proposition 4.10 im-
plies that the birational mapping between X and Y is an embedding. In case
G is a compact Lie group operating by holomorphic transformations on a Stein
space X , such complexification was constructed by Heinzner [2] (see [3] for X
holomorphically convex).

Finally we study the uniqueness of the regularizations. The regularization
of a pre-group is unique up to isomorphisms. In case of pre-transformation spaces
this is not true but can be achieved by the consideration of a restricted class of
minimal in some sense regularizations (Theorem 4.12).

Acknowledgments. On this occasion I would like to express my deep grat-
itude to my teacher A. T. Huckleberry. Furthermore, I wish to thank P. Heinzner,
V. Shevchishin and J. Winkelmann for numerous useful discussions.

2. Conventions.

All our objects will be defined over an algebraically closed ground field k . All open
and closed sets are considered with respect to the Zariski topology. We follow the
book of Mumford [7] in the main terminology. For the convenience of the reader
we recall here the basic definitions. By saying that some property is satisfied for
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generic (x1, . . . , xn) ⊂ X1 × · · · × Xn , where X1, . . . , Xn are arbitrary algebraic
varieties, we always mean that it is satisfied for all (x1, . . . , xn) in some open dense
subset of X1 × · · · ×Xn .

Let V,W be two algebraic varieties. A rational mapping f :V → W is
an equivalence class of the pairs (U, φ) of an open dense subset U ⊂ V and a
morphism φ:U → W . Two such pairs are said to be equivalent if the morphisms
coincide on the intersection of the corresponding sets. For every such class one
can choose a canonical representative (U, φ) with the maximal possible subset
U ⊂ V , such that, for every other representative (U ′, φ′), U ′ ⊂ U . This defines
a one-to-one correspondence between the rational mappings and their canonical
representatives. Such a representative will be also called a rational mapping and
will be said to be regular on the set U and the latter will be referred as the regular
set of f . A rational mapping is said to be regular at some point v ∈ V if v ∈ U .

For arbitrary subsets A ⊂ V and B ⊂ W we define the image of A and
the preimage of B by f(A) := f(U ∩ A) and f−1(B) := (f |U)−1(B).

In order to have the notion of composition of two rational mappings, we need
to introduce dominating mappings. We say that a rational mapping is dominating
if the preimages of all open dense subsets are open dense. In special case of a
morphism between two irreducible algebraic varieties this notion coincides with
given in [7].

Let f :V → V ′ and g:V ′ → V ′′ be two rational mappings. If f is
dominating, the composition g ◦ f :V → V ′′ is defined by the representative
(f−1(U ′) ∩ U, g ◦ f), where U ⊂ V and U ′ ⊂ V ′ are the regular sets of f and g
respectively.

More generally, the representative (f−1(U ′) ∩ U, g ◦ f) defines a rational
composition if and only if the preimage f−1(U ′) is dense in V . A rational mapping
f is dominating if and only if the compositions g◦f exist as the rational mappings
for all possible rational mappings g:V ′ → V ′′ .

By an expression we understand an arbitrary formal composition
fn(fn−1(· · · f2(f1(a)) · · ·)), where fi:Vi−1 → Vi, i = 1, . . . , n are rational mappings
and a ∈ V0 is a point. Such expression is said to be defined if, f1 is regular at a
and, for all i = 2, . . . , n, fi is regular at fi−1(· · · f1(a) · · ·).

The birational mapping f :V → W is similarly defined as an equivalence
class of the triples (U1, U2, φ) of open dense subsets U1 ⊂ V , U2 ⊂ W and
isomorphisms φ:U1 → U2 . Again, there is a one-to-one correspondence between
the birational mappings and their canonical representatives with the maximal
subsets U1 and U2 . Such a representative will be also called a birational mapping
and will be said to be biregular on the set U1 . A birational mapping is said to
be biregular at some point v ∈ V if v ∈ U1 . The birational mappings are always
dominating.

We should say also several words about restrictions. Let S ⊂ V be a locally
closed subvariety. The restriction to S of a rational mapping f :V → W may be
in general nowhere defined. We say that the restriction f |S is rational if the set
of all points v ∈ S , where f is regular, i.e. S ∩ U , is dense in S . In this case we
call the rational mapping from S into W , defined by the restriction f |S ∩ U , the
restriction f |S . It may be in general regular on a larger subset of S than S ∩ U .
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If f :V →W is birational, the restriction f |S is said to be birational if the
set of all points v ∈ S , where f is biregular, i.e. S∩U1 , is dense in S . In this case
the restriction f |S defines a birational mapping from S onto the image f(S∩U1).

3. Algebraic pre-groups.

Similarly to the algebraic groups we call the pre-groups algebraic in order to
emphasize their algebraic nature. As was pointed out above, the algebraic pre-
groups are obtained from algebraic groups via birational mappings. The original
definitions of them by Weil [11] make use of the language of generic points. Here
we reformulate these definitions in the terminology of [7]. Our definitions coincide
with given in [11] if all varieties are irreducible.

The standard group axioms usually involve the unit. Since we wish to
allow birational transformations, the unit may “disappear”. Therefore, we start
with another set of group axioms, namely with the associativity condition and the
existence and uniqueness of the left and right divisions.

Definition 3.1. An algebraic pre-group is an algebraic variety V with a
rational mapping V × V → V , written as (v, w) 7→ vw , such that:

1. for generic (u, v, w) ∈ V × V × V , both expressions (uv)w and u(vw) are
defined and equal (generic associativity condition);

2. the mappings (v, w) 7→ (v, vw) and (v, w) 7→ (v, wv) from V × V into itself
are birational (generic existence and uniqueness of left and right divisions).

Remarks.

1. Of course, an algebraic group is a special case of an algebraic pre-group.

2. As noted above, an algebraic pre-group may have no unit, e.g. V = (C \
{0},+).

3. We write (v, w) 7→ (v, v−1w) and (v, w) 7→ (v, wv−1) for the inverses of
the mappings (v, w) 7→ (v, vw) and (v, w) 7→ (v, wv) respectively. These
birational mappings are the analogons of the left and right divisions.

4. Condition 2) in Definition 3.1 implies that the pre-group operation (v, w) 7→
vw is dominating.

Warning. If wv−1 is defined, it does not mean that the “inverse” v−1 is
defined. Since, in general, an algebraic pre-group has no unit, we cannot define
the inverse elements directly.

The following Lemma due to Weil [11] introduces the inverse mapping
φ:V → V, v 7→ v−1 as a birational mapping.

Lemma 3.2. There exists a birational mapping φ:V → V with following prop-
erties:

1. φ ◦ φ = id,
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2. φ(v)w = v−1w ,

3. wφ(v) = wv−1 ,

4. φ(vw) = φ(w)φ(v),

where (v, w) ∈ V × V is generic.

Proof. We are looking for φ(v) in the form w(vw)−1 . This expression appears as
a component of the mapping f : (v, w) 7→ (vw, w(vw)−1) from V × V into itself.
The mapping f is birational as a composition of two birational mappings from
V × V into itself: (v, w) 7→ (vw, w) and (u, w) 7→ (u, wu−1).

We first wish to prove that φ(v, w) := w(vw)−1 is independent of w ∈ V .
For this we multiply both sides of the equality φ(v, w)(vw) = w by some u ∈ V
and use the associativity condition. Since, for generic (w, u), the right-hand side
wu is defined, the left-hand side (φ(v, w)(vw))u is also defined and one has

(φ(v, w)(vw))u = wu. (1)

In order to apply the associativity condition to (1), we have to prove that the ex-
pression (φ(v, w)((vw)u) is also defined. For this consider the birational mapping

g: (v, w, u) 7→ (f(v, w), u) = (vw, φ(v, w), u)

from V × V × V into itself. Then, for h: (a, b, c) 7→ b(ac), the composition
h ◦ g(v, w, u) = φ(v, w)((vw)u) is defined for generic (v, w, u) and one has the
associativity:

φ(v, w)((vw)u) = (φ(v, w)(vw))u. (2)

The relations (1) and (2) imply

φ(v, w)((vw)u) = wu. (3)

By the associativity, the expressions (vw)u and v(wu) are defined and equal for
generic (v, w, u) ∈ V × V × V . Therefore, (3) implies

φ(v, w)(v(wu)) = wu. (4)

Since the mapping (v, w, u) 7→ (v, w, wu) is birational, one can write

φ(v, w)(vt) = t (5)

for generic (v, w, t). This implies

φ(v, w) = t(vt)−1 = φ(v, t),

which means that φ(v, w) is independent of w ∈ V . Thus we can write φ(v) :=
φ(v, w).

The property 2) is now implied by φ(v)(vw) = w for generic (v, w). The
latter relation means that the left multiplications by v and by φ(v) are inverse
to each other. This implies the property 1) and therefore the birationality of φ.
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The fact that the above left multiplications are inverse to each other can be also
expressed as follows:

v(φ(v)w) = w. (6)

For proving property 3) we use similar calculations as for proving the independence
of φ(v, w) of w ∈ V . Here we multiply (6) by u ∈ V on the left:

u(v(φ(v)w)) = uw. (7)

By similar arguments, we see that, for generic (v, w, u), the associativity condition
can be applied and we obtain

((uv)φ(v))w = uw. (8)

This can be reduced to
((uv)φ(v)) = u. (9)

This means that the right multiplication by φ(v) is inverse to that by v , which
implies property 3).

Finally, property 4) is obtained by the following calculation:

(φ(w)φ(v))((vw)u) = φ(w)(φ(v)(v(wu))) = φ(w)(wu) = u, (10)

where all expressions are defined for generic (v, w, u). �
Remark. We write φ(v) = v−1 . By properties 2) and 3), the expressions v−1w
and wv−1 are then well-defined. If v−1 and these products are defined, they are
also defined in the previous sense but the converse may not be true. When saying
that such expressions are defined we understand them in the previous sense.

The morphisms in the category of algebraic pre-groups are defined as fol-
lows.

Definition 3.3. A rational (resp. birational) homomorphism between
two algebraic pre-groups V and W is a rational (resp. birational) mapping
f :V → W such that the expressions f(uv) and f(u)f(v) are defined and equal
for generic (u, v) ∈ V × V .

Remarks.

1. Since the mapping (u, v) 7→ uv is dominating, the expression f(uv) is always
defined for generic (u, v) ∈ V ×V . The expression f(u)f(v), on the contrary,
may be nowhere defined in general.

2. Of course, if f :V → W is birational, the second expression is also defined
for generic (u, v) ∈ V × V . In this case the inverse mapping f−1:W → V is
also a birational homomorphism.

3. If f :V → V ′, g:V ′ → V ′′ are two rational homomorphisms and f is domi-
nating, than the composition g ◦ f :V → V ′′ is defined and is also a rational
homomorphism.

For algebraic groups such morphisms coincide with the usual ones:
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Proposition 3.4. Let f :V → W be a rational homomorphism between two
algebraic groups V and W . Then f is a (regular) homomorphism.

Proof. Let U ⊂ V be the open dense subset, where f is regular and v ∈ V an
arbitrary point. Since V is an algebraic group, one has u := w−1v ∈ U for generic
w ∈ U . By the homomorphic property,

f(wu′) = f(w)f(u′)

for generic (w, u′) ∈ V × V . Since w, u ∈ U and W is a group, the right-hand
side is defined for u′ = u. Then the left-hand side f(wu) = f(v) is also defined.
Since v ∈ V is arbitrary, f is regular. �

On the contrary to the algebraic group structures, the algebraic pre-group
structures can be transformed via birational mappings, which follows directly from
the definition:

Proposition 3.5. For every birational mapping f from an algebraic pre-group
V into an algebraic variety W there exists unique algebraic pre-group structure
on W such that f :V → W is a birational homomorphism with respect to this
structure.

We call this algebraic pre-group structure induced by f . If an algebraic
pre-group, obtained in such a way, is a group, it is called the regularization:

Definition 3.6. A regularization of an algebraic pre-group V is an algebraic
group Ṽ with a birational homomorphism φ:V → Ṽ .

One of the main results of [11] is the existence and uniqueness of such
regularizations. We reprove and generalize this result for algebraic pre-groups
with several irreducible components.

Theorem 3.7. For every algebraic pre-group V there exists a regularization Ṽ
which is unique up to isomorphisms.

The proof will be given in section 5.. Now we characterize the points of V ,
where the regularization homomorphism ϕ:V → Ṽ is biregular.

Definition 3.8. Let V be an algebraic pre-group. A point v ∈ V is called a
point of regularity if the following conditions are satisfied:

1. the mapping w 7→ wv from V into itself is birational;

2. the mapping v′ 7→ uv′ from V into itself is biregular at v′ = v for generic
u ∈ V ;

Lemma 3.9. The set of points of regularity of an algebraic pre-group V is an
open dense subset of V .

Proof. By definition of an algebraic pre-group, the right multiplication (v, w) 7→
(v, wv) is birational. It is biregular on an open dense subset U ⊂ V × V .
Condition 1) is satisfied if the intersection U ∩ ({v} × V ) is dense in {v} × V .
This is valid for all v from the open dense set V ′ :=

⋂
j π1((V × Vj) ∩ U), where
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Vj ’s are the irreducible components of V and π1:V ×V → V is the projection on
the first component.

The left multiplication (u, v′) 7→ (u, uv′) is also birational. Again, denote
by U ⊂ V × V the biregular set of it. Condition 2) is satisfied, if the intersection
U ∩ (V × {v}) is dense in V × {v}. This is valid for all v from the open dense
set V ′′ :=

⋂
j π2((Vj × V )∩U), where Vj ’s are as above and π2:V ×V → V is the

projection on the second component.

The set of points of regularity is now V ′ ∩ V ′′ which is open dense as an
intersection of two open dense subsets. �

Proposition 3.10. Let V be an algebraic pre-group and φ:V → Ṽ be its
regularization. A point v ∈ V is a point of regularity if and only if the mapping φ
is biregular at v .

Proof. Let φ be biregular at v . Then the mapping w 7→ wv can be decomposed
as a composition of the following three birational mappings: w 7→ φ(w) 7→
φ(w)φ(v) 7→ φ−1(φ(w)φ(v)). Indeed, by definition of a birational homomorphism,
φ(w)φ(v′) = φ(wv′), i.e. φ−1(φ(w)φ(v′)) = wv′ for generic (w, v′) ∈ V × V . If
v′ = v , both sides depend birationally on w . Thus, for generic w ∈ V they are
defined and equal. This proves that the mapping w 7→ wv is birational.

For generic (v′, u) ∈ V × V , the second mapping v′ 7→ uv′ can be de-
composed as follows: v′ 7→ φ(v′) 7→ φ(u)φ(v′) 7→ φ−1(φ(u)φ(v′)). Here the first
mapping is φ, which is biregular at v′ = v by the assumption. The second one
is biregular as a right multiplication in the algebraic group W . Finally, the third
mapping is biregular at φ(u)φ(v) for generic u ∈ V . Thus the required mapping
v′ 7→ uv′ is biregular at v′ = v for generic u ∈ V as a composition of biregular
mappings.

Suppose now that v ∈ V is a point of regularity. By definition of a birational
homomorphism, φ(wv′) = φ(w)φ(v′) for generic (w, v′) ∈ V × V . Since Ṽ is
an algebraic group, φ(v′) = φ(w)−1φ(wv′) and the mapping v′ 7→ φ(v′) can
be decomposed as the composition of the following three birational mappings:
v′ 7→ wv′ 7→ φ(wv′) 7→ φ(w)−1φ(wv′). Since v is a point of regularity, the first
mapping is biregular at v′ = v if w ∈ V is generic. Since the mapping w 7→ wv is
birational, φ is biregular at wv for generic w ∈ V . Since Ṽ is an algebraic group,
the last mapping Ṽ → Ṽ , u 7→ φ(w)−1u is biregular whenever φ(w) is defined.
For generic w ∈ V , this is the case. Then φ is biregular at v as a composition of
biregular mappings. �

The regularization satisfies also the following functorial property:

Proposition 3.11. Let f :V → W be a rational homomorphism between two
algebraic pre-groups V and W such that f(v) ∈ W is a point of regularity for
generic v ∈ V . Let φV :V → Ṽ , φW :W → W̃ be their regularizations. Then
there exists unique homomorphism f̃ : Ṽ → W̃ , such that the following diagram is
commutative:

V
f−→ WyφV

yφW

Ṽ
f̃−→ W̃
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Remark. The condition that f(v) is a point of regularity is essential. This
is shown on the example of the inclusion f :V → W , where V = ({0},+),
W = (C,×). Here Ṽ = V and W̃ = C∗ .
Proof. By Proposition 3.10, the mapping φW is biregular at f(v) ∈ W for generic
v ∈ V . Therefore, the composition f̃(v′) := φW (f(φ−1

V (v′) is defined for generic
v′ ∈ Ṽ . Moreover, it is a rational homomorphism as a composition of rational
homomorphisms. By Proposition 3.4, f̃ : Ṽ → W̃ is a (regular) homomorphism.
�

4. Algebraic pre-transformation spaces.

Together with the pre-groups, A. Weil ([11]) introduced also their birational
“actions” on algebraic varieties, which he referred as pre-transformation spaces.
Again, we reformulate this notion, where several irreducible components are also
allowed.

The standard axioms for the group action involve the unit of the group.
Since an algebraic pre-group may have no unit, we pass to another set of axioms,
namely to the associativity condition and the existence and uniqueness of the “left
divisions” by group elements.

Definition 4.1. Let V be an algebraic pre-group. An algebraic pre-
transformation V -space is an algebraic variety X with a rational mapping
V ×X → X , written as (v, x) 7→ vx, such that:

1. for generic (v, w, x) ∈ V × V × X , both expressions (vw)x and v(wx) are
defined and equal (generic associativity condition);

2. the mapping (v, x) 7→ (v, vx) from V × X into itself is birational (generic
existence and uniqueness of left divisions).

Remark. Condition 2) implies, in particular, that the operation (v, x) 7→ vx is
dominating.

In Lemma 3.2 we introduced the inverse mapping v 7→ v−1 . Thus, for
generic (v, x) ∈ V ×X , the expression v−1x is defined.

Lemma 4.2. The mapping (v, x) 7→ (v, v−1x) from V × X into itself is the
inverse of the operation (v, x) 7→ (v, vx).

Proof. Both mappings are birational. Therefore, it is enough to prove that
v(v−1x) = x for generic (v, x) ∈ V ×X . For generic (w, v, x) ∈ V × V ×X , one
has the following relations:

w(v(v−1x)) = (wv)(v−1x) = ((wv)v−1)x = wx. (11)

Since, for generic w ∈ V , the mapping x 7→ wx from X into itself is birational,
(11) implies the required relation v(v−1x) = x. �
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Lemma 4.3. Let V be an algebraic pre-group and X an algebraic pre-
transformation V -space. Let v ∈ V be a point of regularity. Then the mappings
w 7→ vw from V into itself and x 7→ vx from X into itself are birational.

Proof. Since V is a pre-transformation V -space with respect to the left multipli-
cation, it is sufficient to prove the birationality of the second mapping fv: x 7→ vx.
By definition of a pre-transformation V -space, the mapping fu:X → X, x 7→ ux,
is birational for generic u ∈ V . Let U ⊂ V be the open dense subset of such
elements u. We express the required mapping fv as a composition fu−1 ◦ fuv .
Since the mappings u 7→ u−1 and u 7→ uv are birational, one has u−1 ∈ U, uv ∈ U
for generic u ∈ V . By the choice of U , both fu−1 , fuv:X → X are birational for
generic u ∈ V .

By the associativity condition,

(fu−1 ◦ fuv′)(x) = u−1((uv′)x) = (u−1(uv′))x = v′x (12)

for generic (u, v′, x) ∈ V × V ×X . If (u, x) ∈ V ×X is generic, the left-hand side
is defined for v′ = v . Then the right-hand side vx = fv(x) is also defined and
fv = fu−1 ◦ fuv . This proves that fv is birational. �

Definition 4.4. Let V be an algebraic pre-group and X and Y two algebraic
pre-transformation V -spaces. A rational (resp. birational) mapping f :X → Y is
called V -equivariant if the expressions f(vx) and vf(x) are defined and equal
for generic (v, x) ∈ V ×X .

Remarks.

1. Since the mapping (v, x) 7→ vx is dominating, the expression f(vx) is defined
for generic (v, x) ∈ V ×X . The expression f(u)f(v), on the contrary, may
be nowhere defined in general.

2. Of course, if f :X → Y is birational, the second expression is also defined
for generic (v, x) ∈ V ×X . In this case the inverse mapping f−1:Y → X is
also V -equivariant.

3. If f :X → X ′, g:X ′ → X ′′ are two V -equivariant rational mappings and f
is dominating, than the composition g ◦ f :X → X ′′ is defined and is also
V -equivariant.

Similarly to algebraic pre-groups, the structure of algebraic pre-
transformation spaces can be transformed via rational mappings:

Proposition 4.5. 1. For every birational mapping f from an algebraic pre-
transformation V -space X into an algebraic variety Y there exists unique
algebraic pre-transformation V -space structure on Y , such that f :X → Y
is V -equivariant with respect to this structure.

2. For every rational homomorphism φ between two algebraic pre-groups V
and W and an algebraic pre-transformation W -space there exists unique
algebraic pre-transformation V -space structure on X , such that φ(v)x = vx
for generic (v, x) ∈ V ×X .
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This follows directly from definitions. We call such algebraic pre-
transformation V -space structures induced by f and φ respectively. For in-
stance, the regularization φ:V → Ṽ induces an algebraic pre-transformation Ṽ -
space structure.

Similarly to algebraic pre-groups, we would like to introduce regularizations
of pre-transformation V -spaces X . However, if we wish the uniqueness, it is not
sufficient to require the induced operation V ×Y → Y to be regular. For example,
let V = C∗ and X = C × C∗ , where V acts by multiplication, which is already
regular. The inclusion into Y1 = C2 and restriction to Y2 = (C∗)2 induce other
regular actions.

Therefore, we call regularizations only some special regular actions. They
should not “loose” the “good” points as in the above example with Y2 . These
“good” points will be called the points of regularity. The definition of them is
analogous to the second condition in the corresponding definition for algebraic
pre-groups (see Definition 3.8).

Definition 4.6. Let V be an algebraic pre-group and X an algebraic pre-
transformation V -space. A point x ∈ X is called a point of regularity if the
mapping x′ 7→ ux′ from X into itself is biregular at x′ = x for generic u ∈ V .

Remark. If φ:V → W is a birational homomorphism into another algebraic
pre-group W , the sets of regularity of X with respect to the actions of V and W
coincide.

Similarly to Lemma 3.9, one obtains the following

Lemma 4.7. The set of points of regularity of a pre-transformation V -space
X is an open dense subset of X .

Definition 4.8. Let V be an algebraic pre-group and X an algebraic
pre-transformation V -space. A regularization of X is an algebraic pre-
transformation V -space Y together with a V -equivariant birational mapping
ψ:X → Y , such that

1. if v ∈ V is a point of regularity, vy is defined for all y ∈ Y ;

2. if x ∈ X is a point of regularity, ψ is biregular at x.

Remark. If V is an algebraic group, it follows from condition 1) that the action
V × Y → Y on the regularization is regular.

The following is a generalization of a result of A. Weil ([11]).

Theorem 4.9.
For every algebraic pre-group V and algebraic pre-transformation V -space X ,
there exists a regularization ψ:X → X̃ .

The proof will be given in section 5.. The set of regularity is exactly the
set of points where a regularization ψ is biregular:
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Proposition 4.10. Let ψ:X → X̃ be a regularization which is biregular at
some point x ∈ X . Then x is a point of regularity.

Proof. For generic (v, x′) ∈ V ×X , the mapping x′ 7→ vx′ can be decomposed as
follows: x′ 7→ ψ(x′) 7→ vψ(x′) 7→ ψ−1(vψ(x′)). The first mapping ψ is biregular
at x′ = x by the assumption. The second one is biregular for generic v ∈ V , by
condition 1) of the definition of a regularization. Finally, the third mapping ψ−1

is biregular at vψ(x) for generic v ∈ V . Thus the required mapping x′ 7→ vx′ is
biregular at x′ = x for generic v ∈ V , as a composition of biregular mappings. �

Unfortunately, such regularizations are still not unique as the above example
with Y1 shows. To obtain the uniqueness we introduce some special regularizations
which are in some sense minimal.

Definition 4.11. A regularization ψ:X → X̃ of an algebraic pre-
transformation V -space is called minimal if there are no proper open subsets
of X̃ which are also regularizations of X with respect to the induced algebraic
pre-transformation V -space structure.

Theorem 4.12. For every algebraic pre-group V and algebraic pre-
transformation V -space X there exists a minimal regularization ψ:X → X̃ which
is unique up to isomorphisms.

Proof. Let φ:V → Ṽ be the regularization of V and ψ:X → X̃ ′ be an arbitrary
regularization of X as a Ṽ -space. Further, let U ⊂ X be the set of regularity,
where ψ is biregular. Then the image ψ(U) is open dense in X̃ ′ and the union

X̃ := Ṽ ψ(U) =
⋃

v∈Ṽ
(vψ(U))

is also open dense. Since Ṽ is an algebraic group, X̃ is also a Ṽ -regularization
and therefore a V -regularization of X .

We claim that X̃ is a minimal V -regularization. Assume that there exists
a smaller one X ′ ⊂ X̃ . By definition, it contains the image ψ(U) of the set of
regularity U . Let W ⊂ V be the set of all points of regularity. By condition 1) of
Definition 4.8, Wψ(U) ⊂ X ′ and

W 2ψ(U) := {w1φ(w2) | w1, w2 ∈ W} ⊂ X ′.

This is equivalent to
φ(W )2ψ(U) ⊂ X ′.

Since φ(W ) is open dense in the algebraic group Ṽ , one has

φ(W )2 = Ṽ .

This implies X̃ = Ṽ ψ(U) = φ(W )2ψ(U) ⊂ X ′ . Thus X̃ = X ′ and the minimality
is proven.

It remains to prove the uniqueness. Let ψi:X → X̃i , i = 1, 2 be two
minimal regularizations. Then ψ := ψ2 ◦ ψ−1

1 is a birational mapping between X̃1

and X̃2 . Since both ψ1 and ψ2 are biregular at U , ψ is biregular at ψ1(U). We
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have seen that φ(W )2ψi(U), i = 1, 2 are also regularizations which coincide with
X̃i ’s because of minimality. Since both operations on X̃1 and X̃2 are regular,
the mapping ψ extends to a biregular mapping from φ(W )2ψ1(U) = X̃1 onto
φ(W )2ψ2(U) = X̃2 by setting

ψ(φ(w1)(φ(w2)x)) = φ(w1)(φ(w2)ψ(x)).

Thus X̃1 and X̃2 are isomorphic. �
We have proven in fact the following

Corollary 4.1. Let ψ:X → X̃ be the minimal regularization. If U ⊂ X ,
W ⊂ V are the sets of regularity, one has φ(W )2ψ(U) = X̃ . If V is an algebraic
group, V ψ(U) = X̃ .

5. Construction of regularizations.

Our goal here is to prove Theorems 3.7 and 4.9. We first reduce the general
algebraic pre-groups and pre-transformation spaces to the case where all point of
them are points of regularity.

Let V be an algebraic pre-group and X an algebraic pre-transformation
V -space. Let V ′ ⊂ V and X ′ ⊂ X denote the sets of points of regularity. By
Lemmas 3.9 and 4.7, these sets are open dense. Then V ′ and X ′ can be considered
as an algebraic pre-group and an algebraic V ′ -space with respect to the induced
structures.

Proposition 5.1. All points of V ′ and X ′ are points of regularity.

Remark. The statement is essentially that the concept of points of regularity is
invariant under passing to open dense subsets.

Proof. Let x be a point from X ′ , i.e. a point of regularity of X . This means
that the mapping x′ 7→ ux′ from X into itself is biregular at x′ = x for generic
u ∈ V . We have to prove that it is also biregular there as mapping from X ′ into
itself. For this it is sufficient to show that ux ∈ X ′ , i.e. y := ux is again a point
of regularity for generic u ∈ V .

This means, by definition, that the mapping y′ 7→ vy′ from X into itself is
biregular at y′ = y for generic v ∈ V . For generic (u, v, y′) ∈ V × V × X , this
mapping can be decomposed as

y′ 7→ u−1y′ 7→ (vu)(u−1y′), (13)

which is implied by generic associativity. Since x is a point of regularity, the first
mapping is biregular at y′ = y for generic u ∈ V . By the same reason, the second
mapping x′ 7→ (vu)x′ is biregular at x′ = x. Then the composition y′ 7→ vy′ is
biregular at y′ = y .

This proves the statement for X ′ . We can apply it to the case X = V where
V “acts” by the left multiplications. Then condition 2) in Definition 3.8 is satisfied
for all v ∈ V . To prove condition 1) we decompose the mapping f ′:w 7→ wv from
V ′ into itself as i ◦ f ◦ i−1 , where f is the same mapping from V into itself and
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i:V ′ → V denotes the birational inclusion. Then f ′ is birational as a composition
of three birational mappings. Thus condition 1) is also satisfied. �

Proposition 5.1 reduces the general case to the case where all points of V
and X are points of regularity. Thus we take this case for granted in the following
Proposition and Lemmas.

Proposition 5.2. There exists an algebraic pre-transformation V -space X̃
with a V -equivariant open dense embedding ψ:X → X̃ , such that

1. the induced operation V × X̃ → X̃ is regular;

2. V ψ(X) := {vψ(x) | v ∈ V, x ∈ X} = X̃ .

For the proof we need several lemmas. Since every v ∈ V is a point of
regularity, the mapping fv:X → X is birational by Lemma 4.3.

Lemma 5.3. Let v ∈ V be arbitrary and Γ ⊂ X × X be the closed graph of
the rational mapping fv: x 7→ vx. Let (a, b) ∈ Γ be an arbitrary point. Then fv is
biregular at a and va = b.

Remark. Lemma 5.3 implies that, if X is complete, the action of V on X is
already regular.

Proof. By definition of points of regularity, the mapping w 7→ wv is
birational. By Lemma 4.3, both mappings V → V, w 7→ vw , and X → X, x 7→ vx,
are also birational. Then the mappings (t, x) 7→ (tv, x) and (t, x) 7→ (t, vx) are
birational and we can compose them with the action. Together with associativity,
this implies that the expressions (tv)x and t(vx) are defined and equal for generic
(t, x) ∈ V ×X .

By condition 2) in the definition of points of regularity, the expressions ta
and tb are defined for generic t ∈ V . Since the mapping t 7→ tv is birational, the
expression (tv)a is also defined for generic t ∈ V .

The relation t(vx) = (tv)x can be written as ty = (tv)x, where y = vx. It
is valid for generic (t, x) ∈ V × X or, equivalently, for generic (t, x, y) ∈ V × Γ.
Both sides are defined at (x, y) = (a, b) ∈ Γ as rational mappings on Γ. Since
they are equal for generic (t, x, y) ∈ V × Γ, they are also equal for (x, y) = (a, b):
tb = (tv)a.

Since, by condition 2) of the definition of points of regularity, t−1(tb) is
defined and equal to b for generic t ∈ V , one has

b = t−1((tv)a). (14)

Consider the mapping (t, v′, a′) 7→ t−1((tv′)a′). It follows by associativity, that it
is equal to (t, v′, a′) 7→ v′a′ for generic (t, v′, a′) ∈ V × V × X . But we know by
(14), that t−1((tv′)a′) is defined for v′ = v and a′ = a and is equal to b there.
Then the equal rational mapping (t, v′, a′) 7→ v′a′ is also defined for v′ = v and
a′ = a and is equal to b there. Thus fv is defined at a and va = b.

To prove that fv is biregular at a we apply the same considerations to the
relation

a = (tv)−1(tb) (15)
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which is valid for generic t ∈ V , because of relation (tv)a = tb, condition 2) of the
definition of points of regularity applied to a and the fact, that the mapping t 7→ tv
is birational. The mapping (t, v′, b′) 7→ (tv′)−1(tb′) is equal to (t, v′, b′) 7→ (v′)−1b′ .
They are defined for v = v′ , b = b′ and equal to a there. Thus fv is biregular at
a. �

Lemma 5.4. Let A, B be algebraic varieties and U ⊂ A× B an open subset
with non-empty fibres Ua := {b ∈ B | (a, b) ∈ U} 6= Ø, a ∈ A. Then there exists
a finite collection of points bi ∈ B, i ∈ I , such that, for every a ∈ A, one has
bi ∈ Ua for some i ∈ I .

Proof. Without loss of generality, A is irreducible. We prove the statement by
induction on dimension of A. If dimA = 0, the statement is obvious. Assume it
to be proven for dimA < d. Let (a0, b0) ∈ U be an arbitrary point. The set A′ of
points a ∈ A, such that b0 ∈ Ua , can be expressed as

A′ = {a ∈ A | (a, b0) ∈ U}.

This is an open subset of A. Since A is assumed to be irreducible, dim(A \A′) <
dimA = d.

Now we use induction for all irreducible components of the complement
A \ A′ . This yields a number of points bi, i ∈ I . These points together with b0

satisfy the required condition. �

Definition 5.5. Let ti ∈ V, i ∈ I be any finite collection of points. Let
tij:X → X, i, j ∈ I denote the composition of two birational mappings z 7→ tjz
and z′ 7→ t−1

i z′ . A trace of X , generated by these points, is the quotient
X̃({ti}) := (X ∪ (X × I))/ ∼, where x ∼ (y, j) (resp. (x, i) ∼ (y, j)) if the
mapping z 7→ tjz (resp. z 7→ tijz ) from X into itself is biregular at z = y and
x = tjy (resp. x = tijy ).

Warning. If the mapping tij is biregular at y , the mappings z 7→ tjz ,
z′ 7→ t−1

i z′ may not be in general biregular at corresponding points.

Lemma 5.6. The relation “∼” is an equivalence relation.

Proof. The symmetrical property has to be checked only for (x, i) and (y, j),
where x, y ∈ X, i, j ∈ I . In this case it follows from the fact that the mappings
tij and tji are inverse to each other as birational mappings.

The transitivity has to be checked for the four different cases: x ∼ (y, j) ∼
z , x ∼ (y, j) ∼ (z, k), (x, i) ∼ y ∼ (z, k), (x, i) ∼ (y, j) ∼ (z, k). Consider
birational mappings tij, ti: z 7→ tiz . The transitivity follows from the relations
tjt
−1
j = id, tjtjk = tk , t−1

i tk = tik , tijtjk = tik respectively. �

Lemma 5.7. Let V and X satisfy the conditions of Proposition 5.2. Then
the trace X̃({ti}) is an algebraic variety. The restriction ψ:X → X({ti}) of the
canonical projection X ∪ (X × I)→ X̃({ti}) is an open dense embedding.

Proof. Since the relation “∼” is an equivalence relation, the set Y := X̃({ti})
makes sense and satisfies the definition of an algebraic prevariety (see [7]). It is a
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variety, if the hausdorff property of the closedness of the diagonal ∆(Y ) ⊂ Y ×Y is
satisfied. We identify the sets X and X×{i} with their images under the canonical
projection X ∪ (X × I)→ X̃({ti}). We have the following decomposition

Y × Y = (X ×X) ∪ (
⋃
i((X × {i})×X))∪

(
⋃
j(X × (X × {j}))) ∪ (

⋃
i,j((X × {i})× (X × {j}))). (16)

The intersection of the diagonal ∆(Y ) with the sets X × X , (X × {i}) × X ,
X × (X ×{j}) and (X ×{i})× (X ×{j}) is equal to the graphs of the mappings
id, x 7→ tix, x 7→ t−1

j x, x 7→ tji respectively. By Lemma 5.3, these graphs are
closed. Thus the diagonal ∆(Y ) is closed. This proves that the trace Y is a
variety.

The variety X , considered as a subset of Y , intersects every X×{i} along
some open dense subsets Ui ⊂ X×{i} where the mappings z 7→ tiz are biregular.
This implies that the closure of X contains every X ×{i} and therefore coincides
with Y . Thus X is open dense embedded into Y . �
Proof of Proposition 5.2. We are looking for the required pre-transformation
space X̃ among the traces X̃({ti}). We prove that the induced operation V ×X̃ →
X̃ is regular for an appropriate choice of the points {tj}j∈I .

The regularity for such traces means that tx is always defined for t ∈ V, x ∈
X̃({ti}). We fix an element of X ∪ (X × I) which represents the class of x in the
quotient X̃({ti}) and denote it also by x ∈ X or by (x, i) ∈ X × I .

We wish to find some j ∈ I such that the induced operation V × X →
X × {j} (resp. V × (X × {i})→ X × {j}) is defined at (t, x) (resp. at (t, x, i)).
The induced operation can be obtained by passing to equivalent elements in X ,
applying the given operation there and passing to the equivalent elements in the
required component V × j . It is given by

(t, x) 7→ tx ∼ (t−1
j (tx), j) (17)

in the first case and by

(t, x, i) ∼ (t, tix) 7→ t(tix) ∼ (t−1
j (t(tix)), j) (18)

in the second.

The regularity follows now from the following statement:

Statement. There exists a collection of points ti ∈ V, i ∈ I , such that, for all
t, t′ ∈ V, x ∈ X , each of the expressions ((t−1

j t)t′)x and (t−1
j t)x is defined at least

for one choice of j ∈ I .

Proof of the Statement. Since, by Lemma 4.3, the mappings v 7→ vx from V
into X are rational, they are defined on open dense subsets Ux ⊂ V, x ∈ X . Then
the family U ⊂ X × V of these subsets is open dense as a set of definition of the
rational mapping (x, v) 7→ vx from X × V into X .

By the definition of points of regularity, the mappings v 7→ vt′ from V into
itself are birational and therefore defined on some open dense subsets. Moreover,
one has vt′ ∈ Ux for all v from open dense subsets U ′t′,x ⊂ V, t′ ∈ V, x ∈ X . The
family U ′ ⊂ V × X × V of these subsets is open dense as the preimage of the
family U under the rational mapping (t′, x, v) 7→ (x, vt′) from V × X × V into
X × V .
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The mappings v 7→ v−1t from V into itself are also birational and therefore
defined on some open dense subsets. Moreover, one has v−1t ∈ U ′x,t′ for all v from
open dense subsets U ′′t,t′,x ⊂ V, t, t′ ∈ V, x ∈ X . The family U ′′ ⊂ V × V ×X × V
of these subsets is open dense as the preimage of the family U ′ under the rational
mapping (t, t′, x, v) 7→ (t, t′, x, v−1t) from V × V ×X × V into V ×X × V .

We constructed an open dense family U ′′ ⊂ V × V × X × V , such that
U ′′t,t′,x ⊂ V is open dense and ((v−1t)t′)x is defined for all t, t′ ∈ V, x ∈ X . Now
we set in Lemma 5.4 A := V × V ×X , B := V , U := U ′′ . Then the conditions of
Lemma 5.4 are satisfied and we obtain a finite collection of points tj = bj ∈ V, i ∈ I
such that, for all t, t′ ∈ V, x ∈ X , the expression ((t−1

j t)t′)x is defined at least for
one j ∈ I .

By the same considerations we prove that, for all t ∈ V, x ∈ X , the
expression (t−1

j t)x is also defined at least for one j ∈ I . This finishes the proof of
the above statement.

By the construction of the trace X̃({ti}), we have the property tiX =
X × {i} for all i ∈ I . This implies the required property V X = X̃ . �
Proof of Theorem 3.7. Let V be an algebraic pre-group and V ′ the open dense
subset of all points of regularity. Then V ′ is an algebraic pre-transformation
V ′ -space, which satisfies conditions of Proposition 5.2 by Proposition 5.1. Propo-
sition 5.2 yields an open dense V ′ -equivariant embedding ψ:V ′ → Ṽ .

We wish to prove that Ṽ is the required regularization. For this we need
to show that the operation Ṽ × Ṽ → Ṽ , (v, w) 7→ vw and the inverse mapping
Ṽ → Ṽ , v 7→ v−1 are regular.

The operation is regular for v ∈ ψ(V ′) because of property 1) in Proposi-
tion 5.2. In general case, by property 2), every v ∈ Ṽ is a product of v1, v2 ∈ ψ(V ′).
By the generic associativity,

(v′1v
′
2)w′ = v′1(v′2w

′)

for generic (v′1, v
′
2, w

′). Since v1, v2 ∈ ψ(V ′), the right-hand side is regular at
(v′1, v

′
2, w

′) = (v1, v2, w). Then the left-hand side is also regular there, which means
that vw is defined.

To prove the regularity of the inverse mapping we establish the birationality
of the mapping fv:w 7→ wv from V ′ into Ṽ . Since V ′ consists of points of
regularity, fv is birational for all v ∈ ψ(V ′). Again, in general case, v = v1v2 ,
v1, v2 ∈ ψ(V ′) and, by the generic associativity,

w(v′1v
′
2) = (wv′1)v′2.

The right-hand side is equal to (fv′2 ◦fv′1)(w), which is a birational mapping in the
variable w for (v′1, v

′
2) = (v1, v2). Thus the left-hand side fv(w) is also birational.

By property 3) in Lemma 3.2, (wv)v−1 = w , i.e. v−1 = (wv)−1w for generic
(v, w) ∈ ψ(V ′). We wish to prove that v−1 is defined for all v ∈ Ṽ . Since the
operation V ′ × Ṽ → Ṽ is regular, it is enough to show that (wv)−1 is defined for
generic w ∈ ψ(V ′). We have just proven that the mapping fv:w 7→ wv from V ′

into Ṽ is birational. Then the required mapping w 7→ (wv)−1 is the composition
of fv and the inverse u 7→ u−1 , which are birational. Thus the inverse mapping is
also regular on Ṽ . �
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Proof of Theorem 4.9. Let V be an algebraic pre-group and X an algebraic
pre-transformation V -space. Let V ′ ⊂ V and X ′ ⊂ X be the open dense subsets
of regularity. By Proposition 5.1, V ′ and X ′ consists of points of regularity.
Therefore we can apply Proposition 5.2 and obtain an open dense V ′ -equivariant
embedding ψ:X → X̃ . The conclusions of Proposition 5.2 imply that this is the
required regularization. �

References

[1] H. Cartan., “Sur les groupes de transformations analytiques”,
Act. Sc. et Int., Hermann, Paris, 1935.

[2] P. Heinzner., Geometric invariant theory on stein spaces, Math. Ann.,
289:631–662, 1991.

[3] P. Heinzner and A. Ianuzzi., Integration of local actions on holomorphic
fiber spaces, Preprint Bochum, 1995.

[4] A. T. Huckleberry and D. Zaitsev, Actions of the groups of birational
automorphisms, to appear in Proc. Geom. Complex Analysis, 1995.

[5] S. Kaneyuki, On the automorphism groups of homogeneous bounded do-
mains, J. Fac. Sci. Univ. Tokyo, 14:89–130, 1967.

[6] Y. Merzlyakov, “Rational groups”, Moscow, Nauka, 1987.

[7] D. Mumford, “The red book of varieties and schemes”, Lect. Notes in
Math., 1358, Springer, 1980.

[8] R. Narasimhan, “Several complex variables”, Chicago Lectures in Mathe-
matics. Univ. of Chicago Press, 1971.

[9] M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math.,
78:401–443, 1956.

[10] S. Webster, On the mapping problem for algebraic real hypersurfaces, In-
ventiones math., 43:53–68, 1977.

[11] A. Weil, On algebraic groups of transformations, Amer. J. of Math.,
77:355–391, 1955.

[12] A. Weil, “Foundation of algebraic geometry”, Amer. Math. Soc., 1962.

[13] D. Zaitsev, On the automorphism groups of algebraic bounded domains,
Math. Ann., 302:105–129, 1995.

Fakultät für Mathematik

Ruhr-Universität Bochum

44780 Bochum

Germany

Received July 11, 1995

and in final form November 11, 1995


