Complex Reflections and Polynomial Generators of Homotopy Groups

Lucas M. Chaves and A. Rigas*

Communicated by K. Strambach

Abstract

Starting from suitable maps of the form $\psi: \mathbb{S}^{n} \rightarrow \mathrm{SU}(m)$, for large m, we obtain functions $\theta: \mathbb{S}^{n} \longrightarrow \mathrm{SU}(k)$ that generate $\pi_{n} \mathrm{SU}(k)$, for certain n and k. We have used this method in elementary algebraic topology courses for purposes of illustration, since it requires no machinery beyond the homotopy exact sequence of fibrations and provides an insight about the Bott periodicity theorems.

We begin with the natural identification

$$
\mathbb{S}^{3} \xrightarrow{\alpha} \mathrm{SU}(2), \quad \mathbb{S}^{3} \subseteq \mathbb{C}^{2}
$$

with $\alpha\binom{z}{w}=\left(\begin{array}{cc}z & -\bar{w} \\ w & \bar{z}\end{array}\right)$ representing the generator of $\pi_{3} \mathrm{SU}(2)$. Suspending it we obtain

$$
\left(\begin{array}{c}
z \\
w \\
x
\end{array}\right) \stackrel{\psi}{\mapsto}\left(\begin{array}{cc}
\alpha\binom{z}{w} & -\bar{x} I \\
x I & \left(\alpha\binom{z}{w}\right)^{*}
\end{array}\right)=\left(\begin{array}{cccc}
z & -\bar{w} & -\bar{x} & 0 \\
w & \bar{z} & 0 & -\bar{x} \\
x & 0 & \bar{z} & \bar{w} \\
0 & x & -w & z
\end{array}\right)
$$

from \mathbb{S}^{5} to $\mathrm{SU}(4)$.
Fomenko used this construction in the context of the Bott periodicity theorem ([3], vol.III, p. 271) and obtained the following result.

Theorem 1. If $f_{i-1}: \mathbb{S}^{i-1} \rightarrow \mathrm{U}(m)$ is a generator of $\pi_{i-1} U(m)$, then the map $f_{i+1}: \mathbb{S}^{i+1} \rightarrow \mathrm{SU}(2 m)$ obtained by suspension from f_{i-1} is a generator of $\pi_{i+1} \mathrm{SU}(2 m)$.

As a corollary, ψ is the generator of $\pi_{5} \mathrm{SU}(4)$.
We prove this result through elementary methods.
Observe that the first column of the matrices in the image of ψ never assumes the value $(0,0,0,1)$. The idea [5] is then to reflect the column

[^0]vectors of $\psi\left(\mathbb{S}^{5}\right)$ with respect to the plane normal to $(0,0,0,1)$ and obtain a map $\theta: \mathbb{S}^{5} \rightarrow \mathrm{SU}(3)$. We review first a few general facts about hermitian reflections: Given a hermitian space $\{V,()$,$\} and a unit vector v$ in V, we define the complex reflection of ξ at the hyperplane v^{\perp}, denoted $R_{v}: V \rightarrow V$, by $R_{v}(\xi)=\xi-2 \overline{(v, \xi)} v$. We then have
i) $R_{v}(\lambda \xi)=\lambda R_{v}(\xi)$,
ii) $R_{v}(v)=-v$,
iii) if $(v, \xi)=0$, then $R_{v}(\xi)=\xi$,
iv) $R_{v} \circ R_{v}=\mathrm{id}$, and
v) $\left(R_{v}(\xi), R_{v}(\eta)\right)=(\xi, \eta)$.

Returning to $\psi: \mathbb{S}^{5} \rightarrow \mathrm{SU}(4)$, let $x_{1}=\left(\begin{array}{l}z \\ w \\ x \\ 0\end{array}\right)$ be the first column vector of $\psi\left(\begin{array}{c}z \\ w \\ x\end{array}\right), 1 \equiv\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right)$, and $v=\frac{\sqrt{2}}{2}\left(1-x_{1}\right)$. Applying R_{v} we obtain

$$
R_{v}\left(x_{1}\right)=x_{1}-2 \overline{\left(v, x_{1}\right)} v=\left(\begin{array}{c}
z \\
w \\
x \\
0
\end{array}\right)-2 \frac{\sqrt{2}}{2}(-1) \frac{\sqrt{2}}{2}\left(\begin{array}{c}
-z \\
-w \\
-x \\
-1
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right),
$$

and for x_{2}, x_{3}, x_{4}, the respective column vectors of $\psi\left(\begin{array}{c}z \\ w \\ x\end{array}\right)$ we have
$R_{v}\left(x_{2}\right)=\left(\begin{array}{c}-\bar{w}+x z \\ \bar{z}+x w \\ x^{2} \\ 0\end{array}\right), R_{v}\left(x_{3}\right)=\left(\begin{array}{c}-\bar{x}-w z \\ -w^{2} \\ \bar{z}-w x \\ 0\end{array}\right)$, and $R_{v}\left(x_{4}\right)=\left(\begin{array}{c}z^{2} \\ -\bar{x}+z w \\ \bar{w}+z x \\ 0\end{array}\right)$.
Therefore we get the matrix

$$
\left(\begin{array}{cccc}
0 & & & \\
0 & & B & \\
0 & & & \\
1 & 0 & 0 & 0
\end{array}\right)
$$

where B is the obvious 3×3 matrix with columns $R_{v}\left(x_{2}\right), R_{v}\left(x_{3}\right)$, and $R_{v}\left(x_{4}\right)$ without the last entry which is equal to zero.

From $\operatorname{det}\left(R_{v}\right)=-1$ we get $\operatorname{det}\left(R_{v} \psi\right)=-1$. Therefore $\operatorname{det} B=1$. So B is in $\mathrm{SU}(3)$. Now we define the map $\theta: \mathbb{S}^{5} \rightarrow \mathrm{SU}(3)$ by

$$
\theta\left(\begin{array}{c}
z \\
w \\
x
\end{array}\right):=\left(\begin{array}{ccc}
-\bar{w}+x z & -\bar{x}-w z & z^{2} \\
\bar{z}+x w & -w^{2} & -\bar{x}+z w \\
x^{2} & \bar{z}-w x & \bar{w}+z x
\end{array}\right) .
$$

To emphasize the dependence of v on the point $y=\left(\begin{array}{c}z \\ w \\ x\end{array}\right)$ we write $v(y)$ and therefore have $\theta(y)=R_{v(y)} \psi(y)$.

Proposition 2. $\quad \theta$ is a generator of $\pi_{5} \mathrm{SU}(3)$.
Proof. The exact homotopy sequence of the fibration $\mathrm{SU}(2) \cdots \mathrm{SU}(3) \xrightarrow{\pi} \mathbb{S}^{5}$ yields exact sequences

$$
\begin{array}{cccccccccc}
\rightarrow & \pi_{7} \mathbb{S}^{5} & \rightarrow & \pi_{6}(\mathrm{SU}(2)) & \rightarrow & \pi_{6} \mathrm{SU}(3) & \rightarrow & \pi_{6} \mathbb{S}^{5} & \rightarrow & \pi_{5} \mathrm{SU}(2) \\
& \mathbb{Z}_{2} & \rightarrow & \mathbb{Z}_{12} & \rightarrow & \mathbb{Z}_{6} & \rightarrow & \mathbb{Z}_{2} & \xrightarrow{\rightarrow} & \mathbb{Z}_{2}
\end{array} \rightarrow
$$

Thus a generator of $\pi_{5} \mathrm{SU}(3)$ is mapped to twice a generator of $\pi_{5} \mathbb{S}^{5}$. A generator of $\pi_{5} \mathbb{S}^{5}$ is just a map $\mathbb{S}^{5} \rightarrow \mathbb{S}^{5}$ of degree one, and π is the projection on the first column. We must only note that $\pi \circ \theta: \mathbb{S}^{5} \rightarrow \mathbb{S}^{5}$ (the first column of $\theta)$ is a map of degree 2 .

As the $\mathrm{SU}(3)$ principal bundles over \mathbb{S}^{6} are classified by $\pi_{5} \mathrm{SU}(3)$, one can ask which of these bundles is defined by θ.

Corollary 3. $\quad \theta$ defines the bundle $\mathrm{SU}(3) \cdots G_{2} \rightarrow \mathbb{S}^{6}$, where G_{2} is the exceptional compact Lie group of the automorphisms of the algebra of Cayley numbers.
Proof. We conclude this immediately from the exact homotopy sequence of the fibration, observing that $\pi_{6} G_{2} \cong \mathbb{Z}_{3}, \pi_{5} \mathrm{SU}(3) \cong \mathbb{Z}$, and $\pi_{5} G_{2}=0$ [4].

An elementary, geometrically direct way of obtaining $\pi_{6}\left(G_{2}\right) \cong \mathbb{Z}_{3}$ is described in [2]. As a consequence of Corollary 3 we can construct G_{2} from two copies of $D^{6} \times \mathrm{SU}(3)$ by glueing along the common boundary using θ (see [6], p. 62).

Using $\mathbb{Z} \cong \pi_{5} \mathrm{SU}(3) \cong \pi_{5} \mathrm{SU}(4) \cong \pi_{5} \mathrm{U}(4)$ one can show as an easy exercise that the maps $\theta, \psi: \mathbb{S}^{5} \rightarrow \mathrm{SU}(4)$ are homotopic. We thus obtain a simple explicitly described generator of $\pi_{5} \mathrm{SU}(4)$ as follows from Theorem 1. The same construction can be used to find an explicit generator of $\pi_{7} \mathrm{SU}(4) \cong \mathbb{Z}$ (see [1]). For this purpose one performs another suspension of ψ getting a map $\gamma: \mathbb{S}^{7} \rightarrow \mathrm{SU}(8)$, and by four consecutive reflections $\mathrm{SU}(8) \rightarrow \mathrm{SU}(7) \rightarrow \mathrm{SU}(6) \rightarrow$ $\mathrm{SU}(5) \rightarrow \mathrm{SU}(4)$ we obtain a generator η of $\pi_{7} \mathrm{SU}(4)$. In this case we have

where η_{1} is a map of degree 6 that is no longer polynomial. This calculation follows the same elementary steps defined above, but η_{1} is not particularly simple.

References

[1] Chaves, L. M., "Results in the Geometry of Bundles," Ph. D. Thesis, Unicamp, January 1992 (in Portuguese).
[2] Chaves, L. M., and A. Rigas, On a conjugate orbit of G_{2}, Math. Jour. Okayama Univ., 33 (1991), 155-161.
[3] Doubrovine, B., S. Novikov, and A. Fomenko, "Géométrie Contemporaine," $3^{\text {me }}$ partie, MIR, Moscou, 1987.
[4] Mimura, M., The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6 (1967), 131-176.
[5] Hacon, D., "Lecture," Encontro de Topologia, Unicamp, 1991,.
[6] Husemoller D., "Fiber bundles," (2 ${ }^{\text {nd }}$ Ed.), Springer Verlag Berlin etc., 1975.

Universidade Federal de Lavras
Cx. Postal 37
37.200-000 Lavras, MG, Brasil

Instituto de Matemática
Universidade Estadual de Campinas Cx. Postal 6065
13.081-970 Campinas, SP, Brasil

[^0]: * Research partially supported by CNPq grant n° 521067/94-4

