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Abstract. A real semisimple Lie algebra g admits a Cartan involution,
6, for which the corresponding eigenspace decomposition g=t+p has the
property that all operators ad X, Xe&p are diagonalizable over R. We call
such elements hyperbolic, and the elements Xet are elliptic in the sense
that ad X is semisimple with purely imaginary eigenvalues. The pairs (g,0)
are examples of symmetric Lie algebras, i.e., Lie algebras endowed with
an involutive automorphism, such that the —1-eigenspace of 6 contains
only hyperbolic elements. Let (g,7) be a symmetric Lie algebra and g=
h+q the corresponding eigenspace decomposition for 7. The existence of
“enough” hyperbolic elements in q is important for the structural analysis
of symmetric Lie algebras in terms of root decompositions with respect to
abelian subspaces of ( consisting of hyperbolic elements. We study the
convexity properties of the action of Inng(h) on the space q. The key role
will be played by those invariant convex subsets of q whose interior points
are hyperbolic.

Introduction

It was a fundamental observation of Cartan’s that each real semisimple Lie alge-
bra g admits an involutive automorphism, nowadays called Cartan involution, 6
for which the corresponding eigenspace decomposition g = £+p has the property
that all operators ad X, X € p are diagonalizable over R, we call such elements
hyperbolic, and the elements X € £ are elliptic in the sense that ad X is semisim-
ple with purely imaginary eigenvalues. In this sense the Cartan involutions are
the basic tool to separate hyperbolic from elliptic elements and this is why they
play such a crucial role in the structure and representation theory of semisimple
real groups. The pairs (g,6) are examples of symmetric Lie algebras, i.e., Lie
algebras endowed with an involutive automorphism, such that the —1-eigenspace
of 6 contains only hyperbolic elements. It even can be shown that, up to adding
central factors, this property characterizes the Cartan involutions.

Let (g,7) be a symmetric Lie algebra and g = h + q the corresponding
eigenspace decomposition for 7. The existence of “enough” hyperbolic elements
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in g is important in many contexts. For Cartan decompositions it is crucial for
the restricted root decomposition of semisimple real Lie algebras, and hence for
the whole structure theory of these algebras. There are other important classes
of symmetric Lie algebras where the set quy, of the hyperbolic elements in q still
has interior points but is different from all of q. If (g, 7) is a non-compactly causal
symmetric (NCC) Lie algebra in the sense of [8], then g contains open convex
cones which are invariant under the group Inng(h) of inner automorphisms of g
generated by e*d" and which consist entirely of hyperbolic elements. In the last
years this class of reductive symmetric Lie algebras and the associated symmetric
spaces has become a topic of very active research spreading in more and more
areas. For a survey of the state of the art we refer to [8] and the literature cited
there.

On the other hand there have been attempts to push this theory further
to symmetric Lie algebras which are not necessarily semisimple or reductive. The
simplest type (called the complex type) is where g = h¢ is a complexification and
T is complex conjugation. Among these symmetric Lie algebras those for which
b contains an open invariant convex cone W consisting of elliptic elements play
a crucuial role (cf. [14], [17], [18]). Then ¢W C q = ih is an open cone consisting
of hyperbolic elements so that, in the special case of reductive Lie algebras, we
obtains on the one hand the non-compactly causal spaces of complex type and,
if we allow W = §, also the Riemannian symmetric spaces coming from Cartan
involutions of complex symmetric Lie algebras. For the associated symmetric
spaces of complex type and the reductive spaces mentioned above one nowadays
has a quite well developed picture of the harmonic analysis (holomorphic rep-
resentations: [15], [16]; spherical functions [2], [6]; Hardy spaces [9], [12]) and
the invariant complex analysis (invariant Stein domains and plurisubharmonic
functions [18]).

The next step in this program is to pass from Lie algebras of complex
type (bc,7) to the general case. The main problem one has to face here is to
find the appropriate class of symmetric Lie algebras which is general enough to
encorporate all the cases mentioned above such as the mixed complex type case,
the non-compactly causal spaces, and also the Riemannian symmetric spaces.
Our main objective in this paper is to describe and develop the structure theory
and convex geometry of such a class of symmetric Lie algebras. We have tried to
keep the exposition as self-contained as possible. As far as the structure theory
of symmetric spaces is concerned we use not much more than [3] for well known
facts on the structure of Riemannian symmetric spaces.

We now give a short overview over the contents of this paper:

Section I starts with a collection of structural results concerning Levi
decompositions and Cartan decompositions which are invariant under some com-
pact group of automorphisms. Then we introduce the basic notions concerning
symmetric Lie algebras (g, 7).

The key notions in our structural analysis of symmetric Lie algebras
are those of hyperbolic and elliptic elements. Looking for large subspaces of
hyperbolic elements, we are led to the notion of a maximal abelian subspace of g
consisting of hyperbolic elements (always denoted a) and a maximal hyperbolic
Lie triple system p of q, i.e., [p,[p,p]] C p. One has similar notions for elliptic



KROTZ AND NEEB 71

replaced by hyperbolic. The main results of Section II are Theorem II.8 and
Corollary I1.9 stating that maximal elliptic and hyperbolic Lie triple systems
are always conjugate under the group Inng(h) = (1Y) acting naturally on
q. From that Lie algebraic result one easily deduces that all maximal compact
subspaces of a symmetric space which contain a given point are conjugate under
the isotropy group of this point. This generalizes the well known theorem that
all maximal compact subgroups of a connected Lie group are conjugate under
inner automorphisms.

In Section IIT we turn to a closer study of hyperbolic elements and
their orbits under the group Inng(h). We show that all maximal hyperbolic
abelian subspaces a of q are conjugate under Inng(h) and deduce that the
set qnyp of hyperbolic elements in q has non-empty interior if and only if a
is maximal abelian in q (Theorem III.3). These observations imply in particular
that qunyp = Inng(h).a, ie., that each hyperbolic element is conjugate to an
element in a. Now the question arises how the orbit Ox of such an element X
intersects a. The surprisingly simple answer to this question is given in Theorem
IT1.10 saying that for X € a the orbit Ox intersects a in the orbit of X under
the Weyl group of a maximal hyperbolic Lie triple system p containing a. This
result is obtained by showing that the Weyl group of a is not bigger than the
Weyl group of the Riemannian symmetric Lie algebra generated by p.

We have seen in Section III that the size of the set gy is related to the
subspaces a in the sense that it has interior points if and only if a is maximal
abelian in ¢q. From now on we always assume this. In Section IV we consider the
root decomposition of the Lie algebra g with respect to a subspace a. It turns
out that each root vector Z generates an at most three dimensional 7-invariant
subalgebra:

(R) The Riemannian type, where g(Z) = s[(2,R) endowed with the Cartan
involution. This is the type which exclusively occurs for Riemannian
symmetric Lie algebras.

(SR) The semi-Riemannian type, where g(Z) = sl(2,R) endowed with the
involution corresponding to h = so(1,1).

(A) The abelian type, where g(Z) = R2.

(N) The nilpotent type, where g(Z) is isomorphic to the three dimensional
Heisenberg algebra.

In semisimple symmetric Lie algebras only the first three types occur and
the occurence of (N) is a “solvable” phenomenon. It is quite illuminating that the
type of the test algebra g(Z) is, up to the distinction between type (A) and (N),
characterized by the sign of the quadratic form r,(Z) :=tr (ad Zad7(Z)) (cf.
Proposition IV.7). We conclude Section IV with the discussion of some examples
which display the different types of behaviour that can occur.

Section V is dedicated to a discussion of a class of symmetric Lie algebras
that we call quasihermitian and which are characterized by the property that for
a maximal hyperbolic Lie triple system p the centralizer of its center in q is not
bigger than p.

In Section VI we come to the subject proper of this paper, the convexity
properties of the action of Inng(h) on the space q. The key role will be played by
those invariant convex subsets of q whose interior points are hyperbolic. We call
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such invariant convex sets hyperbolic. The main point of this section is that the
existence of hyperbolic invariant convex sets has significant consequences for the
structure of the symmetric Lie algebra (g, 7). In particular we show that this
implies that (g,7) is quasihermitian, and, whenever pointed cones with these
properties exist, also that it has strong cone potential (cf. Definition V.1(g)).

Having already dealt with the quasihermitian Lie algebras in Section
V, we turn to the Lie algebras with (strong) cone potential in Section VII. We
show that it imposes quite restrictive conditions on the structure of the root
decomposition of g. The most crucial results are the Short String Theorem
(Theorem VII.18) and its consequences. We also describe a method to construct
interesting examples of mixed symmetric Lie algebras having all of the properties
mentioned above. A Lie algebra which displays many features of the theory is the
symmetric Jacobi algebra g = b,, x sp(n,R), where b,, is a (2n+ 1)-dimensional
Heisenberg algebra, sp(n,R) acts naturally on it, and both are endowed with
compatible involutions turning g into a quasihermitian symmetric Lie algebra
with strong cone potential (cf. Example VII.17).

For many applications concerning analysis on symmetric spaces and in
particular phenomena related to analytic continuation aspects it is important to
understand quite well the embedding of the symmetric Lie algebra g into its
complexification g¢ which is endowed with the antilinear extension 7 of 7. This
corresponds to an embedding q — q := q + ih = ig®, where g¢ = b + iq is
the dual symmetric Lie algebra. We call gc, resp. q, the canonical extension
of g, resp. q. The Inheritage Theorem (Theorem VIII.1) states that whenever
a symmetric Lie algebra (g, 7) is quasihermitian and the centralizer 34(a) of a
in h is compactly embedded, then (gc,7) is also quasihermitian. This result is
a rather important tool because it makes many results that have been proved
for the special case of symmetric Lie algebras where 7 is complex conjugation
available in the general context. In the remainder of Section VIII we apply
this method to derive convexity theorems which describe the (convex hull of)
projections of hyperbolic orbits in q onto a along the complementary subspace
[a,b].

Section IX is almost entirely devoted to the characterization of those
symmetric Lie algebras for which there exists an open convex invariant cone in
dhyp- In this case there always exists finitely many maximal cones W2 having
this property. The main difficulty is to show that the interior of the cone Wi,
consists of hyperbolic elements which is not at all evident from the definition.

In Section X we finally use the aforementioned convexity theorems to
obtain a characterization of invariant subsets of q whose interior consists of
hyperbolic elements by their intersections with a. These results can in particular
be used to obtain a classification of the invariant hyperbolic cones in q by
their intersections with a. From this characterization we derive a particularly
interesting result saying that in the natural setup all invariant hyperbolic convex
subsets C' C g can be extended to invariant convex hyperbolic subsets C C q
satisfying cn g = C. We expect that these results have many applications in
the further investigation of related Hardy spaces, spherical functions, invariant
plurisubharmonic functions, Stein domains, and representations on spaces of
holomorphic functions.
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List of symbols

maximal abelian hyperbolic subspace in q (Definition 1.7(b))
maximal abelian hyperbolic subspace in q extending a
coroot of & € A (Definition V.1(e))

representing element of o € A in a (Proposition IV.7(iv),(v))
lower bounded linear functionals on C' (Definition VI.2(a))
maximal cone in a (Definition V.1(d))

minimal cone in a (Definition V.1(d))

minimal semisimple cone in a (Definition V.1(d))

minimal central cone in a (Definition V.1(d))

root system of g with respect to a (Theorem IV.1)

root system of gc with respect to a

system of positive roots in A

coroots of A (Definition V.1(e))

compact roots in A (Definition V.1(a))

non-compact roots in A (Definition V.1(a))

non-compact semisimple roots in A (Definition V.1(a))
solvable roots in A (Definition IV.4)

semisimple roots in A (Definition IV.4)

finite dimensional real symmetric Lie algebra (Definition 1.6(a))
=bh+iq (c-dual of g)

root space associated to the root @ € A (Theorem IV.1)
1-eigenspace of 7 (Definition 1.6(a))

= g° (1-eigenspace of 7)

edge of C' (Definition VI.2(b))

group of inner automorphisms of g generated by ed?, where b C g
Cartan-Killing form of g

= k(-,7(+)) (Proposition IV.7(vi))

limit cone of C' (Definition VI.2(b))

maximal nilpotent ideal in g

normalizer of ¢ in b

normalizer of ¢ in B C Aut(g)

—1-eigenspace of 7 (Definition 1.6(a))

=1ig° (—1-eigenspace of 7)

maximal hyperbolic Lie triple system in g (Definition 1.7(c))
maximal hyperbolic Lie triple system in g

elliptic elements in q (Definiton 1.7(a))

hyperbolic elements in ¢ (Definition 1.7(a))
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v radical of g
t® solvable part of g* (Definition IV.4)
Levi-complement in g
semisimple part of g* (Definition IV .4)
compactly embedded Cartan subalgebra of g¢ (Proposition VII.10)
Cartan-involution of s
Cartan subalgebra of h° (Proposition VII.10)
complex antilinear extension of 7 to gc¢
Weyl group of (g, 7,a) (Definition II1.9)

W Weyl group of (gc, 7, a)

Whax maximal hyperbolic cone in q (Chapter IX)

™
'S 9 e Do

Wiax maximal hyperbolic cone in g (Chapter X)
3(b) =36(b) (center of b)

36(c) centralizer of ¢ in b

Zp(c) centralizer of ¢ in B C Aut(g)

Conventions: Subscripts denote intesections, for instance ry = tMNq etc. and
for a subspace b C g we write b%: = 35(a) and denote by by, the subalgebra of g
generated by b.

I. Preliminaries on symmetric Lie algebras

Invariant Levi complements

We start with some information that will be crucial to obtain suitable Levi
decompositions of Lie groups.

Lemma 1.1. Let V be a finite dimensional vector space over a field K with
charK = 0 and G C GI(V') an algebraic subgroup such that V is a semisimple
G -module. Then G is reductive.

Proof. According to the Levi decomposition G = G, x L, where L is reductive
([10, Th. VIIL4.3]), we only have to show that the unipotent radical G, is
reduced to {1}. Since V is a direct sum of simple modules, it suffices to show
that G, acts trivially on simple modules.

So let U C V be a simple submodule and put W := {v € U: (Vg €
Gu)g.v = v}. Then W is non-zero if V' is non-zero because G, is unipotent.
Moreover W is invariant under G because G, is normal. Hence W = U and
the proof is complete. [ ]

Proposition 1.2.  Let g be a finite dimensional Lie algebra over the field K
with charK = 0. Let A C Aut(g) be a subgroup such that g is a semisimple
A-module. Then there exists an A-invariant Levi complement in g.

Proof. First we recall the Levi decomposition G = G,, x L of the algebraic
group G = Aut(g), where G, is the unipotent radical and L is a reductive
subgroup. By passing to the Zariski closure of A, we may w.l.o.g. assume that A
is algebraic. Then A is a reductive subgroup of G (Lemma I.1), hence conjugate
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to a subgroup of L ([10, Th. VIII.4.3]) and we therefore may assume that A C L.
So it suffices to find an L-invariant Levi complement.

Let s C g be a fixed Levi complement. Then g is a semisimple ads-
module. Hence ads C der(g) is conjugate to a subalgebra of [ := L(L) and we
may w.l.o.g. assume that ads C .

The subalgebra ad g C der(g) is an L-invariant ideal. Hence (adg) N
is an L-invariant ideal in [ containing ads. We conclude that (adg) N[ is a
reductive subalgebra of ad g. Since ads is a Levi complement in ad g, it follows
that ads = [(adg) NI, (adg) N[]. Thus ads is also an L-invariant ideal of [.
Now ad '(ads) = s + 3 must be L-invariant. Therefore s = [s + 3,5 + 3] is
L-invariant. |

We obtain the following result as a corollary (cf. [11, App. 9.4]):

Corollary 1.3.  If g is a real Lie algebra and K C Aut(g) a compact group of
automorphisms of g, then there exists a K -invariant Levi complement. ]

Corollary 1.4. If 7 is an involutive automorphism of the Lie algebra g over
a field of characteristic 0. Then there exists a T-invariant Levi complement. ®

Invariant Cartan decompositions

Proposition 1.5.  Let g be a semisimple real Lie algebra and U C Aut(g) a
compact subgroup. Then the following assertions hold:
(i) There exists a U -invariant Cartan decomposition g =€+ p. The corre-
sponding Cartan involution 6 commutes with U .
(11) If 0 and 0" are two Cartan involutions commuting with U, then there

exists X € g with 0(X) = —X and [X,Ad(U)] = {0} such that §' =
ead X fe— ad X )
(iii) For each involutive automorphism T of g there exists a Cartan involution
0 commuting with 7. If 6" is another Cartan involution commuting with
T, then there exists X € g with (X) = —X and 7(X) = X such that
9 = eange—adX ]
Proof. (i) Let g = ¢+ p be a Cartan decomposition of g and 6 the cor-
responding Cartan involution. Then Aut(g) = Aut(g)’e®d? is a Cartan de-
composition of the real Lie group Aut(g) which is semisimple and, since it is
an algebraic group over R, it has at most finitely many connected components.
Now M = Aut(g)/ Aut(g)? is the associated Riemannian symmetric space which
in turn can be identified with the set of all Cartan decomposition of g. In view
of [3, Th. VI.2.1], the group U has a fixed point in M , hence commutes with a
Cartan involution and therefore leaves the corresponding Cartan decomposition
invariant.
(ii) In view of (i), we may w.l.o.g. assume that U C Aut(g)?. Then the set
of all Cartan involutions commuting with U can be written as e*1%.0, where
a={X €p:(Vy € U)y.X = X}. This proves the assertion.
(iii) This is a special case of (i) and (ii). u
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Symmetric Lie algebras

Definition I.6.  (a) A symmetric Lie algebra is a pair (g,7), where 7 is an
involutive automorphism of g. A symmetric Lie group is defined analogously.
Note that if (G, 7) is a symmetric Lie group, then (g, dr(1)) is a symmetric Lie
algebra. If H C G7 is an open subgroup, then G/H is called a symmetric space
associated to the symmetric Lie algebra (g, 7).

If (g,7) is a symmetric Lie algebra, then we write

h=g"={Xegr(X)=X} and q={Xegr(X)=-X}

and note that g = h+q is a direct vector space decomposition. For a 7-invariant
subspace b C g we will always write by := bNbh and by := bNq, so that we have
b="byDby.
(b) For each symmetric Lie algebra (g,7) the subspace g¢ := b + iq of the
complexification g¢ is also a symmetric Lie algebra with respect to the involution
obtained by restricting the complex linear extension of 7.
(¢) A symmetric Lie algebra (g, 7) is called effective if h does not contain any
non-zero ideal of g. Note that h = [q, q] does not imply that (g, 7) is effective
because ([h,h] + ih, o), where b is a two-step nilpotent Lie algebra and o is
complex conjugation provides a counterexample.
(d) A symmetric Lie algebra (g,7) is said to be irreducible if each non-zero
T-invariant ideal of g coincides with g.

Note that this implies in particular that (g,7) is effective. Since a =
ap +aq — a® := ay + ia4 defines a one-to-one correspondence between the 7-
invariant ideals of g and g°, we see that (g, 7) is irreducible if and only if (g, 7)
is irreducible.

There are three basic types of irreducible symmetric Lie algebras. If
g is not semisimple, then it must be abelian, and therefore g = q = R. If
g is semisimple, then either g is simple or g = h & b, where b is simple and

7(X,Y) = (Y, X). .

Definition I.7.  Let (g, 7) be a symmetric Lie algebra with the corresponding
decomposition g = +q.

(a) An element X € g is called hyperbolic if ad X is diagonalizable over R. We
write qnyp for the set of all hyperbolic elements in q. An element X € g is
called elliptic if ad X is semisimple with purely imaginary spectrum. We write
gen for the set of elliptic elements in q. We note that if g¢ = h + iq is the dual
symmetric Lie algebra, then iqny, = (iq)en and vice versa.

(b) An abelian subspace a C q is called mazimal hyperbolic abelian, resp.,
mazimal elliptic abelian if a consists of hyperbolic, resp., elliptic elements and is
maximal with respect to this property.

(c) A subspace a C q is called a Lie triple system if [a, [a,a]] C a. Note that this
means that the space ay := a + [a, a] is a subalgebra of g. A Lie triple system



KROTZ AND NEEB 77

a C q will be called hyperbolic, resp., elliptic if it consists of hyperbolic, resp.,
elliptic elements.

(d) For a subalgebra a of a Lie algebra g we write Inng(a) := (e?d?) for the
group of inner automorphisms of g generated by e,

(e) A subalgebra a of a Lie algebra g is said to be compactly embedded if a
consists of elliptic elements which is equivalent to the condition that the closure
of Inng(a) is compact (cf. [4, 2.6]).

(f) A compactly embedded Cartan subalgebra t of g is a compactly embedded
subalgebra which in addition is maximal abelian. Note that this implies in
particular that t is self-normalizing, hence a Cartan subalgebra of g. A toral
Cartan subalgebra is a subalgebra consisting of hyperbolic elements which in
addition is maximal abelian. |

The following lemma clarifies the meaning of the effectiveness assumption
for a symmetric Lie algebra (g, 7).

Lemma 1.8. The largest ideal of g contained in b coincides with the kernel of
the representation adq of b on q.

Proof. Let j € b denote the largest ideal of g contained in h. Then
,q) Cing € hng = {0}. On the other hand kerad, C h is an ideal of b
with [q, keradg] = {0}. Therefore ker ad, is an ideal of g. n

The following observation will be of crucial use in the remainder of this
paper.

Lemma 1.9. (i) If a,b C q are hyperbolic (elliptic) subspaces with [a,b] = {0},
then a + b is hyperbolic (elliptic).
(ii) Let s be a semisimple Lie algebra and p:s — End(V) a finite dimensional
representation. Then the following assertions hold:
(a) For each Cartan involution 6 of s there exists a scalar product on V
such that p(6.X) = —p(X)" for all X € 5.
(b) If X € s is hyperbolic or elliptic, then the same holds for p(X).

Proof. (i) In view of the duality of g and g, it suffices to prove the assertion
for the hyperbolic case, where we have to show that for X € a and Y € b
the sum is hyperbolic. But this follows from the fact that two diagonalizable
operators that commute can be diagonalized simultaneously.

(ii) We may w.l.o.g. assume that V is a complex s-module, so that we obtain
an extension of p to a representation of the complexification sc.

(a) If s = s¢ @ 5, is the Cartan decomposition corresponding to the Cartan
involution €, then u := s¢+1is, is a compact real form of sc. Now Weyl’s unitary
trick shows that there exists a scalar product on V' for which the operators in
p(u) are skew-Hermitian. Then the operators in p(s¢) are skew-symmetric and
those in p(s,) are symmetric. This proves (a).

(b) Since X € s¢ is hyperbolic if and only if iX is elliptic, it suffices to prove
that p(X) is elliptic whenever X € sc is so. Let X € s¢ be elliptic. Then X is
contained in a maximal compactly embedded subalgebra u C s¢ which therefore
is a compact real form, i.e., s¢ = u+ u is a Cartan decomposition. Therefore
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(a) applies and we see that, with respect to a certain scalar product on V', the
operators in p(u) are skew-Hermitian, hence elliptic. |

o~

Lemma 1.10. If (g,7) = (hc,0), where o is complex conjugation, then g°
h b, where 7(X,Y) = (Y, X).

Proof.  We identify gc = (hc)c with C ®r hc = C ®r g. We claim that
gc = be @ be, where he denotes the Lie algebra he endowed with the opposite
complex structure. In fact, we define two mappings

neihbe —ge, X — (1@ X +i®iX).
Then

e (X), (V)] = 10X +i9iX,10Y +i®iY]

(1®[X,Y]+i®iX,Y]+i®iX,Y] -1®[iX,iY])
(1®[X,Y]+i®iX,Y]) =n+(X,Y])

(T[N

shows that the mappings 71 are Lie algebra homomorphisms. It is clear that
both are injective and that their images intersect in {0}. Moreover,

(X)) =510 X+i®iX,10Y —i®iY]

(1®[X,Y]-i®iX,Y]+i®iX,Y]+1[iX,iY]) = 0.

D= N[

Hence
gc =1 (be) ®ny(he) = be ® be

because 74 is complex antilinear and 7n_ is complex linear. It is clear that
in this representation the complex conjugation oy with respect to g acts by
04(X,Y) = (Y, X), the complex linear extension 7 of the involution 7 on h¢ by
7(X,Y) = (.Y, 7.X), and the complex conjugation ¢ = 7 0oy with respect to
g¢ by o(X,Y) = (7.X,7.Y). The fixed point set of this involution is

g ={(X,)Y): XY ebh} =bhaDb,

and the corresponding involution maps (X,Y) to (Y, X). u

I1I. Maximal elliptic and hyperbolic Lie triple systems

In this section we will show that maximal elliptic and hyperbolic Lie triple
systems are conjugate under the group Inng(h). From that we will conclude in
particular that all maximal compact symmetric subspaces of a general symmetric
space which contain a given point x are conjugate under the stabilizer of z.

In the following we call a symmetric Lie algebra (g,7) non-compactly
Riemannian if g is reductive, 3(g) C q, and 7|4 4 is a Cartan involution.
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Proposition I1.1.  If q consists of hyperbolic elements and b = [q,q|, then
(g,7) is non-compactly Riemannian.

Proof. First we recall that [g,t] is a nilpotent ideal of g which implies that

[g,t]Ng = [g,¢] Naqnyp < 3(9).

Let g = v+ s be a 7-invariant Levi decomposition (Corollary 1.4). Then
q=1tq+5q. Let X €tqy. Then

(ad X)*.q Ctq N [g,¢] C 3(g)

implies that (ad X)3.q = {0} and therefore that (ad X)* = 0. Since ad X
is semisimple, it follows that ad X = 0, i.e., that X € 3(g). Now we have
h=1[q,q9] = [tq + Sq,tq + Sq] = [54,5¢] C s and therefore v = v, C 3(g). This
means that g is reductive and that s is the commutator algebra of g.

Let 0 be a Cartan-involution of s commuting with 7 and s = £+ p the
corresponding Cartan decomposition. Then the fact that q consists of hyperbolic
elements means that ¢ = pNq, and finally b = [q, q] shows that (g,7) is in fact
a Riemannian symmetric Lie algebra. |

Corollary I1.2.  If q consists of elliptic elements and h = [q,q], then g is a
compact Lie algebra and 3(g) C q.

Proof. Let g := b + ¢q denote the dual symmetric Lie algebra. Then g°¢
satisfies the assumptions of Proposition II.1, hence is Riemannian symmetric.
We write g¢ = 3(g°) @ s¢, where s° is the commutator algebra. Then ¢ =
sy + 65 = €9+ p° is a Cartan decomposition of ¢ and hence

g =13(g°) ® (£ +ip°)
is a compact Lie algebra. [ ]

Corollary I1.3. If a C q is an elliptic Lie triple system, then the subalgebra
arp, = a+ [a,a] is compactly embedded in g.

Proof.  First we use Corollary I1.2 to see that ay is a compact Lie algebra
with 3(az) C a. Then the fact that [ar,ar] is compact and semisimple implies
that it is compactly embedded, hence that ar = 3(ar) @ [ar,ar] is compactly
embedded. |

Next we will show that maximal elliptic Lie triple systems in q are
conjugate under the group Inng(f). The proof will be by induction over the
dimension of g. Therefore we first collect some preparatory lemmas.

Lemma I1.4. If h = [q,q], v is the radical of g, g/t is a compact Lie algebra
and a C q is a maximal elliptic Lie triple system, then the commutator algebra
of ar is a Levi complement in g.

Proof. First we choose a Levi complement s C g which is simultaneously
invariant under 7 and aj. Such a Levi complement exists because the group



80 KROTZ AND NEEB

(exdeL 7y C Aut(g) has compact closure (Corollary I1.3). Then the normalizer
ng(s) of s in g is a subalgebra of g which contains s as an ideal, hence ng(s) =
n.(s) & s, because [n.(s),s] CrNs = {0}. Now ar C ny(s) follows from our
construction of s. Let p:ng(s) — n.(s) denote the canonical projection and note
that this is a homomorphism of Lie algebras which commutes with 7 because the
invariance of s and v implies the invariance of n.(s) under 7. Let X € ay. Then
0= [p(X), X —p(X)] = [p(X), X] implies that p(X) = X+ (p(X)—X) is elliptic
because X —p(X) € s is elliptic. Therefore p(ay) is a subalgebra of the solvable
Lie algebra n.(s) consisting of elliptic elements, hence abelian. Now p(ar) ®s is
compactly embedded and contains ay,, so that the maximality of a implies that
a = sq @ a, is adapted to the decomposition of ng(s). Finally h = [q,q] and
the surjectivity of the quotient homomorphism g — s yields [a, a] = [s4,54] = sp
which in turn implies that s = [ar, az]. u

Lemma I1.5. Let (g,7) be a symmetric Lie algebra such that g = v+ ¢, where
v is a T-invariant abelian ideal and € is T-invariant and compactly embedded.
Then two maximal elliptic Lie triple system in q are conjugate under Inng(h).

Proof. Since £ is compactly embedded, g is a semisimple €-module and
therefore g = 34(¢) @ [¢, g], where [t,g] = [¢,0] + [¢,¢] = [g,g] follows from
[b,0] = {0}. Thus 34(¢) is a subalgebra complementary to [g,g] and therefore
central, i.e., 34(8) = 3(g). So g decomposes as a direct sum of the ideals
g = 3(g) @ [g,9]. Since both ideals are 7T-invariant, the projections of £ and
v on [g, g still satisfy the assumptions of the lemma, and the assertion is trivial
for abelian Lie algebras, it suffices to prove the assertion under the additional
assumption that g = [g, g] and 34(¢) = {0}.

Since €N v is a compactly embedded subalgebra which is contained in
a nilpotent ideal, it must be central and therefore trivial. Thus g =v x £ is a
semidirect sum. Let G'= v x K denote a simply connected group corresponding
to g and G = G x {1,7}. Then the natural affine action of G on v defined by

(v,k).x :=kx+wv

together with the restriction of 7 to v defines an action of G on v by affine
mappings.

Let a € g be a maximal elliptic Lie triple system and a; C g the
correspondmg Lie algebra which is compactly embedded (Corollary I1.3). Let
£ D ¢ be maximal compactly embedded. Then £ =e@(knNv) and ENo C 3(g) = {0}
follows as above. Thus ¢ = € and ¢ is maximal compactly embedded in g.
Therefore ay is conjugate to a subalgebra of ¢ (cf. [4, 2.6]). From that we
conclude that the closure U of the image of exp(ar) x {1,7} in Aff(v) is a
compact group. Therefore U has a fixed point x € v. Then 7(x) = z implies
x € vy and moreover

(—2,0)U(z,0).0 = {0}

entails that e~ 247 .a; C ¢, hence that e~ 24% g = t; by maximality of a. This
proves that any maximal elliptic Lie triple system in q is conjugate to £; and
therefore that two maximal elliptic Lie triple system are conjugate under e*d%» m
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Proposition 11.6.  Let
aCpCq and aCaCpcCy,

where p C q 15 a maximal hyperbolic Lie triple system, a C p is maximal abelian,
q C q is a Lie triple system, p C q is maximal hyperbolic with respect to qr,, and
a is maximal abelian in p. Then the following assertions hold:

(i) If p S p, then [pr,pr] = [pL,pr].

(i) a = (an3(p) & (an [p,[p,p]]). where anj(p) = 5(p) N anyp and
an [p,[p,p]] is mazimal abelian in [p, [p,p]] .
The same assertions hold with “elliptic” instead of “hyperbolic”.

Proof.  If (i) and (ii) hold, then the same assertions for elliptic Lie triple
systems follow by applying (i) and (ii) to the dual symmetric Lie algebra g°.
(i) Let s := [pr,pr] = [p,p] + [p,[p,p]] denote the commutator algebra in p,
which is a semisimple Lie algebra invariant under 7 (Proposition II.1). Then
pr =3 @5, where 3 = 3(p) denotes the center of p.

Let p:p — 3 denote the projection along s,. For X € p we then have
X = X, + X, according to the above decomposition. Now X is contained in the
semisimple Lie algebra s, where it is hyperbolic, hence is hyperbolic in g (Lemma
1.9(i)(b)). Therefore X, = X — X is hyperbolic because [X, X| = [X,, X;] = 0.
This proves that p(p)+p is a hyperbolic Lie triple system so that p(p) C p follows
from the maximality of p, whence p = (pN3)® (pNs).

Next the hyperbolicity of (a N 3j) @ s, and the maximality of p yield
p=(pN3) ®sq. Hence p C p + 3 and therefore [p,p] = [p,p] as well as
b, (o )] = [5. . 5]]. This proves (i)

(ii) Since a C p, the maximality of a and a similar argument as in (i) show that
p(a) C a, hence that a = (aN3) ® (aNs). The maximality of a further implies
that aMNs is maximal abelian in the semisimple hyperbolic Lie triple system s, .
Furthermore 3N quyp is a vector space containing a, so that a = 3N quyp follows
from the maximality of a. ]

In the following we write x(X,Y) = tr(ad X adY") for the Cartan-Killing
form of g.

Lemma I1.7. Let (g,7) be a semisimple symmetric Lie algebra. Then the
following assertions hold:

(i) If V C q is an b-invariant subspace and V+ = {X € q: (VY €
V)k(X,Y) =0} is the orthogonal space with respect to the Cartan-Killing form,
then [V,V+] = {0}. Moreover, if the restriction of k to V is non-degenerate,
then Vi is an ideal of g.

(ii) If (g, 7) is irreducible and q is not irreducible as an b-module, then
the following assertions hold:

(a) q splits into two irreducible components q = q+t @®q~ such that 0(q") =

q~ holds for any Cartan involution 6 commuting with T .

(b) The submodules q* are isotropic for the Cartan-Killing form and abelian

subalgebras of g.

(c) The subalgebras b+ qF of g are mazimal parabolic.
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Proof.  First we claim that the Cartan-Killing form is non-degenerate on b
and q. In fact, we choose a Cartan involution # commuting with 7 (Proposition
[.5). Then h and q are O-invariant subspaces of g. If £ C g is #-invariant and
E = ET@E~ is the 0-eigenspace decomposition, then the invariance of x under
0 implies that E* and E~ are orthogonal. Moreover, s is negative definite on
E™T and positive definite on E~, hence « is non-degenerate on E. This applies
in particular to h and q.

(i) We have

KV, V] D) = w(VE [V, B]) C (VS V) = {0},

Since the restriction of x to b is non-degenerate, we conclude that [V, V+] = {0}.
It follows in particular that Vi is an h-invariant subalgebra of g satisfying
[VL, V1] = {0}. If the restriction of x to V is non-degenerate, then q = VoV,
showing that [q, V7] C V1, hence that Vi, is an ideal.

(ii) (a), (b): If V C q is an irreducible h-submodule which is not isotropic, then
the restriction of the Cartan-Killing form x to V is non-degenerate and so (i)
implies that V7 is a 7-invariant ideal of g. Hence the irreducibility of (g, 7)
yields q¢ = V. This contradiction shows that each irreducible submodule of q
must be isotropic. Moreover, if g7 is such a submodule, the subspace q* +6(q™")
is a non-degenerate h-submodule, hence coincides with q. To complete the proof,
we only have to note that (q*)* = q* follows from the fact that q* is isotropic
and of half the dimension of ¢.

(¢) In view of (b), we have

[q",97]Ch, [a",b)Cq" and [q7,q"] = {0}.

Therefore g is a nilpotent q*-module and the subalgebra b := b + q* is not
reductive in g. Since it is a maximal subalgebra, it must be parabolic (cf. [1,
Ch. 8, §10, Cor. 1 de Th. 2]). ]

Theorem I1.8.  Any two maximal elliptic Lie triple systems in q are conjugate
under Inng(h).

Proof. We prove the assertion by induction over the dimension of g. If
dim g = 0, then the assertion is trivial.

Suppose that dimg > 0. First we assume that g is semisimple. In
addition, we may assume that b = [q,q] because q;, = q + [q, q] is an ideal of g
which is complemented by an ideal contained in h (Lemma I1.7(i)). Hence an
element X € q is elliptic in g if and only if it is elliptic in qp,.

Let ¢, € q be a maximal elliptic Lie triple system. Then (¢,;)z is a
compactly embedded subalgebra (Corollary 11.3). Let U := (e?dt 7) C Aut(g).
Then U is a compact subgroup and Proposition I.5 implies that there exists a
Cartan involution 6 of g commuting with U. This means that 6 commutes with
7 and that (¢;); C ¢, where g = £+p is the corresponding Cartan decomposition
of g. Now the maximality of €, implies that &, = €Nq. Let (&) C q denote the
orthogonal subspace with respect to the Cartan-Killing form. Then (’éq)L = Pq
and therefore h = [q, q] implies that

(2.1) b =8 + [Eq, Eq] + [Pq, Pa] = (Eq) + [(Eq)L7 (Eq)L]~
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This means that £ and therefore 6 can be reconstructed from ¢, via (2.1). Now
the fact that two Cartan involutions commuting with 7 are conjugate under the
group Inng(h) (Proposition 1.5(iii)) implies that two maximal elliptic Lie triple
systems in q are conjugate under Inng(h).

Now we turn to the general case. If g is not semisimple, then the radical
t of g is non-zero, hence the maximal nilpotent ideal n of g is non-zero and
therefore its center 3, is also non-zero. The ideals v, n and 3, of g are invariant
under each automorphism of g, hence in particular under 7. Let g1 := g/3, and
71 the involution induced by 7 on the quotient algebra g;. We write m:g — g1
for the quotient morphism. Then

m(h) =b1 and 7(q)=q1.

Let £ b C q be maximal elliptic Lie triple systems. Then the subspaces
m(€) and 7(b) of q; are elliptic Lie triple systems, hence contained in maximal
elliptic Lie triple systems £; and by of q;. In view of our induction hypothesis,
there exists h; € Inng, (h1) with hi.8; = b;.

The surjective homomorphism 7: g — g; induces a surjective homomor-
phism ¢:Inng — Inng; defined by

moy=gq(y)om

for v € Inng and we conclude from 7 o7 =71 o7 that ¢(Inng(h)) = Inng(hy).
Hence there exists h € Inng(h) with gq(h) = h;.

Let €:=71(¢;)Ng and b := 7~ (b;) Ng and note that these spaces are
Lie triple systems. Then m(h.t) = hy.b; = by = 7r(b) and hence h.t =b. After
replacing ¢ by h.t we may therefore assume that E=b.

We note that the fact that 7 intertwines 7 and 7 implies that T(E) I3
Let ¥ D ¢ be a maximal elliptic Lie triple system in E with respect to t - Then
the fact that €, is an abelian extension of the compact Lie algebra (€1)r implies
that €5, is compact modulo its radical. Therefore Lemma IL.4 shows that [¢], )]
is a Levi complement in EL. Moreover, the fact that €, is a compact Lie algebra
implies that [¢},¥,] = [tL, €] because the elliptic version of Proposition II.6(i)
applies with q:=p :=¥.

Let v :=3, HEL = (kerm) ﬂEL. Then v is an abelian ideal of EL which is
invariant under 7. Now 7([¢r,¢.]) = 7([br,br]) is the unique Levi subalgebra
of (¢1)r. Therefore [br,bz] C v+ [tr,€.]. In view of Lemma IL.5, we may
w.l.o.g. assume that [¢r,€.] =[br,by]. Then 3(¢) and 3(b) are contained in the
T-invariant solvable subalgebra ¢ := 5%«L([{3 L,€r]) of g. The Lie algebra ¢ is an
abelian extension of the abelian algebra 3(€;), hence solvable. Let €, resp., by
be Cartan subalgebras of ¢ containing 3(¢), resp., 3(b) (cf. [1, Ch. 7]). Then
there exists Z € [c,¢] with e?dZ.gy = by (cf. [1, Ch. 7]). The fact that m(c) is
abelian implies that [c,¢] C 3, and in particular that (ad Z)? =0 for Z € [c,].
Let Z = Zy + Z4 according to the 7-eigenspace decomposition of 3, and note
that

17 5(6) = (1 +ad Zy, +ad Z4).3(¢) C hp C 34(b).
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For X € 3(¢) and Y € b we therefore have

0=[e*7.X,Y] = [X+[Zy, X],Y] +[[Z4, X], Y]

J/ J/

€h €q

So both summands have to vanish and consequently e2dZv 3(€) C 3,(b). Now b+
e 2o 3(8) = b+ €24y £ ist an elliptic Lie triple subsystem of q and maximality
implies that b = €24 %v £. This proves that £ and b are conjugate under Inng(h).

]

Corollary I1.9.  Two maximal hyperbolic Lie triple systems in q are conjugate
under Inng(h).

Proof. This follows by applying Theorem II.8 to the dual symmetric Lie
algebra g¢ = b+ iq. [ ]

Let G/H be a symmetric space associated to the symmetric Lie algebra
(g,7) and (G, T) a corresponding connected symmetric group. The ezponential
function of G/H is defined by

Exp:q — G/H, X — exp(X)H.

An important consequence of the conjugacy of the maximal elliptic Lie
triple systems in q is the conjugacy of the maximal compact symmetric subspaces
of an associated symmetric space G/H which will follow from the following
auxiliary proposition.

Proposition I1.10.  If G/H is a symmetric space associated to the symmetric
Lie algebra (g,7) and q consists of elliptic elements, then

{X € q: Exp(RX) is compact }

1s a Lie triple subsystem of q.

Proof.  Since the analytic subgroup of G generated by exp(q+|[q, q]) still acts
transitively on G/H, we may w.l.o.g. assume that h = [q,q]. If q is elliptic,
then Corollary II.2 says that g is a reductive Lie algebra and q = 3(g) + £,
where ¢ = [g, g] is the semisimple compact commutator algebra. Let t C 3 be
the Lie algebra of a maximal torus 7" in Z(G). Then Exp(t+¢;) C G/H is
compact and for X € q the conditions X € t+ £; and the relative compactness
of Exp(RX) are equivalent. Now the assertion follows from the fact that t+ £,
is a Lie triple system. [ ]

Theorem I1.11.  If G/H is a symmetric space associated to the symmetric Lie
algebra (g,7) and €,b C q are maximal Lie triple systems with the property that
Exp(¢) and Exp(b) are compact subsets of G/H , then there exists h € Inng(h)
with h.t = b. If, in addition, q is elliptic, then € =0.

Proof. We may w.l.o.g. assume that h = [q,q]. Then £ and b are elliptic Lie
triple systems because the quadratic representation ¢: G/H — G, gH ~ g7(g) ™!
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maps the compact sets Expt, resp. Expb, onto exp(t), resp. exp(b), and we
see that both are compact subsets of G. Therefore Theorem I1.8 implies that we
may w.l.o.g. assume that ¢ is elliptic. Then Proposition 11.10 shows that

¢ :={X € q: Exp(RX) is compact }

is a Lie triple system in q which contains ¢ and b. Therefore ¢ = ¢ = b by
maximality. This proves the second assertion and therefore also the first one. m

ITI. Hyperbolic elements and their orbits

In this section we turn to the study of the set quny, of hyperbolic elements
in q. First we will investigate the interior of the set quny, and derive useful
characterizations of the elements in its interior. From that we will conclude that
this set has interior points if and only if q contains maximal hyperbolic abelian
subspaces which are in addition maximal abelian, and this will pave the way to
the root decompositions which will be discussed in Section IV.

Lemma IIL.1. Let X € quyp, V C q be a subspace containing X , and
U:Inng(h) xV —q, (h,v)— h.o.
Then dV(h, X) is surjective if and only if
3q(X) €V + X, b].

Proof. We have
d¥(h, X).(d\p(1).ad Z,Y) = h.[Z, X]+ h.Y = h.([Z,X]+Y).

Therefore the linear mapping dW¥(h, X): T (Inng(h)) x V' — q is surjective if
and only if [X,h] +V = q. Since g is a semisimple RX-module, we have
g=[X, 9] ®34(X) and hence that q = [X, ] + 34(X). Therefore [X,h]+V =g
is equivalent to 34(X) C V + [X, b]. u

Proposition IIL.2.  For X € quny, the following are equivalent:

(1) X € int Jhyp -

(2) 3q(X) is a hyperbolic Lie triple system.
Proof. (1) “=7 (2): From 34(X) = qN34(X) and the fact that 34(X) is
a subalgebra of g, it follows that 34(X) is a Lie triple system. Suppose that
X € intqnyp and let Y € 34(X). Then there exists a t > 0 with X +tY € quyp.
Now [X, X +tY]| = 0 implies that tY = (tY + X) — X is hyperbolic, hence that
Y is hyperbolic. This proves that 34(X) is a hyperbolic Lie triple system.
(2) “=7 (1): First we note that Lemma III.1 implies that for

U:Inng(h) x 34(X) —q, (h,v)— ho

the differential d¥(1, X) is surjective. Therefore the implicit function theorem
implies that X = ¥(1, X) € int ¥(Inng(h),34(X)) C int qnyp. u
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Theorem 111.3.  Let g = h+q be a symmetric Lie algebra. Then the following
assertions hold:

(i) All maximal hyperbolic abelian subspaces a C q are conjugate under
Inng(h).

(ii) If a C q is mazimal hyperbolic abelian, then quyp, = Inng(h).a.

(iii) int qnyp # O if and only if a is mazimal abelian in q.
Proof. (i) Let a,b C g be maximal hyperbolic abelian subspaces and @, resp.,
b maximal hyperbolic Lie triple systems in q containing a, resp., b. Then a and
b are conjugate under Inng(h) (Corollary I1.9), hence we may w.l.o.g. assume
that @ =b. Then a and b are nothing but maximal abelian subspaces of a.

According to Proposition I1.1, ar, is a Riemannian symmetric Lie algebra
with 3(EL) C g. Therefore the conjugacy of a and b follows from [3, Lemma
V.6.3].
(ii) Let X € qnyp and a C q be maximal hyperbolic abelian with X € a. Then
we use (i) to find h € Inng(h) with h.a = a. Then h.X € a and therefore

dhyp = Inng(h).a.
(iii) We consider the mapping

U:Inng(h) xa —gq, (h,Y)—hY.

Then Lemma III.1 shows that the linear mapping d¥(h, Yy): T}, (Inng(h)) xa — q
is surjective if and only if 34(Yo) C a + [Yp,h]. Since q = [Yo, h] @ 34(Y0), this
holds if and only if a = 34(Y0).

If a is not maximal abelian in q, then 34(Yp) is always strictly bigger
than a. Therefore Sard’s Theorem implies that the image qunyp, of ¥ contains
no interior points.

If, conversely, a is maximal abelian, then 34(a) = a and there exists
Yy € a such that a = 34(a) = 34(Yp). Then Proposition II1.2 shows that
Yy € int qnyp and therefore that the latter set is non-empty. ]

Lemma II1.4. Let p C q be maximal hyperbolic Lie triple system and a C p
mazimal abelian. Then a is a maximal hyperbolic abelian subspace of q.

Proof. Let @ O a be maximal hyperbolic abelian and p O @ a maximal
hyperbolic Lie triple system. Then there exists h € Inng(h) with hp = p
(Corollary 11.9). Hence h.a is a maximal abelian subspace of p. Now the
fact that the symmetric Lie algebra p; is Riemannian entails that all maximal
abelian subspaces of p have the same dimension (cf. [3, Lemma V.6.3]). Therefore
dima = dima implies a = a, i.e., that a is maximal hyperbolic abelian in q. =

Since we know at this point that all maximal hyperbolic abelian sub-
spaces of q are conjugate, the following specific constructions of maximal hy-
perbolic Lie triple systems give some important additional information on the
location of maximal hyperbolic Lie triple systems with respect to certain nice
Levi decompositions.

Proposition III.5. Let v denote the radical of g and v = vy + 14 its 7-
eigenspace decomposition. Let a. C tq be a subspace which is mazimal with
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respect to the property of being abelian and hyperbolic with respect to g and
s C g a Levi complement which is invariant under 7 and a.. Then the following
assertions hold:

(i) For any mazimal hyperbolic abelian subspace a5 C sq the space a :=
a. @ as s maximal hyperbolic.

(ii) For any maximal hyperbolic abelian subspace a C q the intersection
a Nt s mazimal hyperbolic in tq with respect to g. All these subspaces are
conjugate under Inng(h).

(iii) [a.,s] = {0}.

(iv) If 0 is a Cartan involution of s commuting with T|s and s = s¢ @ s,
the corresponding Cartan decomposition, then p = a. & (sp)q s a mazimal
hyperbolic Lie triple system in q. Moreover a C p is mazximal abelian if and
only if a = a, @ ag, where as C (sp)q s mazimal abelian.

(v) The correspondence in (iv) sets up a one-to-one correspondence be-
tween Cartan involutions on the ideal (sq)r, of s commuting with T and mazimal
hyperbolic Lie triple systems in q containing a. .

(vi) If n is the nilradical of g, then ty C 3¢, (a) +1ny.

(
Proof. (i) First we note that g = 34(ac) + [ar, g] C 34(ac) + v implies that
3g(ay) contains a Levi complement of g. Since 34(a.) is in addition 7-invariant,
we find a 7-invariant Levi complement s C 34(a.) (Corollary 1.4). We pick
a maximal hyperbolic abelian subspace a; C s, and set a := a; + a;. Since
both summands commute, this subspace is hyperbolic. Let @ 2 a be maximal
hyperbolic abelian and write 7m: g — s = g/t for the canonical projection. Then
m(a) C s4 is hyperbolic and because it contains as, we even see that a; = 7 (a).
Thus a C v+ a, and therefore a = (tNa) + a;. Then vNa is hyperbolic in ¢,
and therefore vt N a = a, follows from the maximality of a.. This proves that
a=a,i.e., ais maximal hyperbolic abelian in ¢.
(ii) These two assertions follow from (i) and the fact that all maximal hyperbolic
abelian subspaces are conjugate under Inng(h) (Theorem III.3(i)).
(iii) If s C g is an a,-invariant Levi complement, then [a.,s] CtNs = {0}.
(iv) Since a, commutes with s, it is clear that p is a hyperbolic Lie triple system.
To see that it is maximal, let p O p be a hyperbolic Lie triple system. First we
note that the elements in (s¢), are elliptic, so that (s,)q is maximal hyperbolic
in s,. Hence projecting p along t, into s, shows that p C tq + (sp)q and thus

p=(PNtg) @ (8p)g-

Since the hyperbolic Lie triple system pNt, is contained in a solvable Lie algebra,
it is abelian (cf. Proposition II.1), and so the maximality of a, gives pNty = a,.
This shows that p = p, i.e., that p is maximal.

For the second part of the assertion we first observe that a. C 3(p), so
that any maximal abelian subspace a of p contains a,. Now the assertion is
immediate.

(v) We only have to show that p determines the Cartan involution on (sq)r,
uniquely. The subalgebra p¢ := i(p Ns) + [p,p] of s = 55 + is, is compactly
embedded, so that Proposition 1.5 implies the existence of a Cartan involution ]
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of §° commuting with 7 such that i(pNs) C s; and therefore i(pNs) C isy Nsg.
Then

sp = (55 N5y) @ (5qNisy) and s, = (55 N 5,) O (5q N isy)

defines a Cartan involution of s with pNs C 54N s,. In view of the maximality
of p, this implies that

p=a:®(sp)q
Then (sg)q =54 N (pNs)L and

[Sq:8q] N 56 = [(8p) g, (8p)q] + [(5)q: (5e)4]

shows that p determines the Cartan decomposition of (s4)z uniquely.

(vi) Since t is a semisimple a-module, we have t = 3.(a) @ [a,t]. From the
invariance of this decomposition under 7 we further conclude that vy = 3, (a) ®
[a,tq]. Hence the assertion follows from [a,t] C [g,t] C n. u

In the following we simply write b® instead of 3,(a) for the centralizer
of a in the subspace b of g.

Lemma II1.6. For a maximal hyperbolic Lie triple system p C q and a maxi-
mal abelian subspace a C p we have

Niang (6) (@) = Niang ([p,p)) () Tnng (5°)

and
Z1ing (9)(8) = Zinng ([p.p)) (@) Inng (5°).

Proof. First we note that, in view of Proposition III.5 and the conjugacy
of all maximal hyperbolic Lie triple systems, there exists a maximal hyperbolic
abelian subspace a. C t, with respect to g, a 7-a.-invariant Levi decomposition
g =t x s, and a Cartan decomposition s = s¢ @ s, which is invariant under 7
such that p =a, @ (54 Nsyp).

We first show that

(31) thg(h)(a) = Nlnng(sh)(a) Inng(tg).

The inclusion “27 is obvious. For the converse let h € Ny, (5)(a). In view of
b =ty + sy = ny + 1) + 55 (Proposition ITL5(vi)), we can write h as h = snz,
where s € Inng(sy), n € Inng(ny) and z € Inng(x]).

We denote the projection onto s along t by ps:g — s. Since pg(r.Y) =
Y, holds for every Y € a and r € Inng(r), we see that s € Niyy (s,)(0s) C
Nlnn,(s) (@) because [ar,s] = {0}. Hence n € Ny, (n,)(a). The nilpotency of

the subalgebra ny implies the existence of an element Y € ny with n = erdY

and further the nilpotency of adY entails that adY = loge®?Y preserves a.

Now we use the semisimplicity of the a-module g to see that

ng(a) = 3g(a)
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because any a-submodule m of ng(a) complementary to 34(a) satisfies [a,m] C
anm = {0}. This proves that Y € vj. Hence h € sInng(ty), which establishes
(3.1).

Next we show that

(3.2) Niung (s) (@) = Niang ((p,p)) (@) Inng (s).

Let 55 = £, @ py the Cartan decomposition according to 6 |5, . Applying [21,
Lemma 1.1.3.7] with respect to 6, we see that

0
(3:3) Ninng (s, (@) = NIHHB(Eh)(a)eadph'

Since (pNs)z, = (pNs)P[p, p] is an ideal of the reductive subalgebra £, (s4Msy) =
by @ (pNs) (cf. Lemma I1.7(1)), it follows in particular that [p,p] is an ideal of
&y so that & = [p,p] @ [p, p]", where [p,p]" C 3¢, (p) C €. We conclude that

(34) ]\[Inng (Eh)(a) = NInng([p,pD(a> Inng (Eg)

Hence (3.2) follows from (3.3), and (3.4).
Combining (3.1) and (3.2) implies the first statement of the lemma. The
second assertion is immediate from the first one. |

Proposition 111.7.  Two mazximal hyperbolic Lie triple systems in q contain-
ing a mazimal hyperbolic abelian subspace a are conjugate under Inng(h).

Proof. Let p and p’ be maximal hyperbolic Lie triple systems containing
a. Let v € Inng(h) such that ~.p’ = p (Corollary 11.8). Then a and v.a are
maximal abelian subspaces in p, hence conjugate under Inng([p,p]) (Theorem
[I.3). Thus we may assume that v.a = a, i.e., ¥ € Ny, (p)(a).

Now Lemma II1.6 applies and yields v = o7, where o € Inng([p, p]) and
n € Inng(h®). Obviously o stabilizes p and therefore n.p’ = p, which proves the
proposition. [

For symmetric Lie algebras of the type (hc,o), where o is complex
conjugation, we call these of complex type, Proposition II1.7 can be used to obtain
a new proof of the following results which plays a crucial role for Lie algebras
with compactly embedded Cartan subalgebras (cf. [4, 3.13]).

Corollary III.S8. Let g be a Lie algebra with compactly embedded Cartan
subalgebra t. Then t is contained in a unique maximal compactly embedded
subalgebra €. Moreover, it is a mazximal hyperbolic Lie triple system in ig for
the symmetric Lie algebra (gc, o), where o denotes complex conjugation.

Proof.  We consider the symmetric Lie algebra (gc,o) with o complex con-
jugation. Then a := it is a maximal hyperbolic abelian subspace in q = ig. If
£ D t is a maximal compactly embedded subalgebra, then p := ¢ is a hyperbolic
Lie triple system in g containing a. We claim that p is maximal.

To see this, we only have show that one maximal hyperbolic Lie triple
systems p’ in g the subspace ip’ of g is a subalgebra. Then the conjugacy result
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in Corollary II.8 implies that this holds for all maximal hyperbolic Lie triple
systems. So observe that a, :=i(tNt) is a maximal hyperbolic abelian subspace
in ¢t with respect to gc because, according to Theorem IIL.3, all compactly
embedded Cartan subalgebras of g are conjugate. Let gc = v¢c X s¢ be an a,-
o-invariant Levi decomposition, i.e., t¢c and sc are complexifications of v and s
for a Levi decomposition g =t x s of g. We know from Proposition II1.5 how
to construct from this data a maximal hyperbolic subspace of g by taking

= ac @ ((sc)p Nis),

where s¢ = (s¢)e® (sc)p is a Cartan decomposition, i.e., u:= (s¢)e is a compact
real form of sc and (sc), = iu. Hence p’ = a. @ i(uNs) implies that ip’ is a
subalgebra of g and therefore p = ¢ is maximal.

Now the assertion follows from h° =t C £ and Proposition IIL.7. [ ]

Definition II1.9. We define the Weyl group W of (g,7,a) by

W= NInng(b)(a>/ZInng(b)(a>

and recall from Lemma III1.6 that

W= NIHHB([)G,P])(a)/ZInng([ppr(a)

holds for any maximal hyperbolic Lie triple system p containing a. This shows in
particular that W is isomorphic to the Weyl group of the Riemannian symmetric
Lie algebra pr and that W is trivial whenever g is solvable. |

Next we apply the information we have on the normalizer of a maxi-
mal hyperbolic abelian subspace to get a nice description of the intersection of
Inng(h)-orbits in qny, with a (cf. also Theorem III.3).

Theorem II1.10. Let p be a maximal hyperbolic Lie triple system in q, a C p
mazimal abelian, and X € a. Then the orbit Ox = Inng(h).X intersects a in
an orbit of the Weyl group W.

Proof. Let g¥ = kerad X denote the centralizer of X in g and note that
this subalgebra is 7-invariant and contains a. Let p* := 3,(X) and p D p¥
be a maximal hyperbolic Lie triple system in g~ := 3q(X) with respect to qx.
Then Proposition 11.6(ii) applied with § = g% yields

(3:5) a=(an3() @ @n[p,[p,pl]) and anz(p)=3(p) N auyp,

where an [p, [p,p]] is maximal abelian in [p, [p, p]] .

Now let h € Inng(h) with h.X € a. Then b := h™lia C 34(X) is a
hyperbolic subspace. Hence there exists h; € <eadhx> with h1.6 C p (Corollary
I1.9). Since hhl_l.X = h.X, we may therefore w.l.o.g. assume that b C p. Now
(3.5) applies to b as well and asserts that

bN3(p) = 3(P) Nanyp = aN3(p).
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Let ap := an3(p), put a; := an [p,[p,p]], and note that this is a maximal
abelian subspace in [ﬁ, [p, ﬁ]} . Defining by similarly, we obtain

a=apDm and b=ag® by,

where b, is also maximal abelian in [p, [p,p]]. Next we use [3, Lemma V.6.3] to
find hy € explp, p] with hs.b; = a;. Replacing h by hh;l, we may now w.l.o.g.
assume that h.a = a. So we have shown that

OX Na= NInng(b)(a).X.
Finally we use Lemma III.6 to obtain
OX na= Nlnng([p’p])(a) Inng(bo).X = NInng([p’p])(a).X =W.X. |

For later reference we also record the following lemma.

Lemma II1.11. Let (g,7) be a symmetric Lie algebra, j C g a T-invariant
ideal, and m:g — g1:= g/j the quotient map. Write by := w(b) for a subspace
b C g. Then 7 induces a symmetric structure 71 on g1 and the eigenspace
decomposition of g1 w.r.t. 71 s given by g1 = b1 D q1. Moreover, if p C q is
a maximal hyperbolic Lie triple system and a C p is mazimal abelian in p and
q, then p1 is a maximal hyperbolic Lie triple system in q1, and ay is mazximal
abelian in p; and q; .

Proof. The existence of 71 and the corresponding decomposition g; = b1 & q;
is trivial.

Writing q as q = a @ [a, h], we see that q; = a3 @ [a1, h1] and therefore
that a; is maximal abelian in q; because g; is a semisimple a;-module. The
same argument proves that a; is maximal abelian in p; .

Therefore it only remains to show that p; is a maximal hyperbolic Lie
triple system. For that we may w.l.o.g. assume that p = a, @ ps is constructed
as in Proposition I11.5(iv) (cf. Theorem I11.3), where s is a 7-a-invariant Levi
complement, s = s; © s, is a Cartan decomposition of s commuting with 7,
and ps = (Sp)q. Then the ideal j decomposes as j = (jNt) x (jNs) (cf
[1, Ch. 1, §6, no. 8, Cor. 4]) and j N s is invariant under 6 because ideals of
semisimple Lie algebras are invariant under Cartan involutions. Choosing a
complementary ideal sy for jNs in s, we see that 51 = (s¢)1 @ (8p)1 is a Cartan
decomposition of s; invariant under 7, and that (ps)1 = m(ps) = (8p)1 N (54)1-
Since p1 = (a¢)1 @ (ps)1, in view of Proposition IIL.5(iv), it suffices to show
that (a.); is maximal hyperbolic abelian in v with respect to g;. Since a; is
a maximal hyperbolic abelian subspace of q; and (a.); = t1 N ay, this follows
from Proposition IT1.5(ii). [ |

Example IT1.12. Let h be a 2-step nilpotent Lie algebra and (g, 7) := (hc,0),
where o denotes complex conjugation. Then a = i3(h) is a maximal hyperbolic
abelian subspace in q = ¢h which is not at the same time maximal abelian
in q. The image of a in g/3(g) is {0} but since g/3(g) is abelian, it is not
maximally hyperbolic in q. This shows that the additional assumption that a is
also maximal abelian in q is crucial in Lemma ITI.11. |
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IV. Root decompositions

In this section (g,7) denotes a symmetric Lie algebra. Here we analyze the
root decomposition of g with respect to an abelian hyperbolic subspace a of g
which is, in addition, maximal abelian in q. The latter condition is important to
ensure that a is big enough so that the corresponding root decomposition carries
significant information on the structure of the whole Lie algebra.

Theorem IV.1. Let a C q be a maximal hyperbolic abelian subspace which is
mazimal abelian in q. For a linear functional o € a* we set

g¥ ={Xeg:(VWWeaY,X]=al)X}

and
A= A(g,a) = {aea” \ {0} : g% # {0}}.

Then the following assertions hold:

() 8 =3g(a) ®Docas”

(i) 7(g%) =97

(iii) Let aw # 0, Z € g, and write g(Z) = span{Z,7(Z),[Z,7(Z)]} for
the T-invariant subalgebra of g generated by Z. Then [Z,7(Z)] € a, h(Z) =
R(Z + T(X)) is one-dimensional, and there are four possibilities:

(SR) «a([Z,7(Z)]) > 0. Then g(Z) = sl(2,R), h(Z) = so(1,1) and q(Z) is
neither elliptic nor hyperbolic. The pair (g(Z), f)(Z)) 1s semi-Riemann-
ian.

(R) a([Z,7(Z)]) < 0. Then g(Z) = sl(2,R), h(Z) = s0(2,R) and q(Z) is
hyperbolic. The pair (g(Z), F)(Z)) is Riemannian.

(N) a([Z,7(2)]) = 0 and [Z,7(Z)] # 0. Then g(Z) is isomorphic to
the three-dimensional Heisenberg algebra, and for every E € a with
a(FE) # 0 the algebra g(Z, E) := g(Z)xRE is a four dimensional solvable
symmetric Lie algebra.

(A) [Z,7(Z)] =0. Then g(Z) = R? and for every E € a with a(E) # {0}
the algebra g(Z,FE) = g(Z) x RE is a three dimensional solvable Lie
algebra.

Proof. (i) The algebra ada C gl(g) is abelian and consists of diagonalizable
elements. Hence this set permits a simultaneous diagonalization. This proves

().

(ii) For £ € a and Z € g* we have
(B, 7(Z)] = 7([7(E), Z]) = —a(E)7(Z).

Therefore 7(Z) € g=.
(112 Let Hz := [Z,7(Z)]. Then, in view of (ii), Hz € [g%, g~ %] C g° = 34(a)
T(Hz) =7([2,7(2)]) = [7(2), Z] = —Hz
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it follows that Hy € 34(a) Nq = a. After rescaling Z, we may w.l.o.g. assume
that a(Hz) € {2,0,—-2}.
(SR) If a([Z,7(Z)]) > 0, then a(Hz) = 2 so that

[Hy, Z| =2Z, [Hyz,7(Z)]=-27(Z), Hz=|Z,7(Z)]

implies that g(Z) = s(2,R), where h(Z) = R(Z+7(Z)) corresponds to so(1,1).
(R) If «([Z,7(Z)]) <0, then a(Hz) = —2 so that

[Hz, Z] = =27, [Hz,7(Z)|=27(Z), Hz=1Z,7(Z)]

implies that g(Z) = sl(2,R), where h(

(N) If a([Z,7(Z)]) = 0 and [Z,7(Z)

Hy; = [Z,7(Z)] implies that g( ) =

algebra.

(A)If [Z,7(Z)] =0, then g(Z) = R?.
The remaining assertions are easy consequence of these computations. m

Z) =R(Z+7(Z)) corresponds to s0(2).
] # 0, then Hy is central in g(Z) and
b1, the three dimensional Heisenberg

Definition IV.2. In the preceding theorem we have seen that for an element
Z € g® there are four possibilities. In the following we will say that Z is of semi-
Riemannian type (SR), Riemannian type (R), nilpotent type (N), and abelian type
(A), whenever the corresponding case in Theorem IV.1 occurs. |

Before we turn to the structure of the root decomposition we discuss
some basic examples.

Example IV.3. (a) Let g = go ® go where gg is a Lie algebra and 7 is given
by 7(X,Y) = (Y, X). Then we get

h={(X,X): X €go} and q={(X,~X):X €go}

We observe that an element (X,—X) € q is hyperbolic if and only if X is a
hyperbolic element of the Lie algebra gg. Therefore there exists a hyperbolic
subspace a C q which is maximal abelian in ¢ if and only if gy possesses a
Cartan subalgebra ap consisting of hyperbolic elements, i.e., if gy has a toral
Cartan subalgebra. If gg is semisimple, this means that gg is a normal real form
of its complexification.

Applying Theorem III.3 to this situation, we see that all maximal abelian
hyperbolic subspaces of a Lie algebra go are conjugate under inner automor-
phisms and in particular that two toral Cartan subalgebras are conjugate when-
ever such Cartan subalgebras exist.

Let a9 C go be a toral Cartan subalgebra. Then the subspace a =
{(X,—X): X €ap} is hyperbolic and maximal abelian in q. If Ag:= A(ag, go)
is the root system of gg with respect to ag, then the root spaces for a are given
by

8% = (g° % {0}) @ ({0} x 85°°), a0 € Ao,

where a(X, —X) = ao(X) is the corresponding root. Let Z = (Z,,, Z_qa,) € g°.
Then

2,7(2)) = ((Zag: Z-ao)s =[Zag: Z-a0])  and  a([Z,7(2)]) = ao([Zag, Z-ao))-
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Suppose that gg is semisimple with Cartan involution 6 satisfying ag C

p. Then Theorem IV.1 implies that ag([Za,,0(Za,)]) < 0. Thus, putting
Z o, =0o0r Z_,, = +0(Z,,), we obtain root vectors Z of the types (SR),
(R) and (A) in each root space g .
(b) Let b be a Lie algebra and (g,7) := (hc,0), where o denotes complex
conjugation. In this case ¢ =ih. An element X € q is hyperbolic if and only if
X is an elliptic element of the Lie algebra h. Therefore a hyperbolic subspace
a C g is maximal abelian in q if and only if 7a is a compactly embedded Cartan
subalgebra of §.

Using Theorem III.3 again, we regain the fact that all maximal abelian
compactly embedded subalgebras of a Lie algebra h are conjugate under inner
automorphisms and in particular that two compactly embedded Cartan subalge-
bras are conjugate whenever they exist.

Let t C b be a compactly embedded Cartan subalgebra. Then the
subspace a := it C g is hyperbolic and maximal abelian in g and the root systems
A(g,a) and A(hc,tc) coincide. For Z € g = h2 we have [Z,7(Z)] = [Z, Z] so
the four types from Theorem IV.1 correspond to the four types of root spaces
considered in [5, Ch. 7]. u

Having introduced the general setup for the root decompositions, we now
turn to their relations to well chosen Levi decompositions of g.

Definition IV.4. If g =t x s is an a-7-invariant Levi decomposition, then
we say that a root a € A is semisimple if §* # {0} and solvable if g* Ct. We
write Ag for the set of semisimple roots and A, for the set of solvable roots. m

Lemma IV.5. For an a-7-invariant Levi decomposition g = txs the following
assertions hold:

(i) g* =™ D s, where t* =g* Nt and s* =g Ns.

(i) AL =a,.

(iti) g Caqr +5H°.

Proof. (i) Since t and s are invariant under a, both subspaces of g decompose
according to the root decomposition of Theorem IV.1. Therefore each root space
g* can be written as g® = (g* Nt) & (g* Ns), whence the assertion.

(i) If a € Ay, then s* # {0}, so that [a,,5% C vt Ns* = {0} implies that
alg, =0.

If, conversely, X € AL, then X € 34(s) C a,, because each element
in 34(s) is mapped by the natural homomorphism g — g/t = s onto a central
element of s, hence to 0.

(iii) According to the root space decomposition, we have g = h’ ©a® Doca 8%
Therefore a C q and g* C qr imply that g C qz + b°. n

We recall our notation « for the Cartan-Killing form of g and write
me = dim g* for the multiplicity of the root o € A.

Definition IV.6. Let (g,7) be a symmetric Lie algebra and V' a g-module
carrying a bilinear form ¢. The form ¢ is called 7-covariant, if

(X, w) = —¢(v, 7(X).w)
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holds for all X € g and v,we V. ]

Proposition IV.7.  If s is 7-a-invariant Levi complement and rk, denotes
the restriction of the Cartan-Killing form to a, then the following assertions

hold:
(i) Ka(X,Y) =3 Lcn Ma ( ) (Y) and kq(X,X) >0 for X,Y € a.

(ii) atre =a; :=3(g) Na, a; " =a, ®as, and 4" = d.
(iii) If we define ¢:a — a* by ¢( )Y) :=k(X,Y), then

= Z meaa(X)a

a€A

ker¢ = a;, and ¢(a) = spanA. The prescription (¢(X),d(Y)) = r(X,Y)
defines a scalar product on span A.

(iv) For each o € Ag there exists a unique element A, € as with
?(Ay) = a which, in addition, satisfies a(Aqy) > 0.

(v) If Z € g%, then [Z,7(Z)] € a; for a € A,, and

2, 7(2)] € 5(Z,7(2)) Au + 5,
for a € Ay . If, in addition, Z € s*, then
(Z,7(Z)] = IQ(Z,T(Z))AQ.

(vi) The form defined by k.(X,Y) := w(X,7.Y) is a symmetric T-
covariant form on g. Moreover, on each root space g* the degenerate subspace
coincides with v, and an element X € g% is

(a) of type (SR) if k- (X) >0,

(b) of type (R) if k-(X) <0, and

(c) of type (N) or (A) if k- (X)=0.
Proof. (i) This is an immediate consequence of the definition of the Cartan-
Killing form.
(ii) That at=« = 3(g) Na follows directly from the explicit formula in (i) and the
observation that 3(g) Na = (), ,cakera.

Next we recall from [1, Ch. 1, §5.5, Prop. 5(b)] that t = [g,g]**. From

that we conclude that a, C ag,L““ , so that the equality follows from the non-
degeneracy of k4 on a;. Thus we get that

ai—na — (aj—na)Lna — as @ a?)‘

(iii) The formula for ¢ follows by rewriting (i). From that we observe that
ker ¢ = a; and ¢(a) = span A. In view of (i), it now is clear that (¢(X), ¢(Y)) :=
k(X,Y) defines a scalar product on span A.

(iv) Let o € Ay and X € ¢~ (a). Then x(X,a.) = a(a,) = 0 (cf. Lemma IV.5)
implies that X € a; ™ = a, @ a,. Writing X = X, + X, with X, € a, and
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X, € a,, we see that X, € a; N ¢ 1(a) # @. Now the uniqueness of A, follows
from the injectivity of ¢|q, . Finally we observe that

a(Aa) = K(Aa, Aa) = D B(As)® > 0.
peA

(v) Let Z € g*. If € A, then g* = t* and therefore [Z,7(Z)] € a.N[t,t] C a,
because for each element X in [tr,t] the operator ad X is nilpotent, so that the
simultaneous semisimplicity implies that it is central.

If « € Ay and A, is chosen as in (iv), then we have for Y € a:

(ZS([ZvT(Z)])(Y) = H([Z7T(Z)]7Y) = ’%(Z7 [T(Z),Y])
=a(Y)k(Z,7(2)) = k(Z,7(Z))$(Aa)(Y)

which entails that
(Z,7(2)] € ¢ (k(Z,7(Z))Ad) = £(Z,7(Z)) Ao + a;.

If, in addition, Z € s, then A, € a, entails [Z,7(Z)] = k(Z,7(Z)) Aa.
(vi) First we note that the invariance of the Cartan-Killing form « under 7 and
72 = idy imply that x,(X,Y) := k(X,7.Y) defines a 7-covariant symmetric
bilinear form on g.

We recall from the proof of (ii) that v = [g,g]'* which, in view of
g% C [g,g], shows that x,(t*, g*) = {0}. Since K, is T-covariant, ada acts
by k,-symmetric operators, hence r,(g%, g°) = {0} for a + 3 # 0. For any
a-7-invariant Levi complement s we have k(r,s) C x(t, [g,g]) = {0} and hence
stNsCgtnNs CtNs={0}. Thus s, restricted to s is non-degenerate and
the orthogonality of the root spaces implies that «, is non-degenerate on s .

Now let Z € g*. If a € A, then g* C ¢, k, vanishes on g%, and since
t contains no semsisimple subalgebras, Z is of type (N) or (A). If o € Ay, then
(v) shows that

o([Z,7.7)) = a(An) k- (Z).

Therefore the assertion follows from a(A,) > 0. |

Proposition IV.8. Let g =1t xs be a T-a-invariant Levi decomposition and
0 a Cartan involution of s commuting with 7. Then the following assertions
hold:

(i) The involution T* := 01 |5 preserves the root spaces §* of a and the
quadratic form Kk, is positive definite on the —1 -eigenspace and negative definite
on the 1-eigenspace of 7% in s%.

(ii) Each element Z € s is of type (SR), (R) or (A). If the types (SR)
and (R) occur in s, then type (A) also occurs.

(iii) Fach root space g%, a € Ay contains an element of type (SR) or
(R).

(iv) In ™ only the types (N) and (A) may occur.

Proof. (i) Since a, commutes with s and o leaves the elements of a,
pointwise fixed, it preserves the root spaces s*. For Z € s“ we write Z =
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Z4+ Z_ according to the o-eigenspace decomposition. Note that the invariance
of k; under o implies that the components are orthogonal with respect to s .
Therefore

ke(Z2) = k(Z,7(2)) = k(24 + Z_,0(Z4) — 0(Z-))
(2, 9(Z+))1—16(Z_, Q(Z_))J

<0 >0

follows from the fact that the form kg(Z) := k(Z,60(Z)) is negative definite on s
which in turns follows from the fact that for #.X = X the element X is elliptic
and non-central, and for 8. X = —X the element X is hyperbolic and non-central
(cf. Lemma 1.9(ii)).

(ii) Since for Z € s* we have [Z,7(Z)] = k(Z,7(Z))Aq, the assertion follows
from Proposition IV.7(vi) if we note that the occurence of type (R) and (SR)
means that k., is indefinite on s* which implies the existence of isotropic vectors
and therefore of elements of type (A).

(iii), (iv) In view of Proposition IV.7(vi), the form k. is non-zero on g% if and
only if o € Ag. Therefore the assertions follow from Proposition IV.7(vi). |

Lemma IV.9. If a € A; with g% = s“ and Kk, is definite on g%, then g% is
an irreducible h° -module.

Proof. Let 0 # Z € g“ and note that, in view of Proposition IV.8, our
assumption implies that the subalgebra spanned by Z, 7(Z) and [Z,7(Z)] is
isomorphic to sl(2,R). Thus sly-theory, applied to the module } _, g"* shows
that ad Z: g° — g% is surjective. Therefore g® = [Z,a] + [Z,h°] = RZ + [Z,1"].
From that we obtain that the h°-submodule of g® generated by Z coincides
with g¢. Since Z € g® was arbitrary, the irreducibility follows. |

Example IV.10. (a) Let g = (h1 @ V) x RH, where h; = span{P,Q, Z} is
the three dimensional Heisenberg algebra with [P,Q] = Z € 3(h1) on which H

acts as by
HP=P HQ=-Q, and H.Z=0,

and V =RP’ @ RQ’ on which H acts in the same way. Let
h:=R(P+Q)®R(P' +Q'), and q:=RZOR(P-Q)®dR(P —-Q')®RH.
Since [q,9] € b, [q,b] € q and [h, h] C b, we obtain an involutive automorphism
7 of g by 7|, =idy and 7|3 = —id,.

Now a = 3(g) DRH is a hyperbolic subspace which is maximal abelian in
q, and the root system is given by A = A, = {+a}, where a(H) = 1. Moreover

g” =span{P, P}, g " =span{Q,Q'},

and 7(P) =@, 7(P") = Q. Hence type (N) as well as type (A) occurs in g*.
(b) Let g = ho x RH, where hy = span{P,Q, P’,Q’, Z} is the five dimensional
Heisenberg algebra with [P,Q] = [P/,Q'] = Z € 3(h2). The action of H is
defined by

HP=P, HQ=-Q, HP =-P, HQ =Q, and H.Z=0.
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We put
h:=R(P-P)PR(Q+Q) and q:=RZOR(P+P)OR(Q—-Q')®RH.

As in the preceding example, the prescriptions 7|, = idy and 7|; = —idy define
an involutive automorphism of g. We obtain A = {+a}, where a(H) =1, and
the root spaces are given by

g =span{P,Q'} and g *=span{Q,P'}.
From 7(P) = —P’ and 7(Q) = Q’, we get
AP +pQ", 7(AP + pQ")] = [AP + pQ', =AP" + pQ)] = 2\ uZ.

Thus the set of type (A)-elements in g¢ is not a subspace.
(¢c) We give an example of a symmetric simple Lie algebra in which the root
spaces are all of mixed type. So let us take s = s0(3,3) and 7 conjugation
by diag(—1,1,1,1,1,1). Then a = R(E; ¢+ Es,1) is a hyperbolic subspace in
q which is also maximal abelian in q. Further, the root system is given by
A = {*a}, where o(F1 6+ Eg,1) =1. For j =2,3, we set

Xj=Fvj— Ej1+ Fej+ Ejs,
while for j = 4,5, we put
Xj=FE;+Ej1+ Eej — Ejge.

Then it is easy to check that ¢ = span{Xs, X3, X4, X5}, and another simple
computation shows that the form s, on s* has signature (1,1, —1,—1). Hence
in s all types (SR), (R) and (A) occur.

This example also shows that the subspace a might be contained in
several maximal hyperbolic Lie triple systems. In fact, we have hY = s0(2,2)
and [h°, (sp)q] Z (8p)q, where the Cartan involution is given by 6(X) = —X .
Therefore all the conjugates of (s,)q under the group Inne(h") are maximal
hyperbolic Lie triple systems containing a (cf. Proposition II1.7). To make this
more explicit, let £ C s* be a two-dimensional plane on which the scalar product
kr is negative definite. Then a4 {7(X) — X: X € F} is a maximal hyperbolic
Lie triple system in g containing a (cf. Proposition IV.8). Since there exists a
continuous family of such subspaces E, this (s,)q is not unique. |

Example IV.11. Let s = sl(2,R) with the basis

= (5 0) v= (5 1) = (1))

with the commutator relations

[H,U)=2T, [H,T)=2U, and [UT]=2H.
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We consider the involution on s of type (SR) which corresponds to the decom-
position
sp =RT, and s4,=RH+RU.

Let t be the three dimensional s-module with the basis (H',U’,T") correspond-
ing to the identification with s endowed with the adjoint representation. We
form the Lie algebra g :=t x s and put

vy :=span{H',U'}, tvq:=RT’, bh:=tvy+s, and ¢:=1tq+5q.

Then [sp,ty] C vy, [55,tq] € tq, [Sq,tq) C ty, and [sq,ty] € vq imply that
Tlp =1idy and 7|y := —idy defines an automorphism of g.

The subspace a := RH C q is maximal abelian, hyperbolic, and 34(a) =
a+ RH’. The corresponding roots are given by A = Ay = {+a}, a(H) = 2,
and

g =span{U + T, U +T'}, *=RU +T'), and s*=RU+T).

Since the form k. is positive definite on s* and degenerate on t® (cf. Proposition
IV.7(vi)), the elements in t® are of type (A) and the other elements are of type
(SR).

The space q = span{H, U, T'} is three dimensional, and to see the action
of Inng(h) on this space, we note the the matrices of the elements of h with
respect to the basis (T, H,U) are given by

0 O 0 0 0 2
adyT’=(0 0 =27, aqu': 0O 0 0],
0 -2 0 0 0 O
and
0 -2 0
aqu’: 0O 0 O
0O 0 O

From that for
Winax := RT' + RT(H + U) + RT(H — U)

the set qnyp = Inng(h).a is given by

{obuw?  u-w?

max max*

Note that Wyax Na = RTH. The orbits in ngax are surfaces of the type
RT’ + e2dsv \H, X\ > 0. It follows in particular that their convex hulls always
contain affine lines.

For the coadjoint action on q* we obtain the matrices

0 0 0 0 0 0
ad;T=(0 0 -2|, adjH'=[0 0 0],
0 -2 0 2.0 0
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and
0O 0 O
ad: U=1-2 0 0
0O 0 0

Therefore the orbit of each functional not vanishing on 7" is a two-dimensional
plane parallel to (7”)+. In the plane (T')1 the orbits meeting a* = {T",U}+
are hyperbolas. Therefore the only orbits in W}, which are closed and have a
pointed convex hull are those through a*. |

V. The Weyl group and quasihermitian symmetric Lie algebras

In this section (g,7) denotes a symmetric Lie algebra and a C ¢ is a maximal
hyperbolic abelian subspace which is maximal abelian in q.

Definition V.1. Let p O a be a maximal hyperbolic Lie triple system.
(a) We say that a root a € A is compact if g* Npy # O and non-compact
otherwise. We write Ay = A(pr,a), resp. A,,, for the set of compact, resp.
non-compact, roots. Note that, in view of Proposition III.7, the set Aj does
not depend on the choice of p because all maximal hyperbolic Lie triple systems
containing a are conjugate under the group Inng(ho) which preserves the root
spaces.

If p is related to a 7-a-invariant Levi complement s as in Proposition
II1.5(iv), then it is clear that

AL, CA; and A, CA,.

The roots in A, := A,, N A, are called the non-compact semisimple roots.

(b) The root system A is called split if all root vectors X € g%, a € Ay are of
Riemannian type (R).

(c) A positive system AT is called p-adapted if A, is invariant under the Weyl
group.

(d) If C is a subset of the finite dimensional real vector space V', then we write
cone(C') for the smallest closed convex cone containing C'. For a positive system
AT of non-compact roots, we consider the following cones:

Cuinp = Cuinp(A)) := cone({[ X, 7(X)]: X € g%, € A;’}) Ca,

Crninyz = Crmin z(A)) := cone({[X, 7(X)]: X € t*,a € A*}) Cann=3(g),,
Cmin - len(A;L_) - C’min,p + Cmin,27 and

Crax = Cnax(A)) = {X € a: (Va € A,)a(X) > 0}.

(e) For every a € Ay we set a:= éAg) and accordingly Ag:= {a:a € A,}.

Note that «(&) =2 for all @ € A, and, more generally, that

B(&) = 26(Aa) _ 2¢(Ap)(4a) _ 2k(Ap, Aq) _ 2(a, B)

(o, a) (a, a) (o, a) (o, a)
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for all § € span A = ¢(a).

(f) We say that (g,7) has cone potential, if no non-zero Z € g%, a € A is of
type (A).

(g) We say that (g,7) has strict cone potential, if it has cone potential and for
each 8 € A there is an element « € aj such that

(5.1) o([X,7(X)]) >0 forall 0# X et

If, in addition, there exists a p-adapted positive system A™ such that (5.1) holds
simultaneously for all 3 € AT, then we say that (g, 7) has strong cone potentialm

Proposition V.2.  Let (g,7) be a symmetric Lie algebra, p C q a maximal
hyperbolic Lie triple system and a C p mazimal abelian. Then the following
assertions hold:

(i) The Weyl group W is isomorphic to the finite group generated by the
reflections

sgra—a, X —X-—-p(X)p
for B e Ag.
(ii) The center of p is given by the fixed point set of the Weyl group W,
i.€.

3(p) =V = {X € a: (Va € Ap) a(X) =0}.

It follows in particular that this space is independent of the choice of p.

(iii) If Wy C Gl(a) is the group generated by the reflections so, o € Ag,
then W is finite and Ws.A = A, where the action of W, on a* is given by
sp(a) = a = a(B)0.

Proof. (i) In view of Definition III1.9, this is a statement on Riemannian
symmetric Lie algebras and therefore follows from [3, Cor. VIL.2.1].

(ii) Since 3(p) C a holds for any maximal abelian subspace a in p, the assertion
follows immediate from the definition of the compact roots and (i).

(iii) Let a, = aNt, and § a 7-a,-invariant Levi complement. Then we may
w.l.o.g. assume that a = a, @ as, where a, = ans, (cf. Proposition II1.5(i),(ii)).
Now a, = AL (Lemma IV.5(ii)) shows that a, = a"V is the fixed point set of
Ws.

Let « € A, B € Ay, and 0 # Zg € g° be an element of type (SR) or
(R) (Proposition IV.7(vi)) and note that this implies that g(Z) = sl(2,R). We

consider the g(Z)-module
V.= Z gotnh,

nez

Then (a+nB3)(08) = a(B)+2n shows that the spaces g® ™™ are the (-eigenspaces
in V. Therefore the representations theory of sl(2,R) shows that whenever
a —pf and a4+ ¢f are roots, the same holds for all n € {—p,...,q}. Moreover,
if p and ¢ are maximal, then

a(f) = 2p = (a = pB)(B) = —(a +¢f)(B) = —a(B) - 2¢
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([1, Ch. 8, §1, no. 3]). This proves that «(3) = p — ¢, and hence that

spa=a—a(@)B=a+(g-pBseA

Thus A is invariant under sg, and therefore under W;.

To see that W, is finite, we note that Al = a, implies that af =
span A;. Now the fact that Wy acts effectively on a; and the invariance of the
finite set Ag imply that W, is finite. [ |

Corollary V.3. Let a« € A and f € As;. Then the (3-string containing «
has the form a+npB, —p < n < q, where p,q > 0. Furthermore p — q = ().
Moreover, we have

(i) [¢°, g% = g*t* whenever a(f) > —1.
(ii) [g%, g*] # {0} if and only if a+ B € A.
(iii) [g”, g% = g**? whenever a, B € A, and a # —J3.
Proof.  The first part has been shown in the proof of Proposition V.2(iii).

(i), (ii) This follows from the representation theory of sl(2,R) which shows that
[Z,9%] = g*t? whenever a(3) > —1 and [Z,g%] # {0} whenever a(3) < —1
(cf. [1, Ch. 8, §1, no. 3]).

(iii) (cf. [20]) Let o, 8 € Ay with [g*, g°] # g®*”. Then (i) implies that

2{e, §)

Multiplication of both inequalities yields (a, 3)2 > (o, a){f3, 3), so that equality
follows from the Cauchy-Schwarz inequality. We conclude that § = Aa and
obtain f(&) = 2XA < —2 as well as a(f) = % < —2, hence that A = —1, i.e.,
a=—0. |

Proposition V.4.  Let (g,7) be a symmetric Lie algebra, p C q a maximal
hyperbolic Lie triple system and a C p mazimal abelian. Then for a positive
system AT the following are equivalent:

(1) The system AT is p-adapted.
(2) The cone Cax s W -invariant.
(3) ChaxNalp) # Q.

(4) (AL +Ar)NACAF.

(5) If

m= P g and pT= P o

a€ALU{0} aent
then [m,pt] Cp*.
Proof. (1) = (2): It is clear that the W-invariance of A}l implies the W-
invariance of Ciax -
(2) = (3): If Cppax is invariant under W and X € C3,_, then X := > ew VX

is still contained in C2_ and, in addition, W-invariant. Therefore each compact

root vanishes on Xy and thus X € 3(p) (Proposition V.2(ii)).
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(3) = (4): Let Xg € C%, . N3(p). Then Af = {a € A:a(X) > 0} because all
compact roots vanish on X. Hence a € A}, 8 € Ay implies that (a+ 3)(X) =
a(X) > 0, and therefore that o + 5 € A} whenever it is a root.
(4) = (5): This is an immediate consequence of [g*, g®] C g®*# and (4).
(5) = (1): Let o € Ag and Z € g* be of type (R). Then g(Z) C m, and
(5) implies that [g(Z),p™] € pT. Thus pt is a module of the subalgebra
9(Z) = sl(2,R), and the invariance of A, the corresponding set of weights,
under the reflection s, follows from sl(2, R)-representation theory. We conclude
that W.AL = A, ]

Definition V.5.  Let (g,7) a symmetric Lie algebra and p C q a maximal
hyperbolic Lie triple system.
(i) We call (g,7) quasihermitian, if 3q(3(p)) = p, where 3(p) = {X € p: [X,p] =
{o}}.
(ii) If (g, 7) is semisimple and irreducible, then we call (g, T)
(NCR) non-compactly Riemannian, if g is non-compact and 7 is a Cartan
involution.
(NCC) non-compactly causal, if (g, 7) is quasihermitian and 3(p) # {0}.
(CC) compactly causal, if (g°,7) is (NCC).
(CT) of Cayley type, if it is both (CC) and (NCC). n

Note that (g,7) is quasihermitian if and only if it is (NCR) or (NCC).
The three dimensional simple Lie algebra (s, 7) of type (R) is (NCR) and if it is
of type (SR), then it is (CT) (cf. Theorem IV.1).

Let (g,7) be a semisimple symmetric Lie algebra and 6 a Cartan in-
volution commuting with 7. Denote by g = g¢ © g, the corresponding Cartan
decomposition. The prescription 7* = 6 o 7 defines an involution and we call
(g, 7%) an associated symmetric Lie algebra. Note that the eigenspace decompo-
sition of g according to 7% is given by

g=0h"®q% where b"=(ge)py ® (gp)gq, q" = (ge)q D (gp)p-

Proposition V.6. If (g,7) is irreducible semisimple such that 3(p) # {0},
then the following assertions hold:
(i) The symmetric Lie algebra (g, T) is one of the following two types:
(1) The c-dual g¢ is simple and hermitian with 3(€¢) C q°.
(2) The subalgebra b is simple hermitian and (g,7) = (bc,0), where o
denotes complex conjugation.
It follows in particular that g is simple.
(ii) There exists an up to sign unique element H € 3(p) with 3(p) = RH,
Spec(ad H) = {2,0, -2} and 34(H) = p. It follows in particular that (g, T) is
quasihermitian, i.e., (NCC) and that H defines a triangular decomposition of g:

g=g(ad H; -2) ® g(ad H;0) ® g(ad H; 2).

(iii) The involution T¢ is given by 7@ = e'2 ad i

Proof.  (cf. [8, Lemma 1.3.5, Th. 1.3.8]) (i), (ii) First we choose a Cartan
decomposition g = g¢ @ g, such that p = (gp)q (Proposition II1.5(iv)). Then
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the fact that pr C h* is an ideal (Lemma II.7(i)) implies that 3(p) C 3(h).
On the other hand £° := (g¢)y ®i(gp)q C g° is a maximal compactly embedded
subalgebra.

As already observed in Definition 1.6(d), there are two possibilities:

(1) g° is simple. Then the fact that 3(¢°) # {0} implies that g° is a hermitian
Lie algebra with 3(¢¢) C iq.

(2) g° 2 hdbh and b is simple. Then & = (g¢)y D (ge)p, so that the same
argument as above shows that b is simple hermitian. Moreover g = (h¢, o)
(Lemma 1.10), so that p = i(ge)y -

If g is not simple, then g = h & h and g¢ = he (cf. Lemma 1.11).
Therefore the fact that a simple hermitian Lie algebra is never complex implies
that g is simple.

In both cases we see that 3(p) is one-dimensional. Since the spectrum
of an element in the center of a maximal compactly embedded subalgebra of
a hermitian simple Lie algebra consists of {0,ci, —ci} (cf. [3, Prop. VIIL.6.2]),
we can find H € 3(p) with Spec(ad H) = {—2,0,2,}. Moreover, the fact that
3gc (3(8¢)) = € implies that 34(H) = p. This completes the proof.

(iii) This is an immediate consequence of (ii). n

The preceding result can be sharpened significantly if we assume, in
addition, that the Lie algebra under consideration is of Cayley type.

Lemma V.7. For a symmetric (CT) Lie algebra (g, 7) the following assertions
hold:
(i) There are elements T € 3(h) Ngy and U € 3(ge)q such that

[H,U] = 2T, [H,T] =2U, [U,T) =2H.
(ii) The element T defines a triangular decomposition
g=9(adT;-2)®g(adT50) ® g(ad T’ 2),

and T = 'z 24T

(iii) The Cartan involution is given by
Proof. (i) - (ii) [8, Th. 1.3.11].
(iii) [8, Lemma 1.2.1]. u

6 = e%adU

Lemma V.8. The symmetric Lie algebra (g,T) is quasihermitian if and only
if there exists an element X € 3(p) such that 34(X) =1p.

Proof. “<«": This is trivial.

“=7: Let X, € 3(p) such that no root in A(g,3(p)) vanishes on Xy. Then
39(X0) = 34(3(p)) and the implication follows from the 7-invariance of both
sides. |

Proposition V.9.  Let (g,7) be a quasihermitian symmetric Lie algebra, p
a maximal hyperbolic Lie triple system, and a mazimal abelian in p. Then the
following assertions hold:
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(i) The mazimal hyperbolic abelian subspace a is mazximal abelian in q.

(ii) The root system A(g,a) is split.

(iii) The maximal hyperbolic abelian subspace a is contained in a unique
mazimal hyperbolic Lie triple system p which is given by

p=a® P (1-1)(e).

aGAk

(iv) int qnyp N 3(p) = 3(p) \ UaEAn ker av.

(v) If 5 := g/t is endowed with the inherited involution T4, then (s,7s) is
quasihermitian. This means that the irreducible constituents of (s,7) are either
(NCR) or (NCC).

(vi) There exists a p-adapted positive system.

(vii) If A" is a p-adapted positive system, then (A} +AF)NA C A}
and Cryin,p C (A;')*.

(viii) The Lie algebra s has cone potential.

Proof. (i) Since a is maximal abelian in p and (g, 7) is quasihermitian, any
abelian subspace of q containing a must be contained in 34 (3(13)) = p, hence has
to coincide with a. This proves that a is maximal abelian in q.

(ii) First we note that each root a € Ay vanishes on 3(p) C a. Therefore
g° C 34(3(p)) and hence for each X € g* the element X —7(X) is contained in
3q (3()3)) = p. Now the a-invariance of p; shows that the g®-component X of
this element is contained in py. Thus g* = (pr)® and this is what we had to
show.

(iii) The proof of (ii) implies that for o € A we have g* = (p)®, hence that

p=ad P 17"

aGAk

which shows that p is unique.

(iv) In view of (iii), an element X € 3(p) is contained in int quy, if and only
if 34(X) is not bigger than p (cf. Proposition III.2), i.e., if and only if no non-
compact root vanishes on X . This proves (iv).

(v) In view of Proposition III.5(iv), we may assume that s is realized in g as a
T-a-invariant Levi complement and that p has been constructed as p = a, @ ps,
where ps = (sy)q with a Cartan decomposition s = s¢ @ s, which is invariant
under 7,. Then the fact that a, commutes with s (Proposition II1.5(iii)) shows
that 3(p) = a. @ 3(ps). Hence

35, (3(ps)) =35, (3(p)) S PNsq=0ps

and so (s,7s) is quasihermitian.

If we decompose (s,7) into a direct sum of irreducible symmetric Lie
algebras (s;,7;), it is clear that p is adapted to this decomposition. Therefore
all irreducible factors are quasihermitian, i.e. (NCR) or (NCC), if and only if
(s,7) is quasihermitian.
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(vi) Let X € 3(p) with p = 34(X) (Lemma V.8). Then (ii) shows that o(X) #
{0} holds for all o € Af. We choose X; € a such that sgna(X;) = sgna(X)
for all @ € A,, and «(X;) #0 for all @ € Ag. Then AT = {a € A:a(X;) > 0}
is a positive system, and At = {a € A:a(X) > 0} is W-invariant because X
is fixed by W. This proves that A* is p-adapted.
(vii) In view of (v), it suffices to prove (A} +AF)NA =@ for (NCC) algebras
because this holds trivially for (NCR) algebras. Let H be as in Proposition
V.6(ii) and AT be a €-adapted positive system. Then Proposition V.4(3) shows
that we may w.l.o.g. assume that H € Cy,,,. Then Af = {a € A:a(H) = 2},
and the assertion follows from the fact that 4 is no eigenvalue of ad H .

To see that Cpinp C (A;)*, let o, € A;. For Z € g” we have
Z,7.Z) € k(Z,7.2)Ag + a; and hence «([Z,7.Z]) = k(Z,7.Z)a(Ap). Since
k(Z,7.Z) > 0 by (ii) and Proposition IV.7(vi), we have to show that a(3) > 0.
Since « + 3 is no root in A(s, as), this follows from Corollary V.3.
(viii) We have already seen in (v) that (s, 7s) is quasihermitian, hence (ii) implies
that A(s, as) is split. Now the assertion follows from the non-degeneracy of the
forms k, on the root spaces §* (cf. Proposition IV.8). u

Putting all these facts together, we arrive at the following characteriza-
tion of the quasihermitian symmetric Lie algebras.

Proposition V.10. The symmetric Lie algebra (g,T) is quasihermitian if
and only if there exists a maximal hyperbolic abelian subspace a C q such that
(1) a is mazimal abelian in q,
(2) A(g,a) is split, and
(3) A(g,a) contains a p-adapted positive system.

Proof. The necessity of (1)-(3) follows from Propositon V.9.

Assume that (1)-(3) are satisfied and choose a maximal hyperbolic Lie
triple system p containing a. Using Proposition V.4(3), we find Xy € 3(p)NCY,... .
Hence

30(Xo)=a0 P (A —-7).9°

aGAk

because a is maximal abelian in q. To see that this implies that 34(Xo) = p, it
now suffices to show that g C py holds for all o € Ay.

For this we recall from Proposition II1.5(iv) that we can realize p as
p = a. @ (sp Nsy), where a, is maximal hyperbolic abelian in vy with respect
to g, s is an a.-7-invariant Levi complement, and s = s¢ + 5, is a 7-invariant
Cartan decomposition defined by the Cartan involution 6.

Let a € A, € A, and recall that s% is invariant under the involution
o = 70 of s, and that its —1-eigenspace consists of elements of type (SR)
(Proposition IV.8). Now the fact that A is split shows that o |s« = id, hence
that

s*C(1-—7)s%+[a,(1—7)sY|Cp+[p,p] Cpr.

Moreover, in view of Lemma IV.5 and Proposition IV.8(iii), (2) implies that
g% = 5% and finally that g¢ C pr. ]
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Example V.11. (a) Let s = sl(2,R) with the basis from Example IV.11. We
consider the Cartan involution on s which corresponds to the decomposition

sy =RU, and s;=RH+RT.

Let t be the three dimensional s-module with the basis (H’,U’,T") correspond-
ing to the identification with s endowed with the adjoint representation. We
form the Lie algebra g :=1t x s and put

vy :=span{H', 7'}, tv;:=RU', h:=rvy+s, and q:=rt4+5,.

Then, as in Example IV.11, these prescriptions define an involutive automor-
phism 7 of g.

The subspace p := RH + RT C g is a maximal hyperbolic Lie triple
system, a := RH C p is maximal abelian, and 3(p) = {0}. Therefore 34(3(p)) =
q # p and we see that (g,7) is not quasihermitian. Nevertheless, the subspace
a is maximal abelian in q, W = Z2?, A = A, and A, = @, so that each
positive system is p-adapted. Of course A is not split because the root spaces
g% =t* @ s are 2-dimensional, the form k. is negative semidefinite with one-
dimensional degeneracy in t®.

(b) Let s be a compact Lie algebra and V a real s-module. Let further
n=1"V xV xR denote the Heisenberg algebra with bracket

[(v,w,t), (v, w' t")] = (0,0, (v,w) — (v, w)).

Let further H denote the operator on n given by H.(v,w,t) = (v, —w,0) and
consider the Lie algebra g:=n x (s ® RH). Then

h={(v,v,0):veV}xs and q={(v,—v,t):veV,teR} xRH

defines an involution 7 on g. The subspace a :=3®RH with 3 = {0} x {0} xR
is maximal hyperbolic and maximal abelian in q. Moreover, p = a is a maximal
hyperbolic Lie triple system, and A = {£a} with «(H) = 1, where g¢ =
V x {0}. Therefore (g, 7) is quasihermitian, effective with strong cone potential.
Nevertheless h? = s is non-trivial.

(c) Let go be a split semisimple real Lie algebra and ag C go a toral Cartan
subalgebra. We consider g = gg @ go with 7(X,Y) = (Y, X). Then q =
{(X,=X): X € go} and if go = €, + po is a Cartan decomposition, then p :=
{(X,—=X): X € pp} is a maximal hyperbolic Lie triple system in q. According to
Example IV.3(a), all root spaces are of mixed type, hence A = Aj. We conclude
in particular that all positive systems are p-adapted, but that A is not split. m

VI. Convexity properties and invariant convex sets

In this section we come to the subject proper of this paper, the convexity
properties of the action of Inng(h) on the space q. The key role will be played
by those invariant convex subsets having a sufficiently large intersection with
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a. The main point of this section is that the existence of such invariant convex
sets has significant consequences for the structure of the symmetric Lie algebra
(g, 7). In particular we will see that it implies that (g, 7) is quasihermitian, and
also that it has strong cone potential (cf. Definition V.1(g)).

Throughout this section we assume that a C g is a maximal hyperbolic
abelian subspace which is in addition maximal abelian in q.

A key tool in everything that follows is the following lemma which gives
precise information on the projections of orbits of elements in a with respect to
the action of one-parameter subgroups of Inng(h) coming from root vectors.

Lemma VI.1. Forac€ A, X € a, and Z € g% we have the following formulas:
(i) ad (Z +7(2))"(X)
X form=20
T 2ZN'1(Z2),Z)  form =2(n+1).
(ii) If p:q — a is the projection along q N [a,g], then

p(AZ () x)
=cosh (ad(Z + 7(2))).X

a(X)[r(2), Z] for a([Z,7(Z)]) =
_x — { a(x) = EAEN 10(2), 2] for o[Z.7(2)]) > 0
a(x) =WV DI (1(2), 2] for o([Z.7(2)]) < 0
and
p(eRad(Z+T(Z)).X>
:p(eR+ ad(Z+7(2)) X)
R*a(X)[Z,7(2)] for a([2,7(2)]) = 0
=X +{ Rta(X)[Z,7(2)] for a([Z,7(Z)]) > 0
0, 25255512, 7(2)]) for a([2,7(2)]) < 0.

Proof. (i) We prove the assertion by induction with respect to m. For m =0
there is nothing to prove. Suppose that the assertion is true for m = 2n. If
n =0, then

ad(Z +7(Z2)" N X)=[Z+7(2),X] = —a(X)(Z - 7(2)).
If m=2n >0, then

ad(Z +7(2))" = ad(Z + 7(2)) (- a(X)2a(2(2,7(Z)])" " [7(Z), Z))
= —a(X)20(2[Z,7(Z2)))" ' [Z + 7(2),[7(2), Z]]
= —a(X)a2(Z,7(2))"(Z — 7(2)),
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and if m = 2n + 1, then

ad(Z + 7(2))™ M (X) = ad(Z + 7(2)) ( — (X)a(2[Z,7(2)))"(Z — 7(2)))
= —a(X)al2[Z,7(2)])"2[r(Z), Z].

(ii) Using (i)’ we see that ad(Z+T(Z))2n+1'X c [a7 g]ﬂq and ad(Z+T(Z))2n.X S
a. Thus
p(ead(Z+T(Z))-X> = cosh (ad(Z + T(Z)))'X'

Now the first formula for cosh (ad(Z + 7(Z))).X follows from (i). For the
remaining assertions we distinguish several cases. The case a([Z,7(Z)]) = 0
is trivial. If «([Z,7(Z)]) > 0, then we use the surjectivity of the function
Rt — RT, t — cosh(ts) — 1 for s > 0, and for a([Z,7(Z)]) < 0 we use
cos(R) — 1 =[-2,0]. u

Definition VI.2. Let V be a finite dimensional real vector space and V* its
dual space.
(a) For a subset C' C V' we define

B(C):={a e V" infa(C) > —o0} and C* :={a € V*:infa(C) > 0}.

Note that both are convex cones and that C* is always closed, whereas B(C)
need not be closed. One obtains an instructive example by taking the graph of
the exponential function in V = R?.

(b) For a convex subset C' C V' we put

ImC:={veV:iv4+CCC} and H(C):=1lim(C)N-—Ilim(C).

We call lim C the limit cone of C'. Note that limC is always a convex cone
which is closed if C' is closed or open (cf. [19, Prop. III.1.5]). If C' is open or
closed, then the geometric meaning of H(C') is that ¢+ H(C), ¢ € C are the
maximal affine subspaces contained in C'. [ ]

Proposition VI.3. For Y € a the following assertions hold:
(i) If X € g% is of type (SR), (A) or (N), then

Y +RTa(Y)[X, 7(X)] C conv(Oy).

(ii) If X € g% s of type (SR) and g“ also contains elements of type (R),
then
Y + Ra(Y)d C conv(Oy).
(iii) Cy := cone ({a(Y)[X,7(X)]: X of type (SR), (N)}) C lim conv(Oy).

Proof. (i) In view of Lemma VI.1(ii), this follows from the observation that
for Z € h we have

1
p(e*d2Y) = cosh(ad Z2).Y = 3 (ead 7Y + e *72Y) € conv(Oy).
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(ii) First we note that if g* contains an element of type (R), then the same holds
for s* (cf. Proposition IV.7(v)). Hence the reflection in ker o defined by

Sa(X) =X —a(X)a

is an element of the Weyl group W. Now (i) and Proposition IV.7(vi) imply that
Y + Rta(Y)da C conv(Oy) and therefore the invariance of Oy under W yields

$a(Y +RYa(Y)d) = 54(Y) = RYa(Y )& C conv(Oy).

If a(Y) # 0, then the convex hull of these two half-lines coincides with the line
Y + Ré, and this proves (ii).
(iii) This is immediate from (i). n

Next we introduce some notions that will be used to describe the effect
of the existence of certain invariant convex sets in q on the structure of the Lie
algebra g.

Definition VI.4. Let (g,7) be a symmetric Lie algebra.

(a) We call a convex Inng(h)-invariant set C' C q hyperbolic (resp. elliptic), if it
has non-empty interior and int C' consists of hyperbolic (resp. elliptic) elements.
(b) A symmetric Lie algebra (g, 7) is called admissible if there exists a closed
convex generating hyperbolic invariant subset C' C q with H(C) = {0}. u

In the following D° for a subset D of a means the relative interior of
D with respect to a.

Lemma VL5. (i) If C C q is an invariant hyperbolic convexr subset, then
CY =Tnng(h).(CNna).

(ii) If C C q is an invariant subset such that C' N a has interior points, then C
has interior points.

Proof. (i) Let Cy := CnNa. Then C'Na C CY, so that, in view of C° C qpyp,
Theorem II1.3(ii) implies that C° = Inng(h).(CY Na) C Inng(h).CY. It remains
to show that CY C C° Na.

Solet X € CY and U C C, be an open convex subset. If Y € U satisfies
3q(Y) = a, ie., if a(Y) # 0 holds for all & € A, then Lemma III.1 shows that
the mapping

U:Inng(h) xa—q, (h,Z)— hZ

has surjective differential in (1,Y"), hence that ¥(Inng(h) xU) is a neighborhood
of Y in q. Thus Y € CY. Since
U=conv({Y e U: (Va € A)a(Y) # 0}),

it follows that X € CY.
(ii) If U € CNa is an open subset of a, then the argument above shows that
Inng(h).U C C contains an interior point. u

The following theorem contains some key observations relating invariant
hyperbolic sets to the structure of the Lie algebra.
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Theorem VI.6.  Let (g,7) be a symmetric Lie algebra, p C q a mazimal
hyperbolic Lie triple system, and a C p maximal abelian. Suppose that there
exists an tnvariant hyperbolic closed convex subset C' C q. Then the following
assertions hold:

(i) The hyperbolic subspace a is maximal abelian in q.

(ii) The symmetric Lie algebra (g,7) is quasihermitian and there exists
a p-adapted positive system AT such that

Cin Clim(CNa) and CNaC Chax.

In particular we have Cpin € Chax-

(iii) If H(C) = {0}, then (g,7) has strong cone potential.

(iv) If, in addition, C # q, then 3(p) # {0}.
Proof. (i) The existence of C' implies that qpy, has non-empty interior. Hence
(i) follows from Theorem III.3(ii).
(ii) Let Cq :=CNa and X € C'Na. Then Xg := > ew V- X € CY is fixed
under W. According to Proposition V.2(ii), we have Xy € 3(p). In view of
Lemma VL5, Xy € C° C int quyp, so that Proposition II1.2 implies that 34(Xo)
is a hyperbolic Lie triple system. Clearly we have p C 34(Xo), so that the
maximality of p implies that p = 34(Xo), hence that (g,7) is quasihermitian.

We define a positive system of non-compact roots by

At:={a € A, :a(Xy) >0}

Since no non-compact root vanishes on an element of C{ (Lemma VI.5, Proposi-
tion V.9(iv)), we get C9 C Cpax and hence that Cy C Ciyayx . Finally Proposition
VI.3(iii) implies that Cpn C lim Cy.
(iii) First we show that (g,7) has cone potential. Let Z € g* be of type (A).
We have to show that Z = 0. Let X € C?. Now Lemma VI.1(i) shows that

etad (247(2) x — x _ ta(X)(Z —1(2)) € C

for all t € R. Now H(C) = {0} implies that Z — 7(Z) = 0, hence that Z =0,
and this proves that (g,7) has cone potential.

Since lim(Cy) is pointed and contains the cone Cp,iy, this cone is also
pointed. Thus (g,7) has strong cone potential because each functional « €
int im(Cy)* satisfies o([X,7.X]) > 0 for all X € g*, « € At. The p-
adaptedness of AT follows from the choice of Al which ensures that it is
invariant under the Weyl group.

(iv) If 3(p) = {0}, then the proof of (ii) shows that 0 € C°. If C is a cone, then
this implies that C' = q. This proves (iv). n

Example VI.7. (a) Let (s,7) = (sl(2,R) ® sl(2,R), 71 ® 72), where 71 = 0
is of type (R), and 72 of type (SR) is given by conjugation by T (cf. Exam-
ple IV.11). Then (s,7) is quasihermitian and admits e*!9-invariant pointed
generating convex hyperbolic cones. An example is given by

C={(tT+hH,NH +4'U"):0< || <h,0<t*+h*<(h)*— (W)}

Note that dimq = 4 and dimp = 3. The set C' is invariant since the Lorentzian
form given in coordinates by (h)? — (u/)? — 2 — u? is invariant under Inng(h).
Moreover, C' is a Lorentzian cone in q. ]
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The preceding example shows that it is not necassary that the irreducible
pieces of (s, 7) are purely (NCC), which in the irreducible case can be shown to be
equivalent to the existence of a hyperbolic invariant convex cone (cf. [8]). Below
we will give a necessary and sufficient condition for symmetric Lie algebras to
have this property.

VII. Symmetric Lie algebras with cone potential

In this chapter we exploit the implications of (strong) cone potential for the
structure of a symmetric Lie algebra. We recall from Proposition V.9 that a
quasihermitian semisimple symmetric Lie algebra always has cone potential. The
following example shows that the converse is not true.

Example VIL.1. Let g =s0(2,n), n >3 and 7 given by conjugation with

I = diag(1,...,1,—1,-1).
N——

n

Then h = 50(2,n — 2) @50(2), a = RXl + RXQ, where X1 = El,n + En,l and
X9 = FEy 1+ E,—1,2, is a hyperbolic subalgebra which is maximal abelian in
q. The root system is given by

A = {tay, tag, £(ag £ as)},

where o;(X;) = 65, 4,5 € {1,2}. It is easy to check that (g,7) has cone
potential. In particular Ay = {£(a; £ a2)} and A, = {£+a1,+as}. The Weyl
group W is isomorphic to the Weyl group of the Riemannian symmetric Lie
algebra s0(2,2) = sl(2,R) & sl(2,R) and is generated by the two orthogonal
reflections So,tas, Sa;—as- Hence (g,7) does not have any p-adapted positive
system. This gives an example of a simple symmetric Lie algebra with cone
potential which is not quasihermitian. [ ]

For any a-invariant subspace b C g we write b™ := [a, b] for the effective
part of b and b for 35(a). Note that b = 6" ®bT.

Proposition VII.2.  If (g,7) has cone potential and n is the nilradical of g,
then the following assertions hold:
(i) Every T-invariant abelian ideal b C g is contained in n°. Moreover,
by C3(g) and by Jg.
(i) [n,n] € n°. In particular [¢*, ] = {0} for a # —3.
(iii) If (g, 7) is effective, then
(a) [n,n] C3(9),
(b) 3(g) Cq, and
(c) [ng,np] ={0}.
(iv) The subspace [a,h] of q contains no non-zero h-submodule.
Proof. (i) (cf. [5, Lemma 7.14]) Since b is an ideal, it is a-invariant. We
claim that [a,b] = {0}. Suppose that this is false and let 0 # Z € g* N b. Since
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b was supposed to be T-invariant, we obtain g(Z) C b. Since (g,7) has cone
potential, g(Z) is not abelian, contradicting the assumption that b is abelian.
Now b = b° yields by C q°Nb Canb C 3(g) because b is a nilpotent ideal.
Since n + b is a nilpotent ideal, we have b C n.

To see that by is an ideal, we first note that

[b,g%] C [g%g*]NbC g*Nb={0}

implies [b,[a,g]] = {0}. Now the assertion follows from the fact that by is an
ideal in b and from q =a & [a, b].

(ii) (cf. [5, Th. 7.15]) We prove the assertion by induction on dim(g). We denote
by n™ the elements in the lower central series of n. Suppose that n™ # {0}
for some integer m > 2. According to [5, Lemma 7.13], the ideal b = n™~! is
abelian. Note that b is 7-invariant, so that (i) applies. If by # {0}, we consider
the symmetric Lie algebra g; := g/b,. Let m:g — g; denote the quotient
homomorphism. In view of Lemma III.11, 7(a) is a maximal hyperbolic abelian
subspace of q; := m(q). Moreover, g; has cone potential because by does not
intersect a and g has cone potential. Hence induction applies and yields the
assertion if by # {0}.

Thus, in view of (i), we may assume that b = by is central. But this
contradicts n™ # {0}. Hence n! = [n,n] is abelian. Again (i) applies and shows
that [n,n] C 3n(a).
(iii) (a) We can use the same arguments as in the proof of (ii). Here by, = {0}
since (g,7) is effective and by is an ideal of g (cf. Lemma I.8). Hence the
argument above shows that [n,n] is an abelian ideal. Thus effectivity and (i)
give [n,n] C 5(g)-
(b) That 3(g) C q follows from the fact that 3(g)y is an ideal of g contained in
b.
(c) In view of (a) and (b), we have [ny,ny] C [n,n]Nh C 3(g)y, = {0}.
(iv) Let V C [a,h] be an h-submodule. Then its orthogonal subspace V1= C q
with respect to the Cartan-Killing form is an h-submodule containing a, hence
contains qnyp, = Inng(h).a, and therefore coincides with q. We conclude that
V C qiﬁ and hence that V C g“ Cr.

If, on the other hand, s is an a-7-invariant Levi complement, then

[a, b] = [a, sy + ty] = [a, 5p] + [a, vy] .
= =

Therefore V' C [a,vy] = >
implies that

wea(l=7)x*. Let 8 € A and Xg € v°. Then (ii)

[(1+7).Xp, Y (1 =7)x =[(1+7).Xp, (1 —7).2").
acA

Moreover

[(1 + T).Xg, (1 — T).X/g] = —[Xg,T.Xg] -+ [T.Xg,Xg] = 2[T.XB,X5] € a, \ {0}
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whenever Xg # {0}. Forve V withv =)
we now obtain

aeA Vas Vo = (1-7).X, € (1—7)x®

[(1+7).Xo,v] =2[1. X0, Xa] €V Na,.

This proves that v, = 0 for all «, hence v = 0 for all v € V', and eventually
V ={0}. ]

Example VII.3. The assertion of (ii) becomes false if (g,7) does not have
cone potential. We consider the Lie algebra

g = span{T, X1,Y1, X0, Y5, X3,Y3}
with the non-zero brackets
T, Xi] = kXg, [T,Yr] = kY, [X7, Xa] = X3, [Y7,Ys] = Y5,
1 <k <3. We define
b=R(X1 +Y1) ®R(Xz +Y2) & R(X5 + V3),

Since [h,h] € b, [h,q9] € q and [h,h] C b, the prescriptions 7 |, = id, and

T |q = —idq define an involution on g. Further on a = RT is a maximal
hyperbolic abelian subspace in ¢, which is maximal abelian in q. An easy
calculation yields [n,n] = RX3 @ RY3, hence [n,n] € n°. u

Definition VII.4. Let (g,7) be a symmetric Lie algebra and p:g — gl(V) a
representation. Then we call an operator A € End(V) a 7-intertwiner if

Aop(X)=p(t.X)o A
holds for all X € g. ]

The significance of the notion of a 7-intertwiner becomes apparent in
the following lemma.

Lemma VIL.5. Let V be a module of the symmetric Lie algebra (g,7) and
¢ a T-covariant bilinear form on V. Further let o be a second involution on
g commuting with 7 and A € End(V) a o-intertwiner. Then the following
assertions hold:

(i) The form ¢4 defined by ¢a(v,w) := ¢(A.v,w) is To -covariant.

(ii) If ¢ is symmetric (skew-symmetric), and A is ¢-symmetric, then the
same holds for ¢4, and if A is ¢-skew-symmetric, then ¢4 is skew-symmetric
(symmetric).

Proof. (i) For v,w € V and X € g we have

pa(Xv,w) = p(AX v, w) = —¢((0.X)Av, w)
= —qb(A.v, (TO'.X).U)) = —¢a (v, (TO'.X).’LU).

(ii) This is a simple computation. u
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Lemma VII.6. Let A be a convex set of symmetric operators on R™ satisfying
the condition

d := max{rank A: A € A} < n.
Then there exists 0 # v € R™ such that

(Aw,v) =0 forall A€ A.

Proof. (cf. [13, Prop. I1.32]) Let Ay € A be of maximal rank d and

{v1,...,v,} an orthonormal basis of eigenvectors, i.e.
ov; 1 <d
Ag.v; = v o

07 { 0 i>d+1.

We claim : (A.vgy1,v441) =0 for all A e A.

Since all assumptions transfer to the subspace B := (vq,...,v441) we
may assume that n =d+ 1. Let 0 < pu <1 and po := 1_7” For all A € A we
consider the expression

0 = det(pA+(1—p)Ag) = p* det(A+poAo) = p*™ (udas-. . .- aq-bar1+p(po)),

where bg11 = (Avgy1,v441) and p is a polynomial of degree smaller than d—1.
The expression above is clearly analytic in pg and the identity theorem for
analytic functions implies bgy; = 0 since ag - ... - aqg # 0. [ ]

In the following we identify q* with the subspace b in g* and a* with
the subspace [a, h]* of q*.

Proposition VIL.7.  Let n be the nilradical of a symmetric Lie algebra (g, T)
with cone potential. To every a € ai we associate the skew symmetric bilinear
form

Pinxn— R 97(X,Y) = a([X,Y]),

Then the following assertions hold:

(i) The forms ¢* are g-invariant and T -antiinvariant, i.e., ¢*(7.X,7.Y)
= —¢%(X,Y). Furthermore n®LganY if B # —7.

(ii) The bilinear forms

P¥axn—-R(X,)Y)— o[r.X,Y])

are symmetric and T -covariant.
(iii) There exists an element o € aj such that ¥ is non-degenerate on
nt. Moreover, the set of these o is open and dense in ay .

Proof. (i) By the Jacobi identity it is sufficient to show that
pa([Z,[X,Y]]) =0 for Zegand X,Y €n.

But this is an immediate consequence of [n,n] C g% (cf. Proposition VIL.2(ii))
which shows that

pa([gv [11, nH) - pa([gov [11, n]D - pa([go790]) = {0}
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because g° = h’ D a and [g°, g] C h°. The 7-antiinvariance of the forms follows
immediately from 7*a = —«a. The last assertion is a consequence of Proposition
VIL.2(ii).

(ii) Since ¢% is T-antiinvariant, 7 is ¢“-skew-symmetric, so that the form
is symmetric. Moreover, the g-invariance of ¢® implies that ¢® is 7-covariant
(Lemma VIL5).

(iii) First we prove the assertion for a single t” instead of n*. We choose a
basis of t? and thus identify it with R™. Under this identification the symmetric
forms 1% | 548 correspond to symmetric matrices on R™. Clearly, A := {¢“ |
Bxesi € a*} is a vector space of symmetric operators, hence convex. Then
Lemma VIL6 shows that if (iii) is false, then there exists 0 # X € t* with

(X, X)=0

for all a € a}, i.e., [X,7(X)] = 0, contradicting the assumption that g has cone
potential.
We define

Mg :={a € a;:9"|;s s non-degenerate}.
The observation above shows that Mg is non-empty. Now we see that
Mﬁ = {a S a;: det(d}a |t3><t3) 7é 0}

Since it is non-empty, the fact that the determinant is a polynomial in the matrix
entries shows that Mg is open and dense. Now M := nﬁeAr Mg is a finite
intersection of open and dense sets, hence is open and dense. This proves (iii)
because the elements of M correspond to non-degenerate symmetric forms on
nt. n

Proposition VILI.8.  If (g,7) has cone potential and o € Ay, then t* = {0}.

Proof. Let 0# Z € s*. Then, in view of Proposition IV.8(ii), the fact that
(g, 7) has cone potential implies that Z is either of type (SR) or of type (R).
Hence the corresponding subalgebra g(Z) (cf. Theorem IV.1(iii)) is isomorphic
to sl(2,R).

We consider the space

Then the fact that v is an ideal implies that [s%,t%] C v+ hence shows that
V' is invariant under g(Z). Suppose that t® # {0}. Then a(&) = 2 implies that
there exists a simple g(Z)-submodule W C V' of odd dimension intersecting t®
non-trivially. We write

W =o'

wi
j=-—m'r
where the subspaces W7 := W N t/® are one-dimensional. Since g(Z) is 7-
invariant, the subspace 7(W) of t is also a g(Z)-submodule. Hence the irre-

ducibility of W implies that either W N7(W) = {0} or W = 7(W).



KROTZ AND NEEB 117

Case 1: 7(W) =W. Let 0 # Xo € W! =W Nt®. Now cone potential and the
T-invariance of W imply the existence of an element 3 € a* such that ¢ |y xw
is non-degenerate (Proposition VIL.7(iii)).

In view of Proposition VIL.7(i), the skew-symmetric bilinear form ¢ |
wxw is invariant for g(Z). Since W is odd-dimensional, this contradicts the
fact that an irreducible s[(2, R)-module has an invariant skew-symmetric bilinear
form if and only if it is even dimensional (cf. [1, Ch. 8, §7, no. 5, Prop. 12]).
Case 2: 7(W)N W = {0}. Then we consider the g(Z)-submodule W o=
W +7(W) C[g(Z),t] Cn. Let 0# Xg € WO. Then W := Wi 47(W ) C vie
and therefore -

Xo—7(Xo) e W'NngnNnCanncCj3(g).

We conclude that Xy — 7(Xp) and therefore X, commutes with g(Z), contra-
dicting the fact that W is a non-trivial simple g(Z)-module. ]

Corollary VII.9. If (g,7) has cone potential, then A is split, and
(7.1) A, ={aeA:g*Ct} and Agz={a€ A:g® Cs},

where s in an a-invariant Levi complement.

Proof.  Firstly Proposition VII.8 shows that (7.1) holds. Now this and the
fact that g has cone potential implies that A is split (cf. Proposition IV.8(ii)).m

Proposition VII.10.  Suppose that a is mazimal abelian in q and that b0 is
compactly embedded in g. If ty C h° is a Cartan subalgebra, then t:= ty +ia is
a compactly embedded Cartan subalgebra of g¢ = b + iq.

Proof. From the fact that h° is compactly embedded it follows in particular
that t; is abelian, and hence that t is abelian. It is clear that t is compactly
embedded in g¢. That it is maximal abelian follows from

3ge (1) = 3ge(ty) N3ge(ia) = 3o (ty) @ ia = t, B ia. u

Definition VII.11. Let g be a Lie algebra and V a finite dimensional
real g-module, where the module structure is defined by the representation
p:g — gl(V). Then we say that V is of compact type if the group (ef(®)
has compact closure.

In this sense a subalgebra b of g is compactly embedded if and only if
g is a b-module of compact type.

Note that the class of modules of compact type is invariant under taking
submodules, quotients, direct sums, tensor products etc. [ ]

Proposition VII.12. If the symmetric Lie algebra (g,7T) has strict cone
potential, then the following assertions hold:

(i) qr and q are b°-modules of compact type.

(ii) If, in addition, (g, 7) is effective, then §° is compactly embedded and
np = {0}.
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Proof. (i) First we show that each root space g® is an h°-module of compact
type. In fact, if « € Ag, then, in view of Proposition VIL.8, the fact that g has
cone potential implies that the form k., is definite on g* (Proposition IV.7(vi)).
Since this form is preserved by h°, the module g® is of compact type.

Now let o € A,. Then we use the strict cone potential to see that for
an appropriate § € aj the form Y8 on g® is positive definite (cf. Proposition
VIL.7). Now the invariance of this form under h° (Proposition VIL.7(ii)) shows
that g® is a module of compact type.

Since the projection pq:g — q, X — %(X — T(X)) is h-equivariant and

g=a0 P -7)0"

a€A

we conclude that q is an h°-module of compact type. Therefore q ® q and
hence [q,q] C b are h%-modules of compact type, whence qz;, = q + [q,q] is an
H%-module of compact type.
(ii) If (g,7) is effective, then the representation adq of b is faithful. Thus we
can embed b via adg in the h?-module gl(q) of compact type. It follows that
h? is compactly embedded in b, and therefore that h° is compactly embedded
in g.

Since the subalgebra ng is on the one hand side is compactly embedded
and on the other hand n is a nilpotent ideal, so that all operators ad X, X € n

are nilpotent, it follows that ng = 3p. Now the effectiveness implies that

3p = {0}. u

Corollary VII.13. If (g,7) is an effective symmetric Lie algebra with strong
cone potential and t, is a Cartan subalgebra of §°, then t:= ty + a is Cartan
subalgebra of g and t° := ty +ia is a compactly embedded Cartan subalgebra of

C

gc.
Proof. We only have to combine Proposition VII.10 with Proposition
VIL.12(ii). ]

Covariant forms on modules

Now we are going to describe the fine structure of quasihermitian Lie algebras

with strong cone potential. But first we need some information about covariant
forms and (NCC) Lie algebras.

Lemma VII.14. Let (g,7) be a semisimple symmetric Lie algebra, 0 a Cartan
involution commuting with 7, 7 := 071, and V a finite dimensional irreducible
real g-module. Let further ¢ be a T-covariant symmetric (skew-symmetric)
bilinear form on V' and assume that there exists a non-trivial ¢ -symmetric (skew-
symmetric) T -intertwiner. Then each T -covariant symmetric bilinear form on
V' is a multiple of ¢.

Proof. @ We prove the assertion for the case where ¢ is symmetric. The other
case can be proved in the same way. Let A be a non-zero ¢-symmetric 7-
intertwiner and p the representation of g defining the module structure on V.
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Then the form ¢4 is symmetric and #-covariant (Lemma VII.13). Using Weyl’s
unitary trick, we also find a #-covariant positive definite form ¢ on V (Lemma
1.9(ii)). Now we can write ¢4 = 1p for a ¥ -symmetric operator B and get

Y(B.(X.v),w) = p(X.v,w) = —pp(v,0(X).w)
= —(B.w,8(X).w) = ¢(X.(Bv),w),

so that the positive definiteness of ¢ implies that p(X)B = Bp(X) for all X € g.
Since B is i -symmetric, it is diagonalizable and all its eigenspaces are invariant
under g. Therefore the irreducibility of V' implies that B = A1 with A # 0. So
¢4 is a definite form.

If 5 is also 7T-covariant, then gA = pu¢a, and finally 5 = p¢. This
completes the proof. [ ]

Let p:g — gl(V) be a finite dimensional real representation of a (NCC)
Lie algebra g. Then, according to Lemma 1.9(ii), the element p(H) is diagonal-
izable. For every € R we denote by V), the corresponding eigenspace of p(H)
and obtain the decomposition

V=PV

neR

Proposition VII.15. Let (g,7) be a (NCC) symmetric Lie algebra and
p:g — gl(V) a finite dimensional irreducible real representation. Then the
following assertions hold:

(i) If X € R is the maximal eigenvalue of p(H), then Specp(H) C
A — 2Np.

(ii) There exists an, up to scalar multiple unique, non-trivial T -covariant

symmetric bilinear form ¢ on V. This form can be normalized in such a way
that

8| positive definite, if n is even,
Va-2n negative definite, if n is odd.
Proof. (i) From the triangular decomposition of g (Proposition V.6(ii)) we
deduce that
M = D Va2
’I’LGNO

is a non-trivial submodule of V. Hence irreducibility yields M = V.

(ii) By Weyl’s unitary trick we find a #-covariant scalar product ¢ on V' (Lemma
1.9(ii)). Then the operator p(H) — A is ¢ -symmetric with even eigenvalues.
Therefore

A= i3 (pm=2)

is t-symmetric with 42 = 1. Moreover, Proposition V.6(iii) implies that A is
a 7%-intertwiner. Now the form ¢ := 14 is symmetric and 7-covariant (Lemma
VIL.5) and Lemma VII.14 shows that such a form is unique up to a scalar multiple.
The statement on the signs of ¢ now follows from A.v = (—1)"v for v € V)_o, |
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Suppose that (g,7) is (CT) and p:g — gl(V) is an irreducible finite
dimensional real representation. Then Lemma V.7(i) and finite dimensional
s[(2, R)-representation theory imply that Spec(7) C Z. In the same way as
in Proposition VIL.15 we obtain that either Spec (p(T')) C 2Z or Spec (p(T')) C
27 4+ 1. In the first case we call V' even, and we call it odd in the latter case.

Proposition VII.16. Let (g,7) be a (CT) symmetric Lie algebra and p: g —
gl(V) an irreducible finite dimensional real representation. Then the following
cases arise:
(1) If V is odd, then there exists a one-dimensional space of skew symmetric
g-invariant forms on V.
(2) If V is even and D := Endy(V), then D = R,C,H and in all cases
the space of invariant symplectic forms is parametrized by Dy, = {d €
D:d = —d} as follows. Let v be a 6 -covariant scalar product on V .
Then d' = —d holds for all d € D and (q)c with C = e3PWU) s the
corresponding g-invariant skew-symmetric form.

Proof. (1) Let V be an odd g-module and ¢ be a non-trivial 7-covariant
form on V' (Proposition VII.15(ii)). We extend ¢ to a hermitian form on V¢

which is also denoted by ¢ and define B: = e'2 (r(m-1) _ ie’sP(T) | Since p(T)
is ¢-skew-hermitian, ip(T') is ¢-hermitian, and therefore e'2P(T) is ¢-hermitian
which implies that B is ¢-skew-hermitian. Moreover B? = 1, B leaves V
invariant, and it is a 7-intertwiner, so that Lemma VII.5 shows that Q := ¢p
is a non-degenerate skew-symmetric g-invariant form on V. Furthermore the
uniqueness up to scalar multiple follows from the uniqueness of ¢ because for
each g-invariant skew-symmetric form 2 the form p is symmetric and 7-
covariant, where on the other side Qp = ¢ppg2 = ¢.

(2) Now we assume that V' is even and that v is a @-covariant scalar product
on V (cf. Lemma 1.9(ii)). For d € D and X € g we then obtain

dTp(X) = —(p(0.X)d) " = —(dp(0.X))" = p(X)d"

which shows that D is invariant under taking transposes. It is clear that R1 C D
consists of symmetric elements. Moreover, if D = C,H, then the compactness
of the one-parameter subgroups e®? for d = —d implies that d cannot be
symmetric. Hence R1 = {d € D:d" = d}. Now the classification of the
involutions on C and H implies that d' = —d for all d € . According to
Lemma VIL.5, the #-covariant skew-symmetric forms on V' are given by g4,
d € Djy. Furthermore the operator C = ezPWU) is a @-intertwiner which is
Y-skew-symmetric. Hence the forms (¢4)c = (¢¥¢)q are g-invariant and skew-
symmetric, and reversing the construction, it follows that these are all such forms.

]

We note that in terms of the classification scheme for symplectic g-
modules described in [14], the preceding result means that whenever an even g-
module carries an invariant symplectic form, then it is of type C;; or Hj;;. These
observations will be quite important for a classification of the quasihermitian
symmetric Lie algebras with strong cone potential. To see how such Lie algebras
may look like, we use the preceding proposition to construct an important class
of examples.
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Example VII.17. (a) Let (s,7) be a symmetric (CT) Lie algebra and V' an
irreducible odd real g-module. Further let €2 be a non-trivial skew symmetric
invariant form on V', which exists by Proposition VII.16. We consider the Lie
algebra hy: =V @& R with the bracket

[(v,5), (w, t)]: = (0,Q2(v,w))

and put
g:= bV X S.

We extend 7 to an involution on g by setting 7 |;) = —id;g) and 7|y =
ie'zP(T)  where p denotes the representation of s on V. This turns g into a
symmetric Lie algebra (g, 7). Since, in view of Proposition VII.15(iii), the 7-
covariant form ¢(v,w) := Q(7(v),w) is definite on the root spaces V%, we see
that (g,7) has cone potential. Furthermore Proposition VII.15(ii) shows that
(g,7) has strong cone potential if and only if Spec (p(T))) = {1, —1}.

(b) (The symmetric Jacobi algebra) We consider the symmetric (CT) Lie algebra
(sp(n,R),T), where 7 is given by conjugation with I,,,,. Let V = R?" be the
irreducible module for the standard representation of sp(n, R). Here the invariant
skew symmetric form €2 on V' is given by the matrix

0o I,
-1, 0 )°
Moreover the involution on V' is given by 7|y = I, and by is the (2n + 1)-
dimensional Heisenberg algebra b, . We call the symmetric Lie algebra given
by
(hsp(n, R), 7) := (b, x sp(n, R), 7)

the symmetric Jacobi algebra. Note that Spec(T) = {—1,1}, so that the Lie
algebra (hsp(n,R), ) has strong cone potential. ]

Theorem VII.18. (The Short String Theorem) Let (g, 7) be a quasihermitian
symmetric Lie algebra with strong cone potential, AT be a p-adapted positive
system, and o € A, f € A,. Then the following assertions hold:

(i) The B-string through o has at most length 2 and contains at most one
positive and one negative root. If o, 3 are positive, then a+ 08 ¢ A, a—p3 € A-
whenever it is a root, and {(a, 3) > 0.

(i) If

pe= P 0% pi= P o% and p*=pF 4y,

ozEApi aeA}

then [p*,p*] = {0} and [p3",pT] C p;

(iii) Cmin(A+> g CmaX(A+) .
Proof. (i) Let 0 # Z € g# and g(Z) the corresponding 3-dimensional
symmetric Lie algebra of type (SR). Note that g(Z) is (NCC). Since (g,7) has
strong cone potential, we find v € aj such that 7 is positive definite on the
positive root spaces and negative definite on the negative root spaces.
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We consider the g(Z)-submodule V := Y _ «®*™0 of v. If W C V
is an irreducible submodule of maximal dimension, then W intersects each root
space in V', and the restriction of 7 to W is a non-degenerate 7-covariant
symmetric bilinear form (Proposition VII.7(ii)). Hence Proposition VII.15(ii)
implies that 17 has alternating signs on the (-eigenspaces in W. This proves
that V' contains at most one positive and at most one negative root space, hence
that the length of the (-string through « has at most length 2 and contains
at most one positive and one negative root. From that the assertions of (i) are
clear.

(ii) First [pf, pd] = {0} is a consequence of the cone potential of (g,7) (Propo-
sition VIL.2). Further the p-adaptedness of A and the semisimplicity of s im-
ply that [pf,pd] = {0} (cf. Proposition V.9(vii)). Finally [pf,pd] = {0} and
[pF,pZ] C pt follow from (i).

(iii) The asserted statement is equivalent to

(7.2) a([X5,7(Xp)]) >0  forall a,8 € A, X5 € ¢°,

If 3 € A}, then (7.2) means that a(f) > 0. If this is false, then Corollary
V.3 implies that « + (3 is a root. For o € A this contradicts (i), and for
o € Al this contradicts Proposition V.9(vii). If a € A} and § € Af, then
(X3, 7(Xg)] € 3(g) implies that a([Xg,7(X3)]) = 0. This completes the proof.m

VIII. Convexity theorems

The canonical extension of a symmetric Lie algebra

Let (g,7) be a symmetric Lie algebra. We think of (g,7) as sitting in the
symmetric Lie algebra (gc,7), where 7 denotes the antilinear extension of T,
i.e., complex conjugation with respect to the real form g¢ of gc. We also write
X = #(X) for X € gc. The inclusion (g,7) — (gc,7) is an embedding of
symmetric Lie algebras. We call (gc,7) the canonical extension of (g,7) and
q := q+ ibh the canonical extension of q. The complex linear extension of 7 is
again denoted by 7. Note that 7|; = 7.

For the remainder of this section we assume that (g, 7) is quasihermitian.

Theorem VIII.1. (The Inheritage Theorem) Let (g,7) be a quasihermitian
symmetric Lie algebra, a C q a mazimal hyperbolic abelian subspace, AT be
a p-adapted positive system, and assume that §° is compactly embedded in g.
Then the following assertions hold:

(i) If ty C bo is a Cartan subalgebra, then a = a+ ity is a mazimal
hyperbolic abelian and maximal abelian subspace a C q.

(ii) If p is a mazimal hyperbolic Lie triple system in q containing a,
then

p=p+ilp,p] +ih°
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is a mazimal hyperbolic Lie triple system in q, we have 3(p) C 3(p), and
35(3(p)) = p. In particular (gc,7) is quasihermitian and p is the unique mazi-
mal hyperbolic Lie triple system containing a.

(iii) There exists a p-adapted positive system At C A(gc,a) which is
compatible with AT in the sense that

At =A%, —r1(AD) =AF, and Ap={aecA:al, e ALU{0}}.

(iv) If W is the Weyl group of @, then there exists for each v € W a
5y e W with FoT|lg=Tlaoy and ¥|qa =7
(v) If pg:a* — a* denotes the restriction map and A, = pyt(a) for
a €A, then (g%)c = Dgea., gé.
(vi) If At is compatible with AT as in (iil) and Cuin, resp. Cuax, is
the corresponding minimal, resp. maximal, cone, then
(a) CA'min Na= pa(émin> = Cmin-
(b) Cmax Na= pa(Crnax) = Cmax~
(¢) Chuax € Chhax-
<+ <
(d) pa(cone(A,)) = cone(A}).
(vii) If, in addition, (g, T) is effective with strong cone potential, then

(

(b) Ciin € Chax, and

( ) émin,z - C’min,z .
Proof. (i) This follows from Proposition VII.10.
(ii) To see that p is a maximal hyperbolic Lie triple system in §q, we show that
B¢ :=ip = ip + [p,p] + b° is a maximal compactly embedded subalgebra of g¢
(cf. Corollary II1.8). To this end we may assume that p is constructed as in
Proposition I11.5(iv) as p = a, @ ps, where a, = aNt, s is a 7-a-invariant Levi
complement, s = s¢ @5, is a 7-invariant Cartan decomposition, and ps = (sp)4-

a) the symmetric Lie algebra (gc,T) has strong cone potential,
c

First we consider the semisimple symmetric Lie algebra (s,7). It is a
quasihermitian semisimple symmetric Lie algebra for which sg is compactly em-
bedded. Now s{ := (s¢)y + i(sp)q is a maximal compactly embedded subalgebra
of 5 = sy +isq. Since the subalgebra (sy)q + i[(sp)q, (5p)q] of s¢ is an ideal
(Lemma I1.7), we have (s¢)y = S50 © [(Sp)q, (5p)q], Where s is an ideal of s§,
hence contained in sg. This proves that s§{ C ips, and the maximality of s§
gives equality.

Since s is 7-a-invariant, we have g° = t? x s and hence h* = tg X 5%.
From [t),5%] C s* Nt = {0} and g* = s for all a € A, (Corollary VIL9), it
follows that tg commutes with s, and therefore with p,. Hence

p=(t) ®ac) @ (pNsc)

is a direct sum of Lie algebras. We have already seen above that (ip) N s¢
is maximal compactly embedded in s¢. Let £ D ¥ be a maximal compactly
embedded subalgebra containing ip. Projecting onto s¢ along t© and using the
maximality of €N s® proves that € C ¢+ (¢ Ns°), hence that

E=(ENt) @ (N s°).
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Now the compactness of the Lie algebra ¥ shows that ENte is central in E, hence
contained in 3 (ia) = tg @ ia, = £ Nr°. We conclude that € = £ and hence
that £° is maximal compactly embedded in g°.

It remains to show that p = 35(3(p)). The construction of p shows that
3(p) C 3(p) because 3(p) C a commutes with h°. The converse inclusion will be
proved in (iii) below.
(iii) From the construction of p in (ii) and the definition of the compact roots,

it follows that
pe=tt=("c® P (8")c
OéEAk
Therefore
Ak ={pf e A:ﬁ|Cl € Ay U{0}} and consequently An ={p e A:ma €A}

This shows in particular that Ay = {3 € A:p | ;) = 0} and hence that
3ac (3(p)) = £&. From that we conclude in particular that

3a(3(p)) =9

which completes the proof of (ii).

Now it is easy to find a compatible p-adapted positive system in A. We
simply choose Xg € CY .. and note that no non-compact root in A, vanishes on
Xo. Then we pick X; € C°__ near to X, such that no root in A vanishes on X
and, in addition, all non-compact roots which are positive on X are still positive
on X;. Then we pick X5 € a near to X; such that no root in A vanishes on
X5 and, in addition, all roots which are positive on X are still positive on Xs.
We put At := {a € A:a(X5) > 0} and obtain a positive p-adapted system
satisfying all the requirements if we define AT = {a € A:a(X;) > 0}. Note in
particular that —7 leaves A;{ invariant because A,J[ ={a € A:a(Xp) >0} and
—T(X0> = X()

(iv) Let v € W and 5 € Nin ([, p})( a) be an element with v = 7|, (Lemma
I11.6). Then 7.h° = h°, and since 7. ty is another compactly embedded Cartan
subalgebra of h¥, there exists an inner automorphism o € Inng(b ) with o75.ty =
ty. Then 07|, = a and o7 normalizes a = a + it,. Therefore ¥ := 07| € W
satisfies § |, = 7y

(v) This follows from the a-invariance of (g%)c.

(vi) We start by proving the first equality in (a) and (b). Note that the finite
group L := {1, —T} operates on a with fixed point set a and leaves the convex
sets C’mm and C’max invariant because it preserves A+ Hence the assertion
follows from ([5, Prop. 1.6]). Now we establish the statements concerning Cyax -
The second equality in (b) follows from A} [, = AT, Let X € O} » Which
means that a(X) > 0 for all @ € A, Then 3(X) >0 for all 8 € A} and thus
X e C°, . This proves (c).

Next we show that pa(é'min) C Chin- Let a € A}, B € A with Bla = a,
and Xg € gé C (g*)c. Write Xg =Yg +iZg, where Yz, Zg € g*. Then

(X, 7(Xp)] = [Yp +iZ3, 7(Yp) —i7(Zp)]
(8.1) = V3 (Vo)) + [Z5. 7(Zo)] + i(1Z5, 7(Vo)] + [r(Z5). Vo))

hd D

GCmin Elth
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A

Hence pq([Xg,7.X3]) € Crin, which yields pa(Cimin) € Ciin -

Now we prove the converse inclusion Ch, C C’min. Let o € A;t,
Xo € g% and write Xo = > 5.4 Xp with X € gg according to (v). We
compute

(X T(Xa)) = [Xa, F(Xa) = D X, 7(Xp) + D [Xs,7(X5)].
BeA, B#VEA,

Since the last summand above is contained in [@, gc], it vanishes, and so the
desired inclusion follows.

To see that (d) holds, let a € A;C", B=als,and X, =Y3+1iZs € g¢,
where Y3, Z5 € g° and & = [7.X,, X,]. As above we obtain

This proves (d).
(vii) First we prove (c). Let Xz € té. Then the second term of (8.1) vanishes
since [n,n] C 3(g)q (Proposition VII.2(iii)), and thus

(8-2) (X5, 7(Xp)] = [Y5, 7(Yp)] + [Z5, 7(Z5)] € Crain-

S0 Chin.z = Cuin.z and (c) is established.
Next we show that (gc,7) has cone potential, i.e.,

(8.3) (X5, 7(X3)] #0  for 0#Xzegl geA

We have already seen that (gc,7) is quasihermitian, so that A splits (Proposition
V.9(ii)). Hence (8.3) follows from formula (8.1) and the pointedness of Cinin. As
C’min’z = Chin,, is pointed, the cone potential of (gc,7) implies that it has in
fact strong cone potential. Now Cinin € Ciax follows from Theorem VII.18(iii).m

Remark VIIL.2. The structure of the root decomposition of gc with respect
to a is in general much simpler than that of the root decomposition of g with
respect to a. This is mainly due to the fact that here we always have that

~ ~

A, ={aeAgt Crcl, A,={aeAigl Csc},

and

Ak:{aEA:g%Q?%}

(cf. [13, Sect. IT] or [19, Ch. V]). We also note that in this case there exists a
p-adapted positive system if and only if 34¢ (3(¢°)) = € which means that the Lie
algebra g° is quasihermitian. It is instructive to note that here the conditions
(1) and (2) of Proposition V.10 are always satisfied so that the condition that
(gc, 7), resp. the Lie algebra g¢, is quasihermitian reduces to the existence of a
p-adapted, resp. £°-adapted, positive system. [ ]
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Reduced symmetric Lie algebras

For w € q* we write O,:= Inng(h)*.w for the coadjoint orbit of w in q*. The
next concept will be a crucial tool in the following (cf. [17, Def. II1.9] for the
group case).

Definition VIIIL.3. We fix a p-adapted positive system AT and consider
*. as acone in a* C g*. Then the largest ideal b = b(A}) in (CX, )t =
{X €g:(X,Cr,;,) ={0}} is called the associated ideal of degeneracy. We note

that b is automatically 7-invariant because —7(Chin) = Chin - ]

Lemma VIIL.4. If (g,7) is quasihermitian, AT a p-adapted positive system,
and b C g a T-invariant ideal, then the following assertions hold:

(i) If m:g — g/b is the quotient homomorphism, then w(a) is a mazimal
hyperbolic abelian and mazimal abelian subspace of 7(q), AT = {a € At:g* #
b} is a p-adapted positive system with respect to w(a), Ag1 = A N Ay is the
corresponding system of compact roots, and A, 1 := A, N Ay the corresponding
system of non-compact roots. The corresponding minimal cone Cpin,1 coincides
with 7(Cin) -

If, in addition, b = b(A}) is the ideal of degeneracy, then

(i) b= H(Cmin) ® b) ® Pep b, where b* Ct* and X € b* implies
that [ X, 7(X)] € H(Chin),

(iii) 7(Chin) s closed and pointed, and the ideal of degeneracy of g/b
with respect to AT is trivial.

Proof. (i) We write ¢; := 7(c) for a subspace ¢ C g and 7y for the involution
induced by 7 on g; = g/b. It follows from Lemma III.11 that a; is a maximal
hyperbolic abelian subspace and maximal abelian in ¢;, and that p; is a maximal
hyperbolic Lie triple system in ¢;. From the decomposition p = 3(p) @ [p, [p, p]]
we obtain p; = 3(p)1 @ [pl, [pl,plﬂ so that 3(p); C 3(p1) implies that 3(p1) =
3(p)1. The fact that (g,7) is quasihermitian implies that q = p @ [3(p), h] which
gives q1 = p1 @ [3(p1), b1], and therefore 34, (3(p1)) = p1 follows from the fact
that g; is a semisimple 3(g;)-module. This proves that (g1, 71) is quasihermitian.
Now the assertions on the root system are consequences of p; = 7(p), and the
p1-adaptedness of AT follows from the p-adaptedness of A*. The formula
describing the minimal cone follows from 7(g®) = g{ for @ € A; and from
TOT =TLOT.

(ii) Since b is an ideal, it is in particular invariant under a, hence decomposes
according to the root space decomposition, i.e., b = b @ Doca b

According to the definition of b we have bna C (C*; )*Na = H(Cpin) -
To see the converse, it suffices to prove that H(Cpin) C 3(g) whenever (g,7)
is quasihermitian. In fact, in Proposition V.9(vii) we have seen that Cinp C
(A;; )*. Let n C g denote the maximal nilpotent ideal. Then n is 7-invariant,
nNa = 3(g)g, and (g/n,74/m) is reductive and quasihermitian (Proposition

V.9(v)). Now Proposition V.9(vii) shows that that the corresponding cone
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Chin,1 € a/(anmn) is pointed because only the irreducible components of type
(NCC) contribute to Chin. We conclude that H(Chin) € ann C 3(g) and this
proves that bNa = H(Cyin)-

For X € b“ we have

(X, 7.X] € bNa=H(Cunn) C 3(a).

Thus we conclude from Proposition IV.7(v) that the form &, is degenerate of all
root spaces b®. Since b = (bNt)+ (bNs) holds for any Levi complement s (|1,
Ch. 1, §6, no. 8, Cor. 4]) and bNs is an ideal of s, we conclude that b C t®.

(iii) In view of (i), we have Chin,1 = 7(Cmin) and therefore

Fin1 = T(Cmin) = Coin + (060 8) = Cliins

where we identify ai with the subspace (bna)®t of a*. Similarly we identify g
with the subspace bt C g*. Then the definition of b shows that

b= (Inng(g)*.C’;ﬂn)L
which is equivalent to the fact that

g1 = bt = span (Inng(g)*.C’;in) = span (Inngl(gl).é’;in),

and this shows that the ideal of degeneracy in g; is trivial, hence in particular
that Cpin,1 is pointed.

That 7(Chin) is closed follows from the fact that b N Cin = H(Cin)
is a vector space which implies that b 4+ Cpi, is a closed convex cone in g (cf.
[5, Prop. 1.4]). u

For every o € A we define t(y):={Z € v* : [Z,7(Z)] = 0}. Note that
in general t('y, is not a vector space (cf. Example IV.10(b)).

Lemma VIIL.5. If C\i, s pointed, then

(i) the set t('4) is a vector space, [r(O‘A),g_O‘] - ng, and

(i) [x24), 0] S € if B # —a.

(iii) If, in addition, [n,n] C 3(g), then [¢0y), 8% S if B # —a.
Proof. (i) Let X € tlyy) and Y € g%. We consider the expression

X+Y,7(X)+ 7)) =Y, 7(Y)] + ([X,7(Y)] + [Y, 7(X))).

We see that the right hand side of this equation is linear in X . Since the left
hand side is contained in Cl,in, it follows from the pointedness of C,;, that the
expression in brackets must vanish. We conclude that 7([X,7(Y)]) = [X, 7(Y)],
which establishes the second assertion because [g,t] C n. Finally, the first
statement drops out if we choose Y € t(O‘A).
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(i) For X € t{y) and Y € th) we have

(1, Y], [r(X), (V)] = [[1X, Y], 70O, 7(V)] + [0, [1X, Y], 7))
€ [gﬁ,t(_f)] + [t 8% S .

Therefore the assertion follows from [[X,Y],[7(X),7(Y)]] € hna={0}.
(ili) For X € ¢, and V" € g® we now have

so we can argue as in (ii). u

We call (g,7) or, more precisely, (g,7,A) reduced if the associated
ideal of degeneracy is trivial. For every element in w € a* we denote by d(w) the
largest ideal in kerw. Note that d(w) is 7-invariant. We write m for the quotient
homomorphism from g onto g/0(w). We call the Lie algebra g(w) = m(g) the
strictly reduced Lie algebra associated to w. Finally w € a* is called strictly
reduced if 9(w) = {0}. Note that the 7-invariance of 0(w) implies that the
symmetric structure is inherited by g(w) and that a(w): = m(a) is a maximal
hyperbolic and maximal abelian subspace in q(w): = 7(q) (Lemma III.11).

Proposition VIIL.6.  For a quasihermitian symmetric Lie algebra (g,T) the
following assertions hold:

(i) If (g,7) is strictly reduced for an element w € C¥. , then (g,7) is
reduced.

(ii) If (g, 7) is reduced, then it is effective and has strong cone potential.
In particular, [n,n] C 3(g), nyg = {0} and a can be extended to a Cartan

subalgebra t such that t¢ C g° is a compactly embedded Cartan subalgebra.

Proof. (i) This is clear because the ideal of degeneracy b is contained in kerw
for all w e Cx

(ii) Obviously (g, 7) is effective. Suppose that (g, 7) has cone potential. Then the
pointedness of Cl,;, implies strong cone potential and the remaining assertions
follow from Proposition VII.12 and Corollary VII.13.

It remains to show that (g,7) has cone potential. First we show that
[n,n] C 3(g). Let k& be the length of n and assume that k£ > 2. According to [5,
Lemma 7.13], the ideal j := n*~! is abelian but not central because n* # {0}.

Since j is a-invariant, it decomposes under the root decomposition as
i=i"® Pi
Note that j* C tE"A) because j is abelian. We claim that

i =i e i

a€EA



KROTZ AND NEEB 129

is a 7-invariant ideal of g. In fact, it is clear that j’ is invariant under g° = a®h®,
and the invariance under the root spaces g® follows from Lemma VIIL5(i).
From j’ C (C*.,)" and the reducedness of (g,7,A}) we now conclude that
j ={0},ie,j=j) =jinacC 3(g). This contradiction shows that k < 2 and
[n,n] C 3(n). If j := [n,n] is not contained in 3(g), we can argue as above and
get a contradiction. Thus we have shown that [n,n] C 3(g).

Let v € int C};, and note that such a functional exists because Ciyin

is pointed which in turn follows from the assumption that (g,7) is reduced (cf.
Lemma VIII.4). Now the form

PYiinxn—-R, (X,Y)—~(X,7.Y])

is 7-covariant and semidefinite on each root space (cf. proof of Proposition VIL.7).
Therefore nt := nt¥" is an ideal of g. Moreover we have nt Nn® = n(O‘A). On

the other hand n® = n) +n) = ny 4 3(g)q, so that [n°,n°] € np C kery. We

conclude that
nt=n"+ Z n‘(J‘A)
aEA

is an ideal of g. By the same argument as above, we see that ng + D nen n(O‘A)
is also an ideal, which has to vanish because (g,7,A}) is reduced. Therefore
nyy = {0} for all o € A.

Let Z € g“ be of type (A). Since A is split, Proposition IV.7(vi) implies
that Z € t{;, = {0}. This proves that (g,7) has cone potential. n

In the remainder of this subsection we give some information about the
structure of Cl,;, needed later on. We are in particular interested in the case
where Chyi, coincides with the convex hull of the set {[X,, 7(Xo)]: Xo € g%, a €
A}, As has been shown in [17, Ex. IIL.8], this is not always the case. But, as
the next lemma shows, the situation is rather well behaved if C|.;, is pointed.

Lemma VIIL.7. If C\i, s pointed, then

Cmin: Z R+d+ Z Con

gazsa g&#sa

where Cy:= conv({[Xa, 7(Xo)]: Xo € 9°}). If By C g is a 0-neighborhood,
then
conv({[X,7(X)]: X € Ba})

is a 0-neighborhood in C,, .

Proof. This can be proved in the same way as Lemma III.7 in [17]. One only

has to replace the expressions i[X, X| by [X,7(X)]. n

The convexity theorems
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Theorem VIIIL.8. (Convexity Theorem, coadjoint version) Let (g,7) be
a quasihermitian symmetric Lie algebra, AV a p-adapted positive system and
suppose that g is strictly reduced for w € C*. . Then

Par(O,) = conv(W.w) + cone(A) C conv(W.w) + cone(A}),

where AL = {a € AL : (Fy e W)(FX, € g°) (w,7.[Xa, T(X4)]) < 0}.

Proof. To use [7, Cor. 5.25], we note that the assumption about the pointed-

ness of C . in this corollary is superfluous. According to Proposition VIII.6(ii),

the assumptions of [7, Cor. 5.25] are satisfied and we get the asserted formula.m

Corollary VIIL.9. If (g,7) is quasihermitian and w € C*. , then

pa- (Ou) € conv(W.w) + cone(A})).

Proof. By the isomorphism g(w)* = d(w)+ C g* we realize the coadjoint

orbit O, in g(w)*. Under this identification we have A(w) C A, where A(w)
denotes the root system w.r.t. a(w) induced by A, g(w) is quasihermitian, and
A(w)T := ATNA(w) is p-adapted (Lemma VIIL.4(i)). Now the inclusion follows
from Theorem VIIL.8. |

Theorem VIIL.10. (Convexity Theorem, adjoint version) Let A™ be a p-
adapted positive system with Cpin C Cmax- Then for X € C°. and the adjoint
orbit Ox =Inng(h).X the following formula holds:

conv (Ox) Na = pa(conv(Ox)) = conv(W.X) + Crin.

Proof. (cf. [17, Th. 3.12]) Since the cone
C :={X € Cpax : Va € Af) a(X) > 0}

is a fundamental domain for the Weyl group action (cf. [19, Prop. II11.2.7(i)]), we
may assume that X € C'.

We will prove the chain of inclusions
conv (Ox)Na C p, (ConV(OX)) C conv(W.X) + Chin C conv (Ox)Na

where the first inclusion is trivial. Thus we start by proving the second inclusion.
Let w € C¥,, be such that w(@) < 0 for all & € A}. Then Corollary

min

VIIL.9 implies that
Par(Oy) C conv(W.w) + cone(A).
Therefore

(w,0x) = (Ou, X) = (pa+ (Ou), X)
C conv(W.w, X)) + RT = conv({w, W.X)) + R*.
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From W.X C X — cone(A}) ([19, Prop. I11.2.7(ii)]) we now get (w,Ox) C
w(X) + R*. This means that

pa(Ox) = X C (Crin N (—A;:)*)* = Chin — cone(A]) = Ciin — cone(A}),
since Chpin — COHGV(A:) is closed (cf. [19, Lemma II1.2.15]). Thus p,(Ox) C
X 4+ Chin — cone(AkJr) and therefore the closedness of the right hand side yields

Pa(conv(Ox)) C ﬂ v.(X 4 Croin — CODG(AZ_)) = conv(W.X) + Chuin
YEW

([19, Cor. 111.2.10)).
To complete the proof, we show that conv(W.X )+ Chin € conv(Ox)Na.
Let « € Al and Y € g% be a non-zero element. Then Lemma VI.1 shows that

pa(eR2VHTY) Xy — X 4 o(X)RY[Y,7.Y] = X + RT[Y, 7.Y]

because a(X) > 0. Let F := conv({[Xq4,7.Xo]:a € A} X, € g*}) and note
that this is a dense subcone of Cyin. Now by Proposition VI.3(iii) X + F C
conv(Oyx) and since Ox is W-invariant, we conclude that

conv(W.X)+ F = conv( W.(X + F)) + F = conv (W.(X + F)) C conv(Ox)Na.

As a consequence, we obtain conv(W.X )+ Cpin € conv(Ox)Na. This completes
the proof. [ ]

IX. Existence of hyperbolic invariant convex cones

Up to this section we have only considered consequences of the existence of
invariant hyperbolic convex sets in . In this section we will use the convexity
theorems of Section VIII to prove that hyperbolic invariant convex cones exist in
q if and only if (g, 7) is quasihermitian and Ciyi, € Cax holds for a p-adapted
positive system A™T. The latter condition is crucial for the applicability of the
convexity theorems and we have already seen in Theorem VI.6 that it is necessary.
Since there are only finitely many possibilities for positive systems, this condition
has the advantage that it can be checked quite easily by computing the cones
Chin and Ciax which usually is quite easy because it reduces to calculating the
brackets [X,7.X], X € g“.

Before we turn to the maximal cones, we need some preliminaries on
invariant convex sets.

Invariant convex sets and exposed points

In this subsection V' denotes a finite dimensional real vector space.
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Lemma IX.1. Let F CV be a non-empty closed subset and C := conv(F').
If H(C) = {0}, then there exists for each f € B(C)? an x € F with f(x) =
min f(C).

Proof. If f € B(C)°, then f|c is a proper function ([7, Cor. 1.13]). Since
F C C is closed, the function f|p is also proper. Now the fact that it is bounded
from below implies that there exists an x € F' with f(x) = min f(F"). Finally
the assertion follows from f(C) C [min f(F'), co|. n

We recall that a point x in a closed convex set C' C V is called exposed if
there exists a linear functional f € B(C) with {z} = {y € C: f(y) = min f(C)}.
We write Exp(C') for the set of exposed points of C'. A convex function ¢ on
a convex subset 2 of V is said to be strictly convez if it is not affine on any
non-trivial line segment, i.e., if z # y, x,y € Q and A €]0, 1] implies that

fOz 4+ (1 =XNy) <Af(z) + (1 =) f(y).

Proposition IX.2. Let Q2 CV be an open convex set, ¢: 2 — R be a strictly
convex function with ¢(xr) — oo whenever x — xg € 02, and O # F C Q a
closed subset of V' such that ¢|p is constant. Then

Exp (conv(F)) = F.

Proof. Since () is open, the function ¢ on 2 is continuous and the fact that it
tends to infinity at the boundary implies that the sets Q. := {z € C: ¢(x) < ¢}
are closed in V. Let ¢(F) = {co}. Then the convexity of ¢ implies that
conv(F') C Q.. , hence that

Co
D := conv(F) C Q., C Q.

If z € D, then 2+ H(D) C D. Therefore the convex function ¢ is bounded from
above on this affine subspace and therefore constant. Now the strict convexity
of ¢ implies that H(D) = {0}.

Let z € Exp(D) and f € B(D) with {z} ={y € D: f(y) = min f(D)}.
The closed convex set D contains the cone x +1lim(D) with vertex x. Therefore
f € lim(D)* and 0 is the unique minimum of f in lim(D). This proves that
f € intlim(D)*, hence, by [7, Lemma 1.9], that f € B(D)?. Now Lemma IX.1
shows that there exists y € F' with f(y) = min f(D), hence that x =y € F'.

It remains to show that F' C Exp(D). Solet x € F and f € V* a
subgradient of ¢ in z, i.e., ¢(x) + f(y —x) < ¢(y) for all y € Q. For the
existence of such functionals we refer to [19, Lemma I11.3.16]. For y € D\ {z}
we then have

fy) < F(@) + o(y) — ¢(x) = f(x) + ¢(y) —co < f(a).

If f(y) = f(z), then ¢(x) = ¢(y), so that ¢(x) = min¢p(D) and the strict
convexity of ¢ imply that x = y. Hence

{z} ={y € D:—f(y) = min (- f(D))}
shows that x € Exp(D). This proves that Exp(D) = F'. n
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Remark IX.3. Note that under the assumptions of Proposition I1X.2 the set
conv(F) is in general not closed. Let V = R?, Q =]0,00[?, ¢(x,y) = x—ly, and
F = {(n,1):n € N}. Then the points (1 +¢,1), ¢t > 0 are contained in the

closure of conv(F') but not in conv(F). u

Now we draw a general conclusion from Proposition 1X.2.

Theorem IX.4.  Let H be a group and m: H — SI(V) a representation with

closed image. Furthermore let Q CV' be an open convex subset with H(€) = {0}
which is H -invariant. Then for all x € Q the orbit H.x is closed and

Exp (conv(H.z)) = H.x.

Proof.  Using [19, Th. I11.5.4], we see that the characteristic function ¢q of
) defined by

date)i= [ ey (o)
B(Q)

where py« denotes Lebesgue measure on V* | has the following properties:
(1) ¢q is invariant under H because w(H) C SI(V).
(2) If z,, — x € 09, then ¢q(x,) — 0.
(3) ¢q is strictly convex.

Next we show that the orbit H.z is closed. We consider the vector
space V¥ := V x R, the cone C := cone(f2 x {1}) and the action of H given
by h.(v,t) := (h.v,t). Then C is a pointed closed convex cone in V*# which
is invariant under the action of H. Therefore the closedness of the orbit H.x
follows from [5, Prop. 1.12].

Since the characteristic function ¢q is H-invariant, it is constant on
H.x, and the assertion now follows from Proposition I1X.2. ]

Hyperbolicity of the maximal cone

Throughout this section (g,7) denotes a quasihermitian symmetric Lie algebra,
p C g amaximal hyperbolic Lie triple system, a C p a maximal abelian subspace,
and AT a p-adapted positive system.

We define

Wmax = ﬂ h“p;l(crnax) - {X € q:pa<OX) C Crnax}-
helnng(h)

Lemma IX.5. If Cuhin € Chax, then Wihax is a generating closed convex
invariant cone in q with pa(Wmnax) = Wnax N @ = Crax, and ng € Wiax.

Proof. As an intersection of closed convex cones, the cone Wy, is closed and
convex, and the invariance follows from the definition. Further it is clear that

Wmax Na g pa(Wmax) g Cmax~
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For X € C°

max

shows that

the adjoint version of the Convexity Theorem (Theorem VIII.10)

Pa(Ox) C conviW.X) + Ciin € Crax + Cimin € Crax
because Cpin € Crax- Hence CO. C Wi Na, and Crax € Winax N a follows
from the closedness of Wi,.x. This proves the stated equality. That Wy . has
interior points follows from Lemma VI.5(ii).

To see that ng € Wiax, let X € ng. Then Ox C ny and therefore
Pa(Ox) € pa(ng) S ngNa C 3(g)g = H(Cmax). This proves that X € Wiy,
whence ng € Wiax. [

Now the main problem is to show that the cone W, is in fact hyper-
bolic. Using that Wyax contains ng, we will reduce this question to the case
where (g, 7) is irreducible. We start with this case.

Proposition IX.6. If (g,7) is irreducible and quasihermitian, then the cone
Winax s hyperbolic.

Proof. According to the remark after Definition V.5, we have to consider two
cases. If (g,7) is (NCR), then A, = @, Cpax = a and therefore p = q = Wiax,
showing that Wi,.x is hyperbolic.

Now we assume that (g,7) is (NCC). First we show that Wiy is
pointed. We know already that W,.x is generating and different from q because
Ciax 7# a. If Wiy is not pointed, then H(Wyax) is a non-zero h-submodule
of q and Lemma IL.7(ii)(b) implies that H(Wyax) is isotropic with respect
to the Cartan-Killing form x. Since k is positive definite on a (Proposition
IV.7(ii)), we conclude from H(Cyax) € H(Wiax) that Cpax is pointed. There-
fore pq (H(Wmax)) C H(Cmax) = {0} shows that H(Wyax) is an h-submodule
of at* = [a,h]. Eventually the fact that (g,7) has cone potential (Proposition
V.9(viii)) and Proposition VII.2(iv) entail that H(Wyax) = {0}, i.e., that Winax
is pointed.

The fact that Wy,.x is pointed and generating implies that the dual cone
Wr.« € q* is also pointed and generating. Let § be a Cartan involution of g
commuting with 7. Then b is #-invariant and therefore reductive. For X € b
we therefore have

tradg X =trad X —trady X =0-0=0

and thus Inng(h)* C Sl(q*). To see that Inng(h) C Gl(q) is closed, we note
that ¢ = qr = q+ [q,q], so that the non-closedness of Inng(h) would imply
that Inng(h) is not closed. But Inng(g) = Aut(g)o is closed and therefore
Inng(h) = Aut(g)j is closed.

Now we can apply Theorem IX.4 with V = q*, H = Inng(h), and
0 = int WJ,,, and find that for each f € int W}, the coadjoint orbit Oy =

Inng(h)*.f is closed and satisfies

Exp (conv(Oy)) = Oy.
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From the definition of Wy,,x we also conclude that C} .. C Wx. . Na*
because X € Wiy and f € Ck, . implies that f(X) = (f,pa(X)) > 0. Using
the Inng(h)-equivariant isomorphism v:q — q* given by ¥(X)(Y) = r(X,Y)
obtained by the Cartan-Killing form, we see that we can use Proposition III.2
to show that for each element f € intCy,, with 34(¢7'(f)) = a we have
feintWxr, ..

Let f € intC*, . be such an element and X’ € W9

max max *

IX.1 implies that there exists an element f’ € Oy with

Then Lemma

(f', X" = min{conv(Oy), X').
Write f/ =~.f with v € Inng(h) and put X :=~~1.X’. Then
(f, X) = (', X") = min(conv(Oy), X) = min(Oy, X) = min(f, Ox).
Therefore f([h, X]) = {0} and thus

{0} = k(v (). [0, X]) = s(X, 07 ()], h)-

Since r is non-degenerate on b, this means that [X,¢~1(f)] = {0}, ie., X €a
by the choice of f. This proves that X’ € Ox is hyperbolic and therefore that
Wr?lax g qhyp . ||

Corollary IX.7. If (g,7) is reductive and quasihermitian, then the cone
Whnax 18 hyperbolic.

Proof. The reductive symmetric Lie algebra (g, 7) decomposes as a direct sum
of quasihermitian irreducible symmetric Lie algebras (Proposition V.9(v)) and so
do the cones Ci.x and Wiy . Therefore the assertion follows from Proposition
IX.6. ]

To pave the way from the reductive to the general case we will need the
following result on solvable symmetric Lie algebras.

Proposition IX.8.  Let (v,7) be a solvable symmetric Lie algebra, X1, Xs € 14
regular elements and t; := t%(ad X;) the corresponding Cartan subalgebras. Then
t; and t are conjugate under Inng(ty).

Proof. = We prove the proposition by induction over the dimension of v. Let
3 := 3(n) denote the center of the nilradical n of v. If v # {0}, then 3 is
a non-zero abelian ideal which is invariant under 7. Let t; := t/3 and write
m:v — t; for the quotient homomorphism. Then 7(X;) € q; := m(vq) are
regular elements in the Lie algebra g; ([1, Ch. 7, §2, no. 2, Prop. 8]) and
m(t;) = m(%(ad X;)) = v{(ad7(X;)). Hence our induction hypothesis implies
the existence of v € Inn, (vy,1) with y.7(t;) = 7(t2). Let 7 € Inn.(ry) with
moy =~vyom. Then 7(7.t;) = 7(tz2) shows that 7.t; C t; + 3. From now on we
may therefore w.l.o.g. assume that t; C t; + 3. Now t; and ty are 7-invariant
Cartan subalgebras of the solvable Lie algebra ts + 3. Hence there exists X € 3
with 24X ¢, = t5 ([1, Ch. 7, §3, no. 4, Th. 3]). The fact that the ideal 3 is
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abelian implies that (ad X)? = {0}. Therefore e*X =14 ad X and if we write
X = Xy + Xy with Xy € 3 and X € 34, we obtain

1N X = X 4 [ Xy, Xu] + [Xq, X1] € 2N = to = (f2)p © (t2)q-
—_—— ——

€tq €ty

We conclude that e2d%v. X; € t, and hence that t, = to(ad(eadx" .Xl)) =
e X0 t9(ad X;) = e Xv ;. Thus t; and t, are conjugate under Inn.(vy). ™

Theorem IX.9. If (g,7) is a quasihermitian symmetric Lie algebra and AT
a p-adapted positive system such that Cpin € Chax, then the cone Winax s
hyperbolic.

Proof. Let n denote the nilradical of g, g; := g/n, and m: g — g; the canon-
ical quotient map. Then Lemma VIIIL.4(i) implies that (g, 71) is quasihermitian
with root system {a € A:g® # n®} = A,;. Moreover Cin1 = T(Crin) € Cmax,1
follows from Cryin + (a N 1) € Chax € Chax,1- From Chax € Chpax,1 We also
conclude that m(Wpax) € Winax1 and hence that m(W2, ) C Wgax’l C Ghyp,1
(Corollary IX.7).

Let X € W2, . We have to show that X is hyperbolic, i.e., that it is
conjugate to an element in a. The preceding observations show that there exists
v € Inng, (h1) with v.7(X) € a;. Choosing 7 € Inng(h) with moy =yom, we
obtain 7(3.X) € a1, hence that ¥.X € 7~ *(a) Nq = a+n,, and we may w.l.o.g.
assume that X € a+ny.

Let @ := n+ a. Then 9 is 7-invariant so that (9,7 |,) is a solvable
symmetric Lie algebra. Since the fact that g is quasihermitian implies that A
is split (Proposition V.9(ii)), the compact roots do not contribute to n, and we
obtain the root decomposition

v=njoad P n".
aEA,

An element Y € 0 is regular if and only if the dimension of 2%(adY) =
ker(adY),, where (adY')s denote the semisimple part in the Jordan decom-
position of ad Y, is minimal. For Y € a and Z € n the fact that n is a nilpotent
ideal implies that the eigenvalues and their multiplicities for (ad(Y +Z ))S are
the same as for (adY)s = adY . Hence Y + Z is regular if and only if YV is
regular which in turn is equivalent to a(Y) # 0 for all « € A,, with n® # {0}.

Our element X € a + ng from above satisfies pa(X) € C2,, and X —
pa(X) € n. Hence the fact that a(pa(X)) > 0 for all @ € A} and the preceding
remark show that X and p,(X) are regular elements in 0. Now Proposition
IX.8 implies the existence of v € Inng(ny) with

v.X € Do(adpa(X)) Mg =3, (pa(X)) = 3Dq<a) =a

This completes the proof. [ ]
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Corollary IX.10. If (g,7) is a symmetric Lie algebra, then q contains
hyperbolic invariant convex cones if and only if (g,7) is quasihermitian and
there exists a p-adapted positive system AT such that Cmin C Chax -

If this condition s satisfied, then the cone Wiax 1S hyperbolic and each
invariant hyperbolic cone W C q 1is contained in a unique cone Wyax, where
At s determined by W N a C Chax -

Proof. The first part follows by combining Theorem IX.9 with Theorem
VIL.6(ii).

For the second part it only remains to apply Theorem VI.6(ii) to see
that there exists a p-adapted positive system with W Na C Cpax. Then
W = Inng(h).(WNa) C Inng(h).Crmax € Wmax and it is clear that the fact
that W Na has interior points determines A} and therefore Wyax uniquely. m

Problems IX. Is it true that for a solvable symmetric Lie algebra (g, 7) all
T-invariant Cartan subalgebras t are conjugate under Inng(h)? ]

X. Characterization of invariant convex hyperbolic sets

In the preceding section we have seen whenever (g,7) is a quasihermitian sym-
metric Lie algebra and AT is a p-adapted positive system such that Cp;, C
Chax , the cone Wi .« is hyperbolic. Throughout this section we will make these
assumptions.

The characterization of invariant convex sets

Theorem X.1. For X € W9__ we have

(i) conv(Ox) is contained in W2 __ .
(ii) conv(Ox) ={Y € W2, :pa(Oy) C conv(We.X) + Crnin}-
(iii) If the cone Cpin is pointed or if Cupin = conv{[Xa, 7. Xu]:a €
AF X, € g*}, then conv(Ox) is closed.
Proof.  (cf. [17, Th. I11.12]) (i) Let ¢: W2 — R™ denote the characteristic

ax
function of Wy,ax, i.e.,

o) = [ e duta,

max

where p is the restriction of a Lebesgue measure in the subspace Wy, . —Wx, .

In view of [19, Th. I11.5.4], this function has the following properties:
(1) ¢(v.z) = x(7)¢(x) for v € Inng(h), where x(7) = detq) (Wi, (7) "
(2) If z,, = € OWpax, then ¢(z,) — oo.
(3) ¢ is a convex function.
To strengthen (1), we show that the character x of Inng(h) is trivial.
Since ng € H(Whax) (Lemma IX.5), this reduces the problem to the correspond-
ing assertion on the Lie algebra g; := g/n which is reductive. Then h; C gy



138 KROTZ AND NEEB

is a reductive subalgebra and hence adq(h) C sl(q) follows as in the proof of
Proposition IX.6. This proves that x is trivial, hence that the function ¢ is
invariant under Inng(h).

Now the convexity of ¢ implies that

conv(Ox) C{Y e W :o(Y) < ¢(X)}.

According to the continuity of ¢ and (2), the set {Y € W2_:é(Y) < ¢(X)} is
closed in g, and therefore contains conv(Ox).

(ii) According to (i), both sets are invariant and contained in W2 . Hence it
suffices to check that their intersection with a is the same. This is a consequence
of Theorem VIII.10.

(iii) If Chyin is pointed, then Lemma VIIL.7 shows that
Cpin = F :=conv({[X, 7. X]: X € g*,a € A}).

Suppose that F' = Chyjn . Since Ox meets a, we may w.l.o.g. assume that X € a.
Then we have seen in the proof of Theorem VIII.10 that

conv(Ox) Na = conv(W.X) + Cpin = conv(W.X) + F C conv(Ox).
In view of (i), this proves that conv(Ox) is closed. u

Theorem X.2.  (Characterization Theorem) Let (g,7) be a quasihermitian
symmetric Lie algebra and AT a p-adapted positive system with Cupin C Chax -
(i) If ¢ € W0, is an invariant subset, then (2)=(1) holds for the
following statements:
(1) C is convex.
(2) Cq:=Cna is conver and Cyq + Cpin C Cy .
Furthermore, if 1s either C s closed or open or if Cupiy 1S pointed, then
also (1)=(2).
(i) If C, C C2,.. is a convex W -invariant subset satisfying Cq+ Chin C
Cyq, then C:=Inng(h).Cy is an invariant convexr subset of W2, with CNa =
pa(C) = C4.

Proof. (i) (cf. [17, Prop. II1.14]) (2)=-(1): Since C is invariant, the convex
set Cq is in particular invariant under the Weyl group WW. Moreover, (2) and
Theorem VIII.10 imply for each X € C, that

ax

pa(OX) g Cu + Crnin g Ca

and therefore that
pa(c> = pa(Inng(b>-Ca) C C.

Since (', is convex, it even follows that

conv(C) Na C pq(conv(C)) = conv pa(C) C C4.
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So the invariance of conv(C) C W2,  and the hyperbolicity of Wiax (Theorem
IX.9) yield

conv(C) = Inng(h).(conv(C) Na) C Inng(h).Cou = C.

This means that C' is convex.

(1) = (2): If C is convex, then Cq is trivially convex. Let X € Cy C C.
Then conv(Ox) C C and therefore X + Cpiy C conv(Ox)Na C Cy. Hence
Chmin C lim(Cy) follows from Theorem VIII.10. If either C is closed, open, or
Chin 1s pointed, then Lemma VIII.7 and Theorem X.1 show that Cq+Cpin € C4,
where we have used that if C is closed or open, then lim C' = lim C is closed.
(ii) First we note that Ox Na = W.X (Theorem II1.10) and the W-invariance
of Cq show that C Na = C,. Thus (i) implies that C is convex, and the proof
of (i) implies that ps(C) C Cq. Therefore Cqy C CNa C pa(C) C Cy and the
equality follows. [ |

Theorem X.3. (Characterization and Reconstruction of Invariant Cones) Let
(g,7) be a symmetric Lie algebra.
(i) There is a pointed generating invariant hyperbolic closed convex cone
i q if and only if
(1) (g,7) has strong cone potential,
(2) is quasihermitian, and
(3) 3(p) # {0} holds for a maximal hyperbolic Lie triple system
pPCaq.

(ii) Suppose that (g, 7) is quasihermitian and A" is a p-adapted positive
system with Cypin C Chax- A closed convex subset Cy C Cax with interior
points arises as the trace C'Na of a closed convexr hyperbolic set C' C q if and
only if Cy is W-invariant and Ciyi, C lim(Cy) .

Suppose that (1)-(3) in (i) are satisfied.

(iii) A pointed generating closed convex cone Cyq C a arises as the trace
C Na of a pointed generating invariant closed convex hyperbolic cone C C q if
and only if Cy is W -invariant and there exists a p-adapted positive system AT
such that Cpin € C C Chax-

Proof. (i) The necessity of (1)-(3) follows from Theorem VI.6. To prove the
sufficiency, let us assume that (1)-(3) are satisfied. We are going to construct
a cone with the desired properties. Let AT be a p-adapted positive system.
According to Theorem VII.18(iii), we have Cpin C Chax -

We claim that there exists a pointed generating }V-invariant closed
convex cone C, C a satisfying Cihin € Cyq € Chiax -

Let 0 # X € 3(p) N CY,. (Proposition V.4(3)) and K C C%. a W-
invariant compact convex neighborhood of X not containing 0. Then RTK
is a pointed generating WW-invariant closed convex cone in a. We put C, :=
Cmin + RTK and show that C, satisfies all our requirements:

First we note that the cone

Crin N —RTK C H(Cpax) N —RTK
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is {0}. In fact, if Cypax # a this follows from H(Cpax) N —RTK = {0}, and if
Cmax = a, then A, = @, hence Cpiy = {0} and it is also clear. Now [5, Prop.
1.4] implies that C' is closed with H(Cy) = H(Cypin) + HRTK) = {0} + {0} =
{0}. Since K has interior points, the same holds for C,, and the W-invariance
of RTK implies the W-invariance of C,. Moreover, Cpin C Cq C Cmax holds
by construction. Now the assertion follows from (iii).
(ii) If C C q is an invariant hyperbolic convex set, then clearly Cy = CNa is
W-invariant, and Cp;, C lim(C,) follows from Theorem VI.6 because the fact
that C; has interior points determines the cone C,,x containing C; uniquely.
Suppose that these conditions are satisfied by C, C Ci.x and put
C:=Inng(h).Cq. That C is generating follows from Lemma VI.5(ii), and since
closures of convex sets are convex, we obtain from Theorem X.2 and C =
Inng().CY that C is hyperbolic and convex. Moreover,

Coa CCNaCpa(C) Cpa(Inng(h).C0) C C° =C,

follows from Theorem X.2(ii). This proves that Cqy = C Na.

(iii) As noted in (i), the necessity of the condition follows from Theorem VI.6(ii).
If, conversely, they are satisfied, then (ii) implies the existence of a hyperbolic
closed convex invariant subset C' C q with C' Na = C,. The hyperbolicity of C
implies that Inng(h).Cy is dense in C', hence that C' is a cone. So it remains
to show that C is pointed. As pq(H(C)) € H(C) N Cq = {0}, we conclude
that H(C) C [a,b]. Since, according to Proposition VII.2(iv), [a, ] contains no
non-zero h-submodule, H(C') = {0} follows. u

Extension of convex invariant hyperbolic sets

In this section we deal with the problem of extending hyperbolic invariant convex
sets in g to hyperbolic invariant convex sets in q = ig®. First we have a look at
some crucial examples.

Example X.4. (a) We consider the five dimensional Heisenberg algebra

he =RZ O RQ: DRP; ®RQ2 R
with non-zero brackets [Q1, Pi]| = [Q2, P2] = Z. Let mot(2) =V x RU, where
V = R? and U as in Example IV.11, be the motion algebra of the euclidean
plane. We define a homomorphism of [ = mot(2) & RT into der(hs) by

VhQZ{O}, U.leQQ, U.QQZ_Ql, U.Plng, U.PQZ—Pl

and T.Q; = P;, T.P;, = @Q; for i € {1,2}. This turns g = ho x [ into a Lie
algebra and

h = span{P;, Po} x mot(2) and = span{Z, Q1,Q2,T}
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defines an involutive automorphism 7 on g with 7|, =idy and 7|q = —id,. A
maximal hyperbolic abelian subspace which is also maximal abelian in q is given
by

a=RZ & RT.

We have A = A, = {f+a} with o(T) =1 and g* =R(P; + Q1) + R(P2 + Q2).
Therefore (g, 7) has strong cone potential, p = a is a maximal hyperbolic Lie
triple system, so that the fact that a is maximal abelian in q implies that (g, 7)
is quasihermitian. Therefore q admits invariant hyperbolic cones (Theorem X.3)
and a extends to a maximal hyperbolic abelian and maximal abelian subspace

A~

a C g (Theorem VIII.1), namely,
a=RZ®RT & RiU.

Also (gc,7) is quasihermitian, but does not contain any pointed generating
invariant hyperbolic cone since it has no cone potential (Theorem X.3). In
particular, it is impossible to extend an invariant pointed generating hyperbolic
convex cone C' C ¢ to an invariant pointed generating hyperbolic convex cone
in §. We also note that h° = mot(2) is not compactly embedded, but it has a
compactly embedded Cartan subalgebra.

This situation changes drastically if we factor out the ideal V C g and
obtain the effective Lie algebra (go,70):= (g/V,7), where 7 is the canonical
involution induced on the quotient. Now any invariant pointed generating hy-
perbolic convex cone in gy can be extended to an invariant pointed generating
hyperbolic convex cone in g (cf. Theorem X.7 below).

(b) (cf. [17, Ex. 11.9(c)]) Let
s1:=sl(2,R):=span{H,T,U} and s9:=sl(2,R):=span{H', T, U}

as in the notation of Example IV.10. We denote by V;, j € {1,2} the 2-
dimensional real s;-module and let P = (1,1), @ = (1,—1) € Vi. Now we
define

g=(V1®Va) x (51 D s2).

and equip g with an involution 7 on g via
h=(RP® Vo) x (RT ®sy) and q=(RQ® V3)®span{H,U}.

A maximal hyperbolic abelian and maximal abelian subspace a in q is given by
a =RH. Note that a is a maximal hyperbolic Lie triple system and thus (g, 7)
is quasihermitian. We can extend a to a maximal hyperbolic abelian subspace
a C q, which is also maximal abelian in ¢, by

a=RH @ RiU'.
Since @ is a maximal hyperbolic Lie triple system in q we see that (gc,7) is

quasihermitian. Note also that (g,7) and (gc,7) are effective. Let o € a* be
given by a(H) = 1 and extend « to an element of a* by setting a(:U) = 0.
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Further we define 8 € a* by 3(iU’') =1 and (H) = 0. Then the root systems
are given by

A={4a,+2a} and A ={ta+f,+20,£26}.
~— ~~ —_—— ——

A Ag A'r AS

Hence for any positive system A1 we always have Cpin € Cmax but, as it
has already been shown in [17, Ex.IL.9(c)], there is no positive system AT such
that C’min - C’max. By Theorem VI.6 this means that there are no generating
invariant hyperbolic convex sets in . In particular, we cannot extend any
invariant generating hyperbolic convex set in g to an invariant hyperbolic convex
set in q. ]

The first example above shows that for the sake of extension theorems
it is reasonable to assume that (g,7) is effective. Note that passing to the
effective quotient algebra touches in no way all the properties of hyperbolic sets
nor changes the root structure and the minimal and maximal cone.

From now on we assume that the subalgebra h° is compactly embedded
so that Theorem VIII.1 applies to (gc, 7).

Proposition X.5. We consider the subspaces a C a and the corresponding
Weyl groups W and W. Let further A;: and A: be positive systems with
Af o € AFU{0}, and at = (A])*, resp. at = (A])*, denote the corresponding
fundamental domains for W, resp. W. Then the following assertions hold:

(i) pa(@™)=atNna=at.

(ii) If C C a is a W-invariant set and C := C' Nat is conver, then

pa(conv C) = conv (W.pa(é+)).

(iii) For X € at we have pqy(conv W.X) = conv (W.pa(X)).
(iv) Let C' C a be a W -invariant convex set. Then

C:={X cap,(W.X)CC}

is a W -invariant convex subset of a with CNa= pa(é) = C. If C has interior
points, then the same holds for C'.

Proof. (i) From the compatibility of the positive systems A and A;: it

follows that a™ = a*Na C pa(a™). Let X € a™. Then pa(X) = 3(X —7.X). If

a € Ak+, then there exists & € A, with & la« = a. Moreover o must be positive
because otherwise a|, € A, U {0}, and since —7.a has the same restriction to
a, this root must also be positive. We conclude that

2, pa(X)) =(a, X —7.X) =(a — 1.0, X) > 0.

Hence pq(a™) C at, and (i) follows.
(ii) Let D := convC. Then D is a W-invariant convex set. Since for each
element w € W there exists w € YW with @ |, = w and @ commutes with 7|4
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(Theorem VIIL.1(iv)), the set pq(D) is convex and invariant under W. It follows
in particular that “2” holds.

A X+
On the other hand [19, Prop. II1.2.9] implies that D C Ct — cone(A,, )
x+ <
so that pq(cone(A,)) = cone(A}) (Theorem VIIL1(vi)(d)) implies that

~

pa(D) € pa(C*) — pa(cone(Ag ) = pa(C) — cone(AH),

where (i) implies that pa(CT) C at. Now the W-invariance of pe(D) shows
that
pa(D) C ﬂ w.(pa(CT) — cone(A})) = conv (W.pa(CT))
weW
(cf. [19, Prop. I11.2.9]). This completes the proof of (ii).
(iii) This is a special case of (ii).
(iv) The inclusions C'Na C pa(C) C C are trivial consequences of the definition
of C. Let X € C. Then there exists X’ € at with X € W.X’. Now (iii)
implies that R R
PaW.X) =p,(W.X") C conviW.X') C C.

Therefore C C C'Na, and thus C = C Na = pe(C).

If, in addition, C' has interior points, then C° contains a fixed point X
for W, ie., a(X) = 0 holds for all a € Ay. Then we also have «(X) = 0 for
all @ € Ay, ie. X is fixed by W. Now it is clear that C contains a sufficiently
small neighborhood of X, so that C has interior points. ]

Let G¢ be a connected Lie group with Lie algebra g¢ and suppose that
7 integrates to an involution of G¢, which is also denoted by 7. Further we
denote by H™ the group of 7-fixed points and by H{ its identity component.
Let H C G° be any subgroup of G such that

Hj CHCH".
For an element X € q we define O = Ad(H).X and O = Ad(G°).X.
Theorem X.6.  Suppose that h° is compactly embedded, (g,7) is quasihermi-

tian, AT isap -adapted positive system, and AT a compatible p -adapted positive
system satisfying Cmin € Cmax. Then for X € C°_  the following assertions

hold: B o
(10.1) conv(0$°) Na = ps(conv(O0§")) = conv(WV.X) + Cuin
(10.2) conv(OF) N a = py(conv(OF)) = conv(W.X) + Cin.

In particular, pq(conv(OH)) = p,(conv(Ox)) is independent of the choice of H .
Moreover

pa(conv(O§)) = conv(OF) Na = conv(O¥)Na

(10.3) = pa(conv(OF)) = conviW.X) + Cryin.
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Proof. It follows from Theorem VIII.1(vi)(c) that X € é’glax. Equation

(10.2) for H = Hy is obtained from Theorem VIIL.10. Since Cpin C Chax
by assumption, we can apply Theorem VIII.10 also to the canonical extension
(gc, 7) and obtain (10.1). Using Theorem VIII.1(vi)(a) and Proposition X.5(iii),
we get

conv(W.X) + Crnin = pa(conv(OF0)) C pa(M)
C pa(conv(0§7)) C pa(conv(W.X) + C’min)
= pa(conv(W.X)) + pa(é'min)
= conv(W.X) + Chin-

This proves (10.2) for arbitrary H and also (10.3). n

Theorem X.7. (The Extension Theorem) We keep the assumptions from

Theorem X.6 and write Wigax: = Ad(GC).CAZ’max for the mazximal cone in q = ig°.
(i) Every Inng(h)-invariant closed hyperbolic conver set C C Wiyax s
H -invariant and can be extended by

C:={X € Wiax: pa(0F ) C CNa}

to a {G¢, —7} -invariant hyperbolic conver subset of Wiax . The extension C is
mazimal with respect to

(10.4) Cng=pe(C) =C.

(ii) If, in addition, C' is a pointed generating invariant hyperbolic cone
and (g,7) is effective, then C is a pointed generating invariant hyperbolic cone.
Proof. (i) From C' = Wy N Nyeae g.p7H(CNa) it follows that C' is a closed

convex {G€¢, —7}-invariant subset of Winax. Moreover (10.3) in Theorem X.6
implies that for X € C° N a we have

pa(0F)) C conv(OF)nacC Cna,

hence that C° Na C C, and the hyperbolicity of C' entails that C € C'Nq. On
the other hand the —7-invariance entails C' N q= pq(é), so it remains to show
that C' is hyperbolic and that C'Nq C C.

We put Cy := CNa and C, := {X
Proposition X.5(iv) shows that p(Cy) = Cq Na
points.

€ Crax: Pa(W.X) C Cy}. Then
= (', and that C, has interior

For X € C’g we now conclude with Theorem X.6 that
pa(oXC) - CODV(W-X) + Cmin - Cu + C'rnin - Cu-

This proves that C’S and therefore that C. is contained in cn a. The converse
inclusion follows from W.X C Ogc , and thus we obtain CNa = Cy. This proves

that C' has interior points (Lemma VI.5(ii)), and so C' is hyperbolic.
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To see that C'N q C C, we note that the set on the left hand side is
hyperbolic because (C'Nq)° = CONg C W2, . On the other hand it is Inng(h)-
invariant, so that it suffices to show that C'Na C Cy which trivially follows from
the definition of C'. This proves (10.4). Finally, as C is H-invariant and Dy
commutes with the action of H, we conclude that C' is also H -invariant.

(ii) Let C' be a pointed generating invariant hyperbolic cone in ¢q. Then C is
a generating invariant hyperbolic cone in q, and it remains to show that C is
pointed. Since C' is pointed, pq(H(C)) = {0}, so that H(C) is a g°-invariant
subspace of ih C q. This means that ZH(C’) is an ideal of g contained in .
Now the assumption that (g, 7) is effective shows that H(C) = {0}, i.e., that C
is pointed. [

Remark X.8. In the preceding two theorems we have needed the assumptions
that h° is compactly embedded to apply Theorem VIIL.1 and that é’min C émax
to apply the convexity theorems to q itself. Moreover, to extend pointed cones
in q to pointed cones in ¢, the effectiveness was a crucial condition.

Suppose that (g, 7) is semisimple and quasihermitian. Then (gc,7) also
is semisimple and quasihermitian (Theorem VIII.1), and Proposition V.9(vii)
shows that é’min - C’max is automatically satisfied. In this case the effectiveness
is also not a severe restriction because each ideal is a direct summand. ]

Problems X. (1) Does the requirement that X € § satisfies pq(OF ) € Crnax
imply that X € Wmax? In this case it vyould not be necessary in the Extension
Theorem to take the intersection with W ax .

(2) Does the assumption that §° is compactly embedded (cf. Theorem VIII.1)
and Cpin € Chax imply that Chun € Chhax- Note that in Example X.4(b) the

subalgebra h° =2 s[(2,R) is not compactly embedded. [ ]
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