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The Weyl group as fixed point set of smooth involutions
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Abstract. We show that the Weyl group W = M ′/M of a noncompact
semisimple Lie group is obtained by taking fixed point sets of smooth
involutions in K/M . More precisely, one considers first the fixed point set
X of the involutions defined on K/M by the elements of order 2 in exp ia .
The Weyl group is either X , or the fixed point set of the involutions defined
on X by special elements of order 4 in exp ia .

1. Introduction.

The primary motivation for studying the problem at hand comes from the observa-
tion ([2]) that if the Weyl group W can be obtained from K0/M0 by successively
taking fixed point sets of smooth involutions preserving Hessenberg manifolds,
then one can also reverse Morse inequalities for real Hessenberg manifolds using
Floyd’s theorem [4] (see Section 1 for notations, and the second remark at the end
of Section 2 for the Hessenberg–preserving property). The result proved in this
paper, however, is of some independent interest, and we think that it might be
useful in a variety of contexts. If one removes the smoothness assumption, it is
easy to obtain W as the fixed point set of a single discontinuous involution: just
view K0/M0 as the adjoint K0 –orbit of a suitable regular element in a0 and “flip”
across a0 .

In order to explain our ideas, we now briefly discuss an example. Let the
group M0 = {diag (ε1, ε2, ε3) | εj = ±1,

∏
εj = 1} act by conjugation on

K0 = SO(3,R). Clearly, each m ∈ M0 induces a smooth involution on the flag
manifold K0/M0 . The points in K0/M0 simultaneously fixed by all three non–
trivial involutions are in correspondence to those k ∈ K0 for which the following
property holds: for all m ∈M0 there exists m′ ∈M0 such that mkm = km′ . It is
immediate to see that such a k normalizes – by conjugation – the set a0 of trace
zero diagonal matrices. Indeed, if H ∈ a0 and Y = kHk−1 , then Y is left fixed by
all m ∈ M0 . On the other hand, this last condition is expressed by the equalities
Yij = εiεjYij , so that Y is itself diagonal. Thus, modulo M0 , k is a permutation,
i.e. an element of the Weyl group of SL(3,R).
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If we attempt to obtain the same result for SL(2,R) using as set of involutions
the centralizer of a0 in K0 = SO(2,R), that is M0 = {± id}, we get as fixed
point set in the projective space K0/M0 the identity coset alone. But if we use the
involution defined by diag (i,−i), which still centralizes a0 , we achieve the target.

These considerations suggest on the one hand that the right involutions should
centralize a0 , and on the other hand that the problem should be analyzed inside
some “complexification” of the semisimple Lie group G0 , that is, inside the adjoint
group G of its complexified Lie algebra.

The appropriate set of involutions turns out to be F2 = {f ∈ exp ia0 | f 2 = e},
where a0 denotes as usual a maximal abelian subspace of the symmetric part of
the Lie algebra g0 of G0 . When acting as group of smooth maps on X0 := K0/M0 ,
however, F2 singles out the Weyl group W as fixed point set only if the (restricted)
root system associated with (g0, a0) is reduced. Otherwise X1 := Fix(F2, X0)
contains properly W and one has to consider a special set F4 of elements of order
4 in exp ia0 . At this stage one gets equality, namely Fix(F4, X1) = W . The
elements of F4 take into precise account the non–reduced roots, in a sense that
will be made clear in Section 4. The nature of Fix(F4, X1), in particular the fact
that the action of F4 on X1 is well–defined, is a slightly delicate matter, and is
best understood via the Bruhat decomposition. The key step (Theorem 10) is
proved by using basic properties of the Bruhat decomposition (Crollary 5.3) and
SU(2, 1)–reduction (Lemma 5.6).

2. Preliminaries and notation.

Let G0 be a semisimple, connected, non–compact Lie group with finite center, g0

its Lie algebra, and g = gc0 its complexification viewed as real Lie algebra. Thus g
is semisimple. Denote by σ the automorphism of g corresponding to conjugation
with respect to g0 , i.e. σ : X + iY 7→ X − iY for X, Y ∈ g0 .

Let ad denote the adjoint representation of g. We then have Lie algebra inclusions
ad g0 ⊂ ad g ⊂ gl(g) = End(g). Let G = Int(g) be the adjoint group of g, i.e. the
connected Lie subgroup of GL(g) = Aut(g) correspoding to ad g. If G∗ denotes
the connected Lie subgroup of Int(g) corresponding to ad g0 , then G∗ is a closed
Lie subgroup of G diffeomorphic to Int(g0), the adjoint group of g0 ([6], Lemma
6.2, Ch. III, p.181). The adjoint representation of G0 maps G0 onto G∗ with
kernel Z0 , the center of G0 . Thus G∗ ' G0/Z0 .

Let now θ be a Cartan involution of g0 and g0 = k0 + p0 the resulting Cartan
decomposition. Let a0 be a maximal abelian subspace of p0 of dimension say l .
Call a linear functional α ∈ a∗0 a restricted root if

g0α = {X ∈ g0 | [H,X] = α(H)X ∀ H ∈ a0} 6= 0.

The set of non–zero restricted roots (resp. positive, simple) will be denoted by Σ
(resp. Σ+ , ∆). The simultaneous diagonalization of all the X 7→ [H,X] ∈ End(g0)
with H ∈ a0 leads to the root–space decomposition of g0

g0 = g00 +
∑

α∈Σ

g0α.
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In turn,
g00 = a0 + m0,

where m0 = {X ∈ k0 | [X,H] = 0 ∀H ∈ a0} is the centralizer of a0 in k. Put

n0 =
∑

α∈Σ+

g0α,

so that the Iwasawa decomposition of g0 reads:

g0 = n0 + a0 + k0.

Let now N0 , A0 and K0 denote the Lie subgroup of G0 corresponding to k0 , a0

and n0 . Thus G0 = N0A0K0 is the Iwasawa decomposition of G0 . Here K0 is a
maximal compact subgroup of G0 , A0 is abelian and N0 is nilpotent. Moreover,
there exists an involutive automorphism Θ of G0 with dΘ = θ , such that K0 is
the set of points fixed by Θ. Let M0 and M ′

0 denote respectively the centralizer
and normalizer of a0 in K0 , i.e. M0 = {m ∈ K0 | Adm(H) = H, ∀H ∈ a0} and
M ′0 = {m ∈ K0 | Adm(H) ∈ a0, ∀H ∈ a0} . Here Ad, stands for the adjoint
representation of G0 . The Lie algebras of M0 and M ′

0 coincide and are equal to
m0 . The finite group W = M ′

0/M0 is the Weyl group of G0 associated to the
previous data. Clearly, W sits inside the boundary K0/M0 .

3. The case of reduced root systems.

The Cartan involution θ extends in a unique fashion to an involution of g, also
denoted by θ ([7], Ch. III, p. 368), and there exists an involutive automorphism
Θ of G such that dΘ = θ . Let KΘ denote the Lie subgroup of G of fixed points
of Θ and by K its identity component. Put

F2 =
{
f ∈ exp ia0 | f 2 = e

}
⊂ G.

It is easy to give an explicit description of F2 ([7], ex. 7 p. 384). Indeed, if
{H1, . . . , Hl} is the basis of a0 dual to ∆, then:

F2 =



exp iπ

l∑

j=1

νjHj | νj = 0, 1



 .

Thus card F2 = 2l . Observe also that if f = exp iA ∈ F2 , then

Θf = Θ exp iA = exp(θiA) = exp(−iA) = f−1 = f,

so that F2 ⊂ KΘ . More precisely, F2 is the group of components of KΘ , i.e. ([8])

KΘ = K · F2.

The first step of our construction consists in showing that F2 acts on X0 = K0/M0

by smooth involutions. The fixed point set X1 = Fix(F2, X0) is in many cases W ,
but not always. If the root system Σ is not reduced, then X1 is an “intermediate”
manifold between K0/M0 and W .

¿From now until the end of this section, we will use the subscript ∗ to indicate
images under the adjoint representation Ad of G0 .
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Proposition 3.1. If f ∈ F2 , , then fK∗f = K∗.

Proof. Let fK∗f = Kf , and let kf be its Lie algebra in g. It is clear that
kf = AdG fk0 . Therefore, kf is θ–invariant. If f = exp iA, and T0 ∈ k0 , then:

σ(AdGfT0) = σ(AdG(exp iA)T0)

= AdG(exp σ(iA))(σT0)

= AdG(exp−iA)T0

= AdGfT0.

Thus AdG fT0 ∈ g0∩ k = k0 . This shows kf = k0 , thereby proving the Proposition,
since K∗ is the connected subgroup of G corresponding to the Lie subalgebra k0

of g.

Proposition 3.2. F2 acts on K0/M0 by:

f · 〈k〉 = 〈Ad−1(fk∗f)〉, (1)

〈·〉 denoting the class mod M0 and Ad the adjoint representation of G0 . Moreover,
as maps, all the f ’s commute with each other and f 2 = id.

Proof. First of all notice that Ad−1 e = Z0 , the center of G0 . But Z0 is
contained in M0 , so that all the elements in Ad−1 x belong to the same M0 coset.
Since F2 centralizes M∗ , for k ∈ K0 and m ∈M0 , we have:

f(km)∗f = fk∗m∗f

= (fk∗f)(fm∗f)

= (k′)∗m∗

= (k′m)∗,

where k′∗ = fk∗f ∈ K∗ because of the previous Proposition. Thus:

Ad−1(f(km)∗f) = k′mZ0

and 〈k′mZ0〉 = 〈k′〉 depends only on 〈k〉. The remaining assertions are clear,
since F2 is abelian in G.

Denote by Fix(F2, X0) the set of points in X0 = K0/M0 which are simultaneously
fixed by all f ∈ F2 . It is clear that Fix(F2, X0) is a smooth manifold. Indeed,
if F2 = {f1, . . . , fN}, N = 2l , let X1

0 = Fix(f1, X0) and for 1 ≤ j ≤ N put
Xj

0 = Fix(fj, X
j−1
0 ), (here X0

0 = X0 ). Then X1
0 is a smooth manifold because

it is the image under π : K0 → K0/M0 of K1
0 = {k ∈ K0 | k−1f1kf1 ∈ M0}.

Similarly, Xj
0 is a smooth manifold because it is the image under π : K0 → K0/M0

of Kj
0 = {k ∈ Kj−1

0 | k−1fjkfj ∈ M0}. But XN
0 = Fix(F2, X0) because all the

f ’s commute as maps.

Theorem 3.3. If Σ is reduced, then Fix(F2, X0) = W .
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Proof. Let H ∈ a0 be a regular element, and let 〈k〉 ∈ Fix(F2, X0). This
means that given f ∈ F2 there exists m ∈ M0 such that:

fk∗f = k∗m∗.

Then Y := Ad k∗H = Ad kH ∈ p0 depends only on 〈k〉 and we may write:

Y = Y0 +
∑

α∈Σ

Yα,

where Y0 ∈ m0 and Yα ∈ gα . Since f centralizes a0 ,

Ad fY = Ad fk∗fH = Ad k∗m∗H = Ad k∗H = Y,

so that Y is fixed by all f ∈ F2 . Therefore, if f = exp iA0 ,

Yα = (Ad exp iA0Y )α = (ead iA0Y )α = eiα(A0)Yα.

Fix now α and write
α =

∑

δ∈∆

νδ(α)δ.

If Σ is reduced, there are no roots α for which νδ(α) is even for all δ ([1]). Thus
νδ(α) is odd for at least one simple restricted root δ . Select A0 = πHδ , so that
α(A0) is an odd multiple of π . It follows that Yα = −Yα = 0. This shows that
Y = Y0 ∈ a0 , namely that k ∈ M ′

0 . Thus 〈k〉 ∈ W and Fix(F2, X0) ⊂ W . The
reverse inclusion is obvious.

Remarks i) It is clear from the proof of 3.3 that if the root system Σ is not
reduced, 〈k〉 ∈ Fix(F2, X0) and H ∈ a0 is a regular element, then Y = Ad kH =
Y0+

∑
α∈E Yα , where E is the set of even roots, namely those roots α =

∑
δ∈∆ νδ(α)δ

for which νδ(α) ∈ 2Z for all δ ∈ ∆.

ii) The involutions defined by F2 have the additional property of preserving Hes-
senberg manifolds. We recall ([2], [3]) that for a fixed regular element H ∈ a0 , a
(real) Hessenberg manifold HessR(H) is defined for any subset R of the set Σ−

of negative roots having the following Hessenberg property:

α ∈ R, β ∈ Σ+, α + β ∈ Σ− =⇒ α + β ∈ R.
One then defines the Hessenberg subspaces p0(R) of p0 by summing vectors of
the form Xα − θXα with α ∈ R. More precisely, set

p0(R) = a0 +
∑

α∈R
((g0,α + g0,−α) ∩ p0).

Finally,
Hess
R

(H) =
{
〈k〉 ∈ K0/M0 | Ad k−1H ∈ p0(R)

}
.

It is clear that since F2 centralizes a0 , it maps HessR(H) into itself. A similar
situation occurs for the action of F4 which will be presented in Section 5.

We will simplify the notation thinking of all the subgroups of G0 as subgroups of
G under the adjoint representation. In this process, the center becomes trivial.
Thus we suppress the subscripts ∗ and write, for example, K0 in place of K∗
whenever no confusion arises.
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4. The Weyl group of SU(2, 1).

As we will see in the next section, the general case is handled by reducing the
problem to an SU(2, 1) computation, via the “Bruhat decomposition” of K0 . We
therefore analyze this group in full detail.

Recall that G0 = SU(2, 1) consists of those elements in GL(3,C) having determi-
nant equal to one and satisfying g∗I2,1g = I2,1 , where

I2,1 =

[
−I2 0

0 1

]
.

The Lie algebra g0 of G0 is therefore

su(2, 1) = {X ∈ gl(3,C) | X∗I2,1 + I2,1X = 0, tr X = 0}

=

{[
A B
B∗ − tr A

]
| A ∈ u(2), B ∈M2,1(C)

}
,

where evidently u(2) is the Lie algebra of 2 × 2 skew–hermitian matrices. Let θ
and Θ denote the Cartan involutions on g0 and G0 respectively, so that θ = dΘ.
Then:

θX = I2,1XI2,1, Θg = I2,1gI2,1.

Consequently,

k0 =

{[
A 0
0 − tr A

]
| A ∈ u(2)

}
,

p0 =

{[
0 tζ
ζ 0

]
| ζ ∈ C2

}
.

A maximal abelian suspace of p0 is:

a0 =




tH0 | H0 =




0 0 1
0 0 0
1 0 0


 , t ∈ R




.

Next, a maximal compact subgroup of G0 corresponding to k0 is:

K0 = S(U2 × U1) =

{[
A 0
0 eit

]
| A ∈ U(2), det A = e−it, t ∈ R

}
.

The centralizer M0 of a0 in K0 is

M0 =







eis 0 0
0 e−2is 0
0 0 eis


 | s ∈ R




,

whereas the normalizer M ′
0 of a0 in K0 is

M ′0 =







εeis 0 0
0 εe−2is 0
0 0 eis


 | s ∈ R, ε = ±1




.
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It follows that the Weyl group W = M ′
0/M0 is (isomorphic to) the two–element

group.

The root–space structure of SU(2, 1) is easily written. Indeed, g00 = a0 +m0 with

m0 =




tT0 | T0 =



i 0 0
0 −2i 0
0 0 i


 , t ∈ R




,

and if α : a0 → R is the linear functional defined by tH0 7→ t, then:

g0,α =








0 z 0
−z 0 z
0 z 0


 , z ∈ C




, g0,−α =








0 z 0
−z 0 −z
0 −z 0


 , z ∈ C




,

g0,2α =







it 0 −it
0 0 0
it 0 −it


 , t ∈ R




, g0,−2α =








it 0 it
0 0 0
−it 0 −it


 , t ∈ R




.

Taking exponentials in GL(3,C), we have

exp ia0 =








cos t 0 i sin t
0 1 0

i sin t 0 cos t


 | t ∈ R




,

so that

F2 =
{
f ∈ exp ia0 | f 2 = 1

}
=







ε 0 0
0 1 0
0 0 ε


 | ε = ±1




.

Observe that:

exp iπH0 =



−1 0 0
0 1 0
0 0 −1


 .

We will also need the following set of elements of order 4 in exp ia0 : F4 =
{f ∈ exp ia0 | f 2 = exp iπH0}. Clearly:

F4 =








0 0 iε
0 1 0
iε 0 0


 | ε = ±1




.

Next we analyze X1 := Fix(F2, K0/M0). To this end, let 〈k〉 ∈ X1 . If k =[
A 0
0 eit

]
with A =

[
a b
c d

]
∈ U(2), and f = fε ∈ F2 , then there exists

m = ms(ε) ∈M0 such that fkf = km. Since

fkf =



a εb 0
εc d 0
0 0 eit


 , and km =



aeis be−2is 0
ceis de−2is 0
0 0 eiteis


 ,
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we immediately obtain eis = 1, i.e. ms(ε) = id = e independently of ε. Choosing
ε = −1, we see that A must be diagonal, i.e.,

k =



eiu 0 0
0 eiv 0
0 0 eit


 u+ v + t ∈ 2πZ.

We stress that we have proved that if 〈k〉 ∈ X1 , then fkf = k for all f ∈ F2 , a very
special situation which will be used in the proof of 5.6. Nonetheless, X1 6= W .
In order to obtain W as the fixed point set of (smooth) involutions, we need
to consider the action of F4 on Fix(F2, K0/M0). This fact illustrates a general
situation. Observe that if 〈k〉 ∈ X1 and f ∈ F4 , then:

fkf−1 =




0 0 iε
0 1 0
iε 0 0






eiu 0 0
0 eiv 0
0 0 eit







0 0 −iε
0 1 0
−iε 0 0


 =



eit 0 0
0 eiv 0
0 0 eiu


 ,

so that F4 sends fixed points into fixed points. Now, the requirement that 〈k〉 ∈
Fix(F4, X1) is equivalent to asking that, given ε, there exists m ∈ M0 such that
fkf−1 = km. Since

km =



ei(u+s) 0 0

0 ei(v−2s) 0
0 0 ei(t+s)


 ,

we obtain the system 



u+ s = t+ 2n1π
v − 2s = v + 2n2π
t + s = u+ 2n3π

for some integers n1 , n2 and n3 , that is:

s = nπ, u = t + n′π,

for some integers n and n′ . If n is odd, then m =



−1 0 0
0 1 0
0 0 −1


 , and fkf = km

implies eit = −eiu , whence v = (2n′′ + 1)π − 2u, and so:

k =



−eit 0 0

0 −e−2it 0
0 0 eit


 ∈ M ′

0.

Finally, if n is even, then m = id and fkf = km forces eit = eiu , whence
eiv = −e−2it , i.e.

k =



eit 0 0
0 e−2it 0
0 0 eit


 ∈M0 ⊂M ′

0.

This shows that Fix(F4, X1) = W .
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For the reader’s convenience, we conclude this section by briefly recalling the
general structure of a root system of type (BC)l because it will be used in Section
5. The root system associated to SU(2, 1) is of course of type (BC)1 . Let ej
denote the jth standard basis element in Rl . The rank l root system of type
(BC)l is (isomorphic to):

(BC)l = {±ei ± ej, 1 ≤ i < j ≤ l, ±ej, 1 ≤ j ≤ l, ±2ej, 1 ≤ j ≤ l} .

Slightly modifying the standard notation ([6], Theorem 3.25, Ch. X, p. 475), a
basis ∆ = {δ0, δ1, . . . δl−1} of simple roots is given by:

δ0 = el, δj = ej − ej+1, 1 ≤ j ≤ l − 1.

Finally we list the expression of the positive roots in terms of the basis elements;
here 1 ≤ i < j ≤ l , and if j = l the sum δj + . . .+ δl−1 is zero:

ei − ej = δi + . . .+ δj−1 ;

ej = δ0 + (δj + . . .+ δl−1);

2ej = 2δ0 + 2(δj + . . .+ δl−1);

ei + ej = (δi + . . .+ δj−1) + 2δ0 + 2(δj + . . .+ δl−1).

Using the terminology introduced in the first remark following Theorem 3, the
only even roots in (BC)l are 2ej , for j = 1, . . . , l .

5. Bruhat decomposition and SU(2, 1) reduction. The general case.

We recall that if B0 = N0A0M0 , then the Bruhat decomposition of G0 is the
disjoint union:

G0 =
∐

w∈W
B0wB0.

A better parametrization of the double cosets B0wB0 may be achieved as follows
(see [5]). For w ∈ W , let Σ+

w = {α ∈ Σ+ | −wα ∈ Σ+}, and set

nw =
∑

α∈Σ+
w

gwα, N−w = exp nw.

Then the Bruhat decomposition may be rewritten as

G0 =
∐

w∈W
(N0A0)N−wwM0,

giving rise to a “Bruhat decomposition” of K0 :

K0 =
∐

w∈W
k(N−w )wM0,



62 De Mari

where k(·) refers to the K0 –coordinate function in the Iwasawa decomposition
G0 = N0A0K0 . When we write k = k(n)wm, we think of w as a fixed represen-
tative in M ′

0 .

We will write B(w) = B0wB0 = (N0A0)N−wwM0 and C(w) = k(N−w )wM0 , and
refer to B(w) and C(w) as the Bruhat cells of G0 and K0 , respectively. Observe
that:

C = k(B).

Next, we recall ([1]) a few crucial properties enjoied by the cells B(w), and show
that they hold for the cells C(w) as well.

Let S be a set of generators of W , with e 6∈ S . Let s ∈ S and w ∈ W , then

B(s)B(w) =

{
B(sw) if B(w) 6⊂ B(s)B(w)
B(w) ∪ B(sw) if B(w) ⊂ B(s)B(w)

(2)

Let w = s1 · . . . · sp be a reduced expression in terms of generators, and let v ∈ W ;
then

B(s1 · . . . · sp)B(v) ⊂
∐

1≤i1≤...≤it≤p
B(si1 · . . . · sitv), (3)

where (i1, . . . , it) ranges over all – possibly empty – t-uples of increasing integers
in the interval [1, p]. Finally, let lS(·) denote the length function on W with
respect to the set S of generators of W . Let w1, . . . , wp ∈ W and suppose that
lS(w) = lS(w1) + . . . + lS(wp), then B(w) = B(w1) · . . . · B(wp). In particular, if
w = s1 · . . . · sp is a reduced expression of w in terms of generators, then:

B(w) = B(s1) · . . . · B(sp). (4)

Our first concern will be to show that 2, 3 and 4 hold for C(w) as well.

Lemma 5.1. Let u, w ∈ W . Then k(B(u)) · k(B(w)) = k(B(u) · B(w)).

Proof. Let x ∈ B(u) and y ∈ B(w). Write x = b1ub2 , bi ∈ B0 , and
y = na · k(y). Then xy = b1ub2na · k(y) = (b1ub

′
2) · k(y). Since b1ub

′
2 ∈ B(u),

b1ub
′
2 = n′a′k′ with k′ ∈ k(B(u)). Thus xy = n′a′k′ · k(y), so that k(xy) =

k′ · k(y) ∈ k(B(u)) · k(B(w)), thereby showing k(B(u) · B(w)) ⊂ k(B(u)) · k(B(w)).

On the other hand, k(B(u)) · k(B(w)) = k(B(u) · k(B(w))) ⊂ k(B(u) · B(w)), and
the lemma is proved.

Lemma 5.2. k(B) ⊂ B and N0A0 · k(B) = B.

Proof. As for the first statement, let nak ∈ B = B0wB0 and put b = (na)−1 ∈
N0A0M0 = B0 . Then k = b(nak) ∈ B0B = B . As for the second, N0A0 · k(B) ⊂
B0 · k(B) ⊂ B0B = B , and B ⊂ n(B) · a(B) · k(B) ⊂ N0A0 · k(B).

Corollary 5.3. Formulae (2), (3) and (4) hold for the Bruhat cells in K0 .
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Proof. Suppose C(w) ⊂ C(s)C(w), i.e. k(B(w)) ⊂ k(B(s))k(B(w)). Then
N0A0 · k(B(w)) ⊂ N0A0 · k(B(s))N0A0 · k(B(w)), that is, by Lemma 5, B(w) ⊂
B(s)B(w). Thus (2) gives B(s)B(w) = B(w)∪ B(sw), so that, applying Lemma 4
and observing that k(A∪B) = k(A)∪k(B), we obtain C(s)C(w) = C(w)∪C(sw).
If instead C(w) 6⊂ C(s)C(w), then necessarily B(w) 6⊂ B(s)B(w), otherwise taking
k(·) and applying Lemma 5.1 we would obtain the inclusion which negates our
assumption. But then, by (2), B(s)B(w) = B(sw), which yields C(s)C(w) =
C(sw). This proves that 2 holds for the cells in K0 . As for 3 and 4, simply apply
Lemma 5.1.

Next we analyze the action of F2 on the Bruhat cells C(w). We simply write fkf
in place of (1), and keep in mind the convention established at the end of Section
2.

Lemma 5.4. F2 leaves each Bruhat cell C(w) invariant. In particular, if
f ∈ F2 and k = k(nw)wm ∈ C(w):

fkf = k(fnwf)wfm,

where fnwf ∈ N−w , wf = w ·m(f, w) ∈M ′
0 , and m(f, w) ∈M0 .

Proof. Let nw = nau be the Iwasawa decomposition of nw , so that u = k(nw).
Then fnwf = (fnf)(faf)(fuf) = n′a(fuf), where clearly

fnf = exp
∑

α∈Σ+

Ad fXα =
∑

α∈Σ+

eiπα(A)Xα ∈ N0.

Therefore k(fnwf) = fk(nw)f .

Moreover, if f = exp iπA, and nw = exp
∑
α∈Σ+

w
Xwα , then

fnwf = exp
∑

α∈Σ+
w

Ad fXwα = exp
∑

α∈Σ+
w

eiπwα(A)Xα ∈ N−w .

so that fnwf ∈ N−w . Next, it is clear that since f centralizes M0 , wf = fwf
normalizes a0 :

AdwfA = Ad fwfA = Ad fwA = AdwA ∈ a0,

which also shows that wf ∈M ′
0 coincides with w modulo M0 , i.e. wf = wm(f, w).

The result follows, since fkf = (fk(nw)f)(fwf)(fmf) and fmf = m.

Let now S = {s1, . . . , sl} be the set of generators of W consisting of all the reflec-
tions associated with the simple roots ∆ = {δ1, . . . , δl}. Recall that {H1, . . . , Hl}
is the dual basis of ∆. Thus to each s ∈ S there corresponds a unique H of the
basis, and viceversa.

Lemma 5.5. Let s 6= s0 , with s, s0 ∈ S . Let f0 = exp iπH0 ∈ F2 , where H0

is the element corresponding to s0 . Then f0 leaves C(s) pointwise fixed.
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Proof. Let k ∈ C(s). Thanks to Lemma (5.4), if k = k(ns)sm, then f0kf0 =
k(f0nsf0)sf0m. Now, Σ+

s consists of the integral multiples of δ in Σ+ . Indeed, s
permutes the positive roots which are not multiples of δ , and sends δ (resp. 2δ )
to −δ (resp. −2δ ). It follows that ns = exp(X−δ + X−2δ), where we agree that
X−2δ = 0 if 2δ is not a root. Therefore:

f0nsf0 = f0 exp(X−δ +X−2δ)f0

= exp Ad f0(X−δ +X−2δ)

= exp Ad(exp iπH0)(X−δ +X−2δ)

= exp ead iπH0(X−δ +X−2δ)

= exp(e−iπδ(H0)X−δ + e−iπ2δ(H0)X−2δ)

= exp(X−δ +X−2δ).

= ns

Moreover, Ad sH0 =
∑l
j=1 νjHj for some coefficients ν1, . . . , νl . But if δ corre-

sponds to s, from the fact that δ(H0) = 0 it follows:

νj = δj(Ad sH0) = s · δj(H0) = (δj − cδj ,δδ)H0 = δj(H0),

namely Ad sH0 = H0 . Thus

sf0s = exp iπ(Ad sH0) = exp iπH0 = f0,

that is sf0 = s.

Let now Σ = ∪jΣj be the decomposition of Σ into irreducible root systems, and
assume Σ non–reduced. Then at least one of the Σj is non–reduced, hence of type
(BC)l ([6], Theorem 3.25, Ch. X, p. 475). Let Σ0 = ∪jΣj

0 denote the collection of
all such subsystems, let δj0 be the only simple root in Σj

0 such that 2δj0 is a root,
and let Hj

0 be associated with δj0 . These data enable us to select special elements
in F2 , namely

f j0 = exp iπHj
0 .

Denote by F 0
2 the set of all such elements and define a new set of elements of order

4 :
F4 =

{
f ∈ exp ia0 | f 2 ∈ F 0

2

}
.

For simplicity, we may assume that Σ0 consists of a single system, so that F 0
2

reduces to {f0}. All the results that follow hold in full generality, but in order to
avoid cumbersome notation, they will be stated and proved under this simplifying
assumption. The necessary modifications are obvious.

Lemma 5.6. Let k ∈ C(s0) be such that f0kf0 = km for some m ∈ M0 . Then
m = e.

Proof. Let k = k(n0)s0µ. Then n0 = exp(X1
0 + X2

0 ), with X1
0 (resp. X2

0 )
in the root space corresponding to −δ0 (resp. −2δ0 ). Select now two non-zero
vectors in these spaces, coinciding with X1

0 and X2
0 if neither one vanishes, and
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denote them again X1
0 and X2

0 . Then since δ0 is indivisible, the Lie algebra g∗0
generated by X1

0 , X2
0 , θX1

0 and θX2
0 is isomorphic to su(2, 1) ([6], Theorem 3.1,

Ch. IX, p. 409). Give now to all general Lie algebra concepts connected with
g∗0 the superscript ∗ . In particular, let G∗0 , K∗0 A∗0 ,N∗0 and N

∗
0 be the analytic

subgroups corresponding to g∗0 , k∗0 , a∗0 , n∗0 and n∗0 . In particular n0 ∈ exp n∗0 .

Next, consider the elements Y ∈ p∗0 and Z ∈ k∗0 corresponding to

Y =




0 0 0
0 0 −i
0 i 0


 ∈ su(2, 1), Z =




0 i 0
i 0 0
0 0 0


 ∈ su(2, 1),

respectively. It is immediate to check that for all H ∈ a∗0 :

[H, Y ] = δ0(H)Z, [H,Z] = δ0(H)Y.

Thus, ([6], Lemma 2.4, Ch. VII, p. 286), s0 may be realized as

s0 = exp(
π

〈δ0, δ0〉1/2
Z) ∈ G∗ ∩K0 = K∗0 .

Observe also that k(n0) ∈ K∗0 . It follows that the equality f0(k(n0)s0µ)f0 =
(k(n0)s0µ)m in K0 yields the equality:

f0(k(n0)s0)f0 = (k(n0)s0)µmµ−1

in K∗0 , that is in S(U2 × U1) ⊂ SU(2, 1). This gives µmµ−1 = e, namely m = e.

Remark. The previous lemma should be thought of as an “SU(2, 1)–reduction”.
It also explains the first reason for choosing δ0 as we did; the second reason will
become clear in the proof of Theorem 12.

Theorem 5.7. Let k be such that 〈k〉 ∈ Fix(F2, K0/M0). Then f0kf0 = k .

Proof. Let k ∈ C(w) be as in the statement. We now show by induction on
lS(w) that f0kf0 = k .

If lS(w) = 1 the results follows from Lemma 5.5 and Lemma 5.6.

Suppose the statement true for lS(w) ≤ p and let w = ss1·, . . . · sp be a reduced
expression. Two cases arise: either s 6= s0 or s = s0 .

Suppose first that s 6= s0 . By hypothesis, f0kf0 = km for a suitable m ∈ M0 .
Because of (4), C(w) = C(s)C(s1 · . . . · sp) and writing σ = s1·, . . . · sp , we have
k = kskσ , where evidently ks ∈ C(s) and kσ ∈ C(σ). But s 6= s0 , so that Lemma
(5.5) gives f0ksf0 = ks . Therefore

f0(kskσ)f0 = (f0ksf0)(f0kσf0) = ks(f0kσf0),

and this is equal to kskσm. It follows that f0kσf0 = kσm. By induction, m = e.

Suppose next that s = s0 . Put again σ = s1·, . . . · sp and k = kskσ . From
(f0ksf0)(f0kσf0) = kskσm we obtain

f0ksf0 = ks(kσmfok
−1
σ f0).
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Now ks ∈ C(s), and let kσmfok
−1
σ f0 ∈ C(u), so that:

f0ksf0 ∈ C(s) ∩ C(s)C(u).

Using now (2), we infer that

a) either f0ksf0 ∈ C(s) ∩ C(su).

b) or f0ksf0 ∈ C(s) ∩ C(u).

In case a), u must be equal to e, which yields kσmfok
−1
σ f0 ∈ C(e) = M0 , that

is f0ksf0 = ksµ for suitable µ ∈ M0 which is forced to be e by induction. Thus
kσm = f0kσf0 and again by induction m = e.

Next, we see that case b) cannot occur. Indeed, in this circumstance u = s. Let
us be more precise about u. The defining condition is that

ρ := (kσm)(f0k
−1
σ f0) ∈ C(u).

But kσm ∈ C(σ) and f0k
−1
σ f0 ∈ C(σ−1). By (3)

C(s1 · . . . · sp)C(σ−1) ⊂
∐

1≤i1≤...≤it≤p
C(si1 · . . . · sitσ−1),

so that ρ ∈ C(si1 · . . . · sitσ−1) for a suitable choice of indices. On the other hand,
si1 · . . . · sitσ−1 = u = s, i.e. si1 · . . . · sit = sσ = w . This is a contradiction because
lS(si1 · . . . · sit) = t ≤ p < p+ 1 = lS(w).

Recall that the set F4 of order 4 elements is now assumed for simplicity to be:

F4 =
{
f ∈ exp ia0 | f 2 = f0

}
.

Proposition 5.8. F4 acts on X1 = Fix(F2, K0/M0).

Proof. With the notation of Section 2, the action of F4 on X1 is given by
f · 〈k〉 = 〈Ad−1(fk∗f−1)〉. As agreed earlier, however, whenever appropriate we
will think of all the supgroups of G0 as subgroups of G under Ad (whereby the
center has become trivial), and remove the subscript ∗.
Let K1 = {k ∈ K0 | f0kf0 = k}, a closed, hence compact, Lie subgroup of K0 .
Let k1 be its Lie algebra. Our first concern is to show that:

Ad f0T = T, ∀T ∈ k1 (5)

Indeed, for all t ∈ R:

exp(tAd f0T ) = f0(exp tT )f0 = (exp tT ) ∈ K1,

thereby showing Ad f0T ∈ k1 . Next, since Ad f0 is an involution on k1 , we have
a vector space decomposition k1 = k+

1 + k−1 corresponding to the ±1 eigenvalues
of Ad f0 . Thus, if T = T+ + T− is the resulting decomposition of T , then for all
t ∈ R:

exp(t(T+ − T−)) = exp(tAd f0T ) = f0(exp tT )f0 = exp tT = exp(t(T+ + T−)).
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For t sufficiently small, this yields T− = 0, which is equivalent to saying k−1 = 0.
This proves (5).

Now we prove that if k ∈ K1 , then fkf−1 is fixed by Θ. In fact since f 2 = f0 ,
we have

f = f−1f0 = f0f
−1, f−1 = ff0 = f0f.

On the other hand, since Θ(f) = Θ(exp iA) = exp(iθA) = exp(−iA) = f−1 we
have

Θ(fkf−1) = f−1kf = ff0kf0f
−1 = fkf−1.

Suppose now k = exp T ∈ K1 . We may take T ∈ k1 . Then fkf = exp(Ad fT )
and if σ denotes conjugation in g with respect to g0 , then by (5)

σ(Ad fT ) = σ(Ad(exp iA)T )

= Ad(exp σ(iA))(σ(T ))

= Ad(exp−iA)T

= Ad f−1T

= Ad ff0T

= Ad fT.

Thus, Ad fT ∈ k0 , i.e. fkf−1 ∈ K0 .

Finally, let 〈k〉 ∈ X1 , so that, by Theorem 5.7, k ∈ K1 and by the above argument
fkf−1 ∈ K0 . In order to see that F4 sends fixed points of F2 into fixed points of
F2 , we must show that for all f ∈ F4 and for all g ∈ F2 there exists m ∈M0 such
that g(fkf−1)g = (fkf−1)m. But this is obvious because f and g commute, and
there exists m ∈M0 such that gkg = km.

Theorem 5.9. Fix(F4, X1) = W .

Proof. Since Σ0 is of type (BC)l , all roots of the form α =
∑l−1
j=0 νj(α)δj with

νj(α) ∈ 2Z (i.e. even roots) are such that ν0(α) = ±2, as it is clear from the list
at the end of Section 2. More precisely, all the non–vanishing coefficients of an
even root must be equal to ±2, but for each fixed δj 6= δ0 there is an even root α
for which νj(α) = 0. This is the second reason for choosing δ0 as we did.

Let now 〈k〉 ∈ Fix(F4, X1), H ∈ a0 a regular element, and Y = Ad kH . Then Y
is fixed by all elements of F4 . According to the remark following Theorem 3.3, we
may write:

Y = Y0 +
∑

α∈E
Yα,

where E is the set of even roots in Σ0 . Therefore, if f = exp iA0

Yα = eiα(A0)Yα.

Take now A0 = π
2
H0 (so that (exp iA0)2 = f0 ) and observe that:

α(A0) =
l−1∑

j=0

νj(α)δj(
π

2
H0) =

πν0(α)

2
= ±π.

Thus Yα = −Yα = 0 and Y ∈ a0 . Hence k ∈ M ′
0 , that is 〈k〉 ∈ W , which shows

that Fix(F4, X1) ⊂ W . The reverse inclusion is obvious.
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