The Weyl group as fixed point set of smooth involutions

Filippo De Mari
Communicated by G. Mauceri

Abstract

We show that the Weyl group $W=M^{\prime} / M$ of a noncompact semisimple Lie group is obtained by taking fixed point sets of smooth involutions in K / M. More precisely, one considers first the fixed point set X of the involutions defined on K / M by the elements of order 2 in $\exp i \mathfrak{a}$. The Weyl group is either X, or the fixed point set of the involutions defined on X by special elements of order 4 in $\exp i \mathfrak{a}$.

1. Introduction.

The primary motivation for studying the problem at hand comes from the observation ([2]) that if the Weyl group W can be obtained from K_{0} / M_{0} by successively taking fixed point sets of smooth involutions preserving Hessenberg manifolds, then one can also reverse Morse inequalities for real Hessenberg manifolds using Floyd's theorem [4] (see Section 1 for notations, and the second remark at the end of Section 2 for the Hessenberg-preserving property). The result proved in this paper, however, is of some independent interest, and we think that it might be useful in a variety of contexts. If one removes the smoothness assumption, it is easy to obtain W as the fixed point set of a single discontinuous involution: just view K_{0} / M_{0} as the adjoint K_{0}-orbit of a suitable regular element in \mathfrak{a}_{0} and "flip" across \mathfrak{a}_{0}.
In order to explain our ideas, we now briefly discuss an example. Let the group $M_{0}=\left\{\operatorname{diag}\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right) \quad \mid \quad \varepsilon_{j}= \pm 1, \Pi \varepsilon_{j}=1\right\}$ act by conjugation on $K_{0}=S O(3, \mathbb{R})$. Clearly, each $m \in M_{0}$ induces a smooth involution on the flag manifold K_{0} / M_{0}. The points in K_{0} / M_{0} simultaneously fixed by all three nontrivial involutions are in correspondence to those $k \in K_{0}$ for which the following property holds: for all $m \in M_{0}$ there exists $m^{\prime} \in M_{0}$ such that $m k m=k m^{\prime}$. It is immediate to see that such a k normalizes - by conjugation - the set \mathfrak{a}_{0} of trace zero diagonal matrices. Indeed, if $H \in \mathfrak{a}_{0}$ and $Y=k H k^{-1}$, then Y is left fixed by all $m \in M_{0}$. On the other hand, this last condition is expressed by the equalities $Y_{i j}=\varepsilon_{i} \varepsilon_{j} Y_{i j}$, so that Y is itself diagonal. Thus, modulo M_{0}, k is a permutation, i.e. an element of the Weyl group of $S L(3, \mathbb{R})$.

If we attempt to obtain the same result for $S L(2, \mathbb{R})$ using as set of involutions the centralizer of \mathfrak{a}_{0} in $K_{0}=S O(2, \mathbb{R})$, that is $M_{0}=\{ \pm \mathrm{id}\}$, we get as fixed point set in the projective space K_{0} / M_{0} the identity coset alone. But if we use the involution defined by diag $(i,-i)$, which still centralizes \mathfrak{a}_{0}, we achieve the target. These considerations suggest on the one hand that the right involutions should centralize \mathfrak{a}_{0}, and on the other hand that the problem should be analyzed inside some "complexification" of the semisimple Lie group G_{0}, that is, inside the adjoint group G of its complexified Lie algebra.
The appropriate set of involutions turns out to be $F_{2}=\left\{f \in \exp i \mathfrak{a}_{0} \mid f^{2}=e\right\}$, where \mathfrak{a}_{0} denotes as usual a maximal abelian subspace of the symmetric part of the Lie algebra \mathfrak{g}_{0} of G_{0}. When acting as group of smooth maps on $X_{0}:=K_{0} / M_{0}$, however, F_{2} singles out the Weyl group W as fixed point set only if the (restricted) root system associated with $\left(\mathfrak{g}_{0}, \mathfrak{a}_{0}\right)$ is reduced. Otherwise $X_{1}:=\operatorname{Fix}\left(F_{2}, X_{0}\right)$ contains properly W and one has to consider a special set F_{4} of elements of order 4 in $\exp i \mathfrak{a}_{0}$. At this stage one gets equality, namely $\operatorname{Fix}\left(F_{4}, X_{1}\right)=W$. The elements of F_{4} take into precise account the non-reduced roots, in a sense that will be made clear in Section 4. The nature of $\operatorname{Fix}\left(F_{4}, X_{1}\right)$, in particular the fact that the action of F_{4} on X_{1} is well-defined, is a slightly delicate matter, and is best understood via the Bruhat decomposition. The key step (Theorem 10) is proved by using basic properties of the Bruhat decomposition (Crollary 5.3) and $S U(2,1)$-reduction (Lemma 5.6).

2. Preliminaries and notation.

Let G_{0} be a semisimple, connected, non-compact Lie group with finite center, \mathfrak{g}_{0} its Lie algebra, and $\mathfrak{g}=\mathfrak{g}_{0}^{c}$ its complexification viewed as real Lie algebra. Thus \mathfrak{g} is semisimple. Denote by σ the automorphism of \mathfrak{g} corresponding to conjugation with respect to \mathfrak{g}_{0}, i.e. $\sigma: X+i Y \mapsto X-i Y$ for $X, Y \in \mathfrak{g}_{0}$.
Let ad denote the adjoint representation of \mathfrak{g}. We then have Lie algebra inclusions $\operatorname{ad} \mathfrak{g}_{0} \subset \operatorname{ad} \mathfrak{g} \subset \mathfrak{g l}(\mathfrak{g})=\operatorname{End}(\mathfrak{g})$. Let $G=\operatorname{Int}(\mathfrak{g})$ be the adjoint group of \mathfrak{g}, i.e. the connected Lie subgroup of $G L(\mathfrak{g})=\operatorname{Aut}(\mathfrak{g})$ correspoding to ad \mathfrak{g}. If G_{*} denotes the connected Lie subgroup of $\operatorname{Int}(\mathfrak{g})$ corresponding to $\operatorname{ad} \mathfrak{g}_{0}$, then G_{*} is a closed Lie subgroup of G diffeomorphic to $\operatorname{Int}\left(\mathfrak{g}_{0}\right)$, the adjoint group of \mathfrak{g}_{0} ([6], Lemma 6.2 , Ch. III, p.181). The adjoint representation of G_{0} maps G_{0} onto G_{*} with kernel Z_{0}, the center of G_{0}. Thus $G_{*} \simeq G_{0} / Z_{0}$.
Let now θ be a Cartan involution of \mathfrak{g}_{0} and $\mathfrak{g}_{0}=\mathfrak{k}_{0}+\mathfrak{p}_{0}$ the resulting Cartan decomposition. Let \mathfrak{a}_{0} be a maximal abelian subspace of \mathfrak{p}_{0} of dimension say l. Call a linear functional $\alpha \in \mathfrak{a}_{0}^{*}$ a restricted root if

$$
\mathfrak{g}_{0 \alpha}=\left\{X \in \mathfrak{g}_{0} \mid[H, X]=\alpha(H) X \forall H \in \mathfrak{a}_{0}\right\} \neq 0 .
$$

The set of non-zero restricted roots (resp. positive, simple) will be denoted by Σ (resp. Σ^{+}, Δ). The simultaneous diagonalization of all the $X \mapsto[H, X] \in \operatorname{End}\left(\mathfrak{g}_{0}\right)$ with $H \in \mathfrak{a}_{0}$ leads to the root-space decomposition of \mathfrak{g}_{0}

$$
\mathfrak{g}_{0}=\mathfrak{g}_{00}+\sum_{\alpha \in \Sigma} \mathfrak{g}_{0 \alpha} .
$$

In turn,

$$
\mathfrak{g}_{00}=\mathfrak{a}_{0}+\mathfrak{m}_{0}
$$

where $\mathfrak{m}_{0}=\left\{X \in \mathfrak{k}_{0} \mid[X, H]=0 \forall H \in \mathfrak{a}_{0}\right\}$ is the centralizer of \mathfrak{a}_{0} in \mathfrak{k}. Put

$$
\mathfrak{n}_{0}=\sum_{\alpha \in \Sigma^{+}} \mathfrak{g}_{0 \alpha}
$$

so that the Iwasawa decomposition of \mathfrak{g}_{0} reads:

$$
\mathfrak{g}_{0}=\mathfrak{n}_{0}+\mathfrak{a}_{0}+\mathfrak{k}_{0} .
$$

Let now N_{0}, A_{0} and K_{0} denote the Lie subgroup of G_{0} corresponding to $\mathfrak{k}_{0}, \mathfrak{a}_{0}$ and \mathfrak{n}_{0}. Thus $G_{0}=N_{0} A_{0} K_{0}$ is the Iwasawa decomposition of G_{0}. Here K_{0} is a maximal compact subgroup of G_{0}, A_{0} is abelian and N_{0} is nilpotent. Moreover, there exists an involutive automorphism Θ of G_{0} with $d \Theta=\theta$, such that K_{0} is the set of points fixed by Θ. Let M_{0} and M_{0}^{\prime} denote respectively the centralizer and normalizer of \mathfrak{a}_{0} in K_{0}, i.e. $M_{0}=\left\{m \in K_{0} \mid \operatorname{Ad} m(H)=H, \forall H \in \mathfrak{a}_{0}\right\}$ and $M_{0}^{\prime}=\left\{m \in K_{0} \mid \operatorname{Ad} m(H) \in \mathfrak{a}_{0}, \forall H \in \mathfrak{a}_{0}\right\}$. Here Ad, stands for the adjoint representation of G_{0}. The Lie algebras of M_{0} and M_{0}^{\prime} coincide and are equal to \mathfrak{m}_{0}. The finite group $W=M_{0}^{\prime} / M_{0}$ is the Weyl group of G_{0} associated to the previous data. Clearly, W sits inside the boundary K_{0} / M_{0}.

3. The case of reduced root systems.

The Cartan involution θ extends in a unique fashion to an involution of \mathfrak{g}, also denoted by θ ([7], Ch. III, p. 368), and there exists an involutive automorphism Θ of G such that $d \Theta=\theta$. Let K_{Θ} denote the Lie subgroup of G of fixed points of Θ and by K its identity component. Put

$$
F_{2}=\left\{f \in \exp i \mathfrak{a}_{0} \mid f^{2}=e\right\} \subset G
$$

It is easy to give an explicit description of F_{2} ([7], ex. 7 p. 384). Indeed, if $\left\{H_{1}, \ldots, H_{l}\right\}$ is the basis of \mathfrak{a}_{0} dual to Δ, then:

$$
F_{2}=\left\{\exp i \pi \sum_{j=1}^{l} \nu_{j} H_{j} \mid \nu_{j}=0,1\right\}
$$

Thus card $F_{2}=2^{l}$. Observe also that if $f=\exp i A \in F_{2}$, then

$$
\Theta f=\Theta \exp i A=\exp (\theta i A)=\exp (-i A)=f^{-1}=f
$$

so that $F_{2} \subset K_{\Theta}$. More precisely, F_{2} is the group of components of K_{Θ}, i.e. ([8])

$$
K_{\Theta}=K \cdot F_{2} .
$$

The first step of our construction consists in showing that F_{2} acts on $X_{0}=K_{0} / M_{0}$ by smooth involutions. The fixed point set $X_{1}=\operatorname{Fix}\left(F_{2}, X_{0}\right)$ is in many cases W, but not always. If the root system Σ is not reduced, then X_{1} is an "intermediate" manifold between K_{0} / M_{0} and W.
¿From now until the end of this section, we will use the subscript $*$ to indicate images under the adjoint representation Ad of G_{0}.

Proposition 3.1. If $f \in F_{2}$, then $f K_{*} f=K_{*}$.
Proof. Let $f K_{*} f=K_{f}$, and let \mathfrak{k}_{f} be its Lie algebra in \mathfrak{g}. It is clear that $\mathfrak{k}_{f}=\operatorname{Ad}_{G} f \mathfrak{k}_{0}$. Therefore, \mathfrak{k}_{f} is θ-invariant. If $f=\exp i A$, and $T_{0} \in \mathfrak{k}_{0}$, then:

$$
\begin{aligned}
\sigma\left(\operatorname{Ad}_{G} f T_{0}\right) & =\sigma\left(\operatorname{Ad}_{G}(\exp i A) T_{0}\right) \\
& =\operatorname{Ad}_{G}(\exp \sigma(i A))\left(\sigma T_{0}\right) \\
& =\operatorname{Ad}_{G}(\exp -i A) T_{0} \\
& =\operatorname{Ad}_{G} f T_{0}
\end{aligned}
$$

Thus $\operatorname{Ad}_{G} f T_{0} \in \mathfrak{g}_{0} \cap \mathfrak{k}=\mathfrak{k}_{0}$. This shows $\mathfrak{k}_{f}=\mathfrak{k}_{0}$, thereby proving the Proposition, since K_{*} is the connected subgroup of G corresponding to the Lie subalgebra \mathfrak{k}_{0} of \mathfrak{g}.

Proposition 3.2. F_{2} acts on K_{0} / M_{0} by:

$$
\begin{equation*}
f \cdot\langle k\rangle=\left\langle\operatorname{Ad}^{-1}\left(f k_{*} f\right)\right\rangle \tag{1}
\end{equation*}
$$

$\langle\cdot\rangle$ denoting the class mod M_{0} and Ad the adjoint representation of G_{0}. Moreover, as maps, all the f 's commute with each other and $f^{2}=\mathrm{id}$.

Proof. First of all notice that $\operatorname{Ad}^{-1} e=Z_{0}$, the center of G_{0}. But Z_{0} is contained in M_{0}, so that all the elements in $\operatorname{Ad}^{-1} x$ belong to the same M_{0} coset. Since F_{2} centralizes M_{*}, for $k \in K_{0}$ and $m \in M_{0}$, we have:

$$
\begin{aligned}
f(k m)_{*} f & =f k_{*} m_{*} f \\
& =\left(f k_{*} f\right)\left(f m_{*} f\right) \\
& =\left(k^{\prime}\right)_{*} m_{*} \\
& =\left(k^{\prime} m_{*},\right.
\end{aligned}
$$

where $k_{*}^{\prime}=f k_{*} f \in K_{*}$ because of the previous Proposition. Thus:

$$
\operatorname{Ad}^{-1}\left(f(k m)_{*} f\right)=k^{\prime} m Z_{0}
$$

and $\left\langle k^{\prime} m Z_{0}\right\rangle=\left\langle k^{\prime}\right\rangle$ depends only on $\langle k\rangle$. The remaining assertions are clear, since F_{2} is abelian in G.

Denote by $\operatorname{Fix}\left(F_{2}, X_{0}\right)$ the set of points in $X_{0}=K_{0} / M_{0}$ which are simultaneously fixed by all $f \in F_{2}$. It is clear that $\operatorname{Fix}\left(F_{2}, X_{0}\right)$ is a smooth manifold. Indeed, if $F_{2}=\left\{f_{1}, \ldots, f_{N}\right\}, N=2^{l}$, let $X_{0}^{1}=\operatorname{Fix}\left(f_{1}, X_{0}\right)$ and for $1 \leq j \leq N$ put $X_{0}^{j}=\operatorname{Fix}\left(f_{j}, X_{0}^{j-1}\right)$, (here $\left.X_{0}^{0}=X_{0}\right)$. Then X_{0}^{1} is a smooth manifold because it is the image under $\pi: K_{0} \rightarrow K_{0} / M_{0}$ of $K_{0}^{1}=\left\{k \in K_{0} \mid k^{-1} f_{1} k f_{1} \in M_{0}\right\}$. Similarly, X_{0}^{j} is a smooth manifold because it is the image under $\pi: K_{0} \rightarrow K_{0} / M_{0}$ of $K_{0}^{j}=\left\{k \in K_{0}^{j-1} \mid k^{-1} f_{j} k f_{j} \in M_{0}\right\}$. But $X_{0}^{N}=\operatorname{Fix}\left(F_{2}, X_{0}\right)$ because all the f 's commute as maps.

Theorem 3.3. If Σ is reduced, then $\operatorname{Fix}\left(F_{2}, X_{0}\right)=W$.

Proof. Let $\bar{H} \in \mathfrak{a}_{0}$ be a regular element, and let $\langle k\rangle \in \operatorname{Fix}\left(F_{2}, X_{0}\right)$. This means that given $f \in F_{2}$ there exists $m \in M_{0}$ such that:

$$
f k_{*} f=k_{*} m_{*} .
$$

Then $Y:=\operatorname{Ad} k_{*} \bar{H}=\operatorname{Ad} k \bar{H} \in \mathfrak{p}_{0}$ depends only on $\langle k\rangle$ and we may write:

$$
Y=Y_{0}+\sum_{\alpha \in \Sigma} Y_{\alpha}
$$

where $Y_{0} \in \mathfrak{m}_{0}$ and $Y_{\alpha} \in \mathfrak{g}_{\alpha}$. Since f centralizes \mathfrak{a}_{0},

$$
\operatorname{Ad} f Y=\operatorname{Ad} f k_{*} f \bar{H}=\operatorname{Ad} k_{*} m_{*} \bar{H}=\operatorname{Ad} k_{*} \bar{H}=Y
$$

so that Y is fixed by all $f \in F_{2}$. Therefore, if $f=\exp i A_{0}$,

$$
Y_{\alpha}=\left(\operatorname{Ad} \exp i A_{0} Y\right)_{\alpha}=\left(e^{\operatorname{ad} i A_{0}} Y\right)_{\alpha}=e^{i \alpha\left(A_{0}\right)} Y_{\alpha}
$$

Fix now α and write

$$
\alpha=\sum_{\delta \in \Delta} \nu_{\delta}(\alpha) \delta .
$$

If Σ is reduced, there are no roots α for which $\nu_{\delta}(\alpha)$ is even for all δ ([1]). Thus $\nu_{\bar{\delta}}(\alpha)$ is odd for at least one simple restricted root $\bar{\delta}$. Select $A_{0}=\pi H_{\bar{\delta}}$, so that $\alpha\left(A_{0}\right)$ is an odd multiple of π. It follows that $Y_{\alpha}=-Y_{\alpha}=0$. This shows that $Y=Y_{0} \in \mathfrak{a}_{0}$, namely that $k \in M_{0}^{\prime}$. Thus $\langle k\rangle \in W$ and $\operatorname{Fix}\left(F_{2}, X_{0}\right) \subset W$. The reverse inclusion is obvious.

Remarks i) It is clear from the proof of 3.3 that if the root system Σ is not reduced, $\langle k\rangle \in \operatorname{Fix}\left(F_{2}, X_{0}\right)$ and $\bar{H} \in \mathfrak{a}_{0}$ is a regular element, then $Y=\operatorname{Ad} k \bar{H}=$ $Y_{0}+\sum_{\alpha \in E} Y_{\alpha}$, where E is the set of even roots, namely those roots $\alpha=\sum_{\delta \in \Delta} \nu_{\delta}(\alpha) \delta$ for which $\nu_{\delta}(\alpha) \in 2 \mathbb{Z}$ for all $\delta \in \Delta$.
ii) The involutions defined by F_{2} have the additional property of preserving Hessenberg manifolds. We recall ([2], [3]) that for a fixed regular element $\bar{H} \in \mathfrak{a}_{0}$, a (real) Hessenberg manifold $\operatorname{Hess}_{\mathcal{R}}(\bar{H})$ is defined for any subset \mathcal{R} of the set Σ^{-} of negative roots having the following Hessenberg property:

$$
\alpha \in \mathcal{R}, \quad \beta \in \Sigma^{+}, \quad \alpha+\beta \in \Sigma^{-} \Longrightarrow \alpha+\beta \in \mathcal{R}
$$

One then defines the Hessenberg subspaces $\mathfrak{p}_{0}(\mathcal{R})$ of \mathfrak{p}_{0} by summing vectors of the form $X_{\alpha}-\theta X_{\alpha}$ with $\alpha \in \mathcal{R}$. More precisely, set

$$
\mathfrak{p}_{0}(\mathcal{R})=\mathfrak{a}_{0}+\sum_{\alpha \in \mathcal{R}}\left(\left(\mathfrak{g}_{0, \alpha}+\mathfrak{g}_{0,-\alpha}\right) \cap \mathfrak{p}_{0}\right) .
$$

Finally,

$$
\operatorname{Hess}_{\mathcal{R}}(\bar{H})=\left\{\langle k\rangle \in K_{0} / M_{0} \mid \operatorname{Ad} k^{-1} \bar{H} \in \mathfrak{p}_{0}(\mathcal{R})\right\} .
$$

It is clear that since F_{2} centralizes \mathfrak{a}_{0}, it maps $\operatorname{Hess}_{\mathcal{R}}(\bar{H})$ into itself. A similar situation occurs for the action of F_{4} which will be presented in Section 5 .

We will simplify the notation thinking of all the subgroups of G_{0} as subgroups of G under the adjoint representation. In this process, the center becomes trivial. Thus we suppress the subscripts $*$ and write, for example, K_{0} in place of K_{*} whenever no confusion arises.

4. The Weyl group of $\operatorname{SU}(2,1)$.

As we will see in the next section, the general case is handled by reducing the problem to an $S U(2,1)$ computation, via the "Bruhat decomposition" of K_{0}. We therefore analyze this group in full detail.
Recall that $G_{0}=S U(2,1)$ consists of those elements in $G L(3, \mathbb{C})$ having determinant equal to one and satisfying $g^{*} I_{2,1} g=I_{2,1}$, where

$$
I_{2,1}=\left[\begin{array}{cc}
-I_{2} & 0 \\
0 & 1
\end{array}\right] .
$$

The Lie algebra \mathfrak{g}_{0} of G_{0} is therefore

$$
\begin{aligned}
\mathfrak{s u}(2,1) & =\left\{X \in \mathfrak{g l}(3, \mathbb{C}) \mid X^{*} I_{2,1}+I_{2,1} X=0, \operatorname{tr} X=0\right\} \\
& =\left\{\left.\left[\begin{array}{cc}
A & B \\
B^{*} & -\operatorname{tr} A
\end{array}\right] \right\rvert\, A \in \mathfrak{u}(2), B \in M_{2,1}(\mathbb{C})\right\}
\end{aligned}
$$

where evidently $\mathfrak{u}(2)$ is the Lie algebra of 2×2 skew-hermitian matrices. Let θ and Θ denote the Cartan involutions on \mathfrak{g}_{0} and G_{0} respectively, so that $\theta=d \Theta$. Then:

$$
\theta X=I_{2,1} X I_{2,1}, \quad \Theta g=I_{2,1} g I_{2,1}
$$

Consequently,

$$
\begin{gathered}
\mathfrak{k}_{0}=\left\{\left.\left[\begin{array}{cc}
A & 0 \\
0 & -\operatorname{tr} A
\end{array}\right] \right\rvert\, A \in \mathfrak{u}(2)\right\}, \\
\mathfrak{p}_{0}=\left\{\left.\left[\begin{array}{cc}
0 & { }^{t} \zeta \\
\bar{\zeta} & 0
\end{array}\right] \right\rvert\, \zeta \in \mathbb{C}^{2}\right\} .
\end{gathered}
$$

A maximal abelian suspace of \mathfrak{p}_{0} is:

$$
\mathfrak{a}_{0}=\left\{t H_{0} \left\lvert\, H_{0}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\right., t \in \mathbb{R}\right\} .
$$

Next, a maximal compact subgroup of G_{0} corresponding to \mathfrak{k}_{0} is:

$$
K_{0}=S\left(U_{2} \times U_{1}\right)=\left\{\left.\left[\begin{array}{cc}
A & 0 \\
0 & e^{i t}
\end{array}\right] \right\rvert\, A \in U(2), \operatorname{det} A=e^{-i t}, t \in \mathbb{R}\right\}
$$

The centralizer M_{0} of \mathfrak{a}_{0} in K_{0} is

$$
M_{0}=\left\{\left.\left[\begin{array}{ccc}
e^{i s} & 0 & 0 \\
0 & e^{-2 i s} & 0 \\
0 & 0 & e^{i s}
\end{array}\right] \right\rvert\, s \in \mathbb{R}\right\}
$$

whereas the normalizer M_{0}^{\prime} of \mathfrak{a}_{0} in K_{0} is

$$
M_{0}^{\prime}=\left\{\left.\left[\begin{array}{ccc}
\varepsilon e^{i s} & 0 & 0 \\
0 & \varepsilon e^{-2 i s} & 0 \\
0 & 0 & e^{i s}
\end{array}\right] \right\rvert\, s \in \mathbb{R}, \varepsilon= \pm 1\right\}
$$

It follows that the Weyl group $W=M_{0}^{\prime} / M_{0}$ is (isomorphic to) the two-element group.
The root-space structure of $S U(2,1)$ is easily written. Indeed, $\mathfrak{g}_{00}=\mathfrak{a}_{0}+\mathfrak{m}_{0}$ with

$$
\mathfrak{m}_{0}=\left\{t T_{0} \left\lvert\, T_{0}=\left[\begin{array}{ccc}
i & 0 & 0 \\
0 & -2 i & 0 \\
0 & 0 & i
\end{array}\right]\right., t \in \mathbb{R}\right\}
$$

and if $\alpha: \mathfrak{a}_{0} \rightarrow \mathbb{R}$ is the linear functional defined by $t H_{0} \mapsto t$, then:

$$
\begin{array}{ll}
\mathfrak{g}_{0, \alpha}=\left\{\left[\begin{array}{ccc}
0 & z & 0 \\
-\bar{z} & 0 & \bar{z} \\
0 & z & 0
\end{array}\right], z \in \mathbb{C}\right\}, \quad \mathfrak{g}_{0,-\alpha}=\left\{\left[\begin{array}{ccc}
0 & z & 0 \\
-\bar{z} & 0 & -\bar{z} \\
0 & -z & 0
\end{array}\right], z \in \mathbb{C}\right\}, \\
\mathfrak{g}_{0,2 \alpha}=\left\{\left[\begin{array}{ccc}
i t & 0 & -i t \\
0 & 0 & 0 \\
i t & 0 & -i t
\end{array}\right], t \in \mathbb{R}\right\}, \quad \mathfrak{g}_{0,-2 \alpha}=\left\{\left[\begin{array}{ccc}
i t & 0 & i t \\
0 & 0 & 0 \\
-i t & 0 & -i t
\end{array}\right], t \in \mathbb{R}\right\} .
\end{array}
$$

Taking exponentials in $G L(3, \mathbb{C})$, we have

$$
\exp i \mathfrak{a}_{0}=\left\{\left.\left[\begin{array}{ccc}
\cos t & 0 & i \sin t \\
0 & 1 & 0 \\
i \sin t & 0 & \cos t
\end{array}\right] \right\rvert\, t \in \mathbb{R}\right\}
$$

so that

$$
F_{2}=\left\{f \in \exp i \mathfrak{a}_{0} \mid f^{2}=1\right\}=\left\{\left.\left[\begin{array}{ccc}
\varepsilon & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \varepsilon
\end{array}\right] \right\rvert\, \varepsilon= \pm 1\right\} .
$$

Observe that:

$$
\exp i \pi H_{0}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

We will also need the following set of elements of order 4 in $\exp i \mathfrak{a}_{0}: F_{4}=$ $\left\{f \in \exp i \mathfrak{a}_{0} \mid f^{2}=\exp i \pi H_{0}\right\}$. Clearly:

$$
F_{4}=\left\{\left.\left[\begin{array}{ccc}
0 & 0 & i \varepsilon \\
0 & 1 & 0 \\
i \varepsilon & 0 & 0
\end{array}\right] \right\rvert\, \varepsilon= \pm 1\right\} .
$$

Next we analyze $X_{1}:=\operatorname{Fix}\left(F_{2}, K_{0} / M_{0}\right)$. To this end, let $\langle k\rangle \in X_{1}$. If $k=$ $\left[\begin{array}{cc}A & 0 \\ 0 & e^{i t}\end{array}\right]$ with $A=\left[\begin{array}{cc}a & b \\ c & d\end{array}\right] \in U(2)$, and $f=f_{\varepsilon} \in F_{2}$, then there exists $m=m_{s}(\varepsilon) \in M_{0}$ such that $f k f=k m$. Since

$$
f k f=\left[\begin{array}{ccc}
a & \varepsilon b & 0 \\
\varepsilon c & d & 0 \\
0 & 0 & e^{i t}
\end{array}\right], \quad \text { and } \quad k m=\left[\begin{array}{ccc}
a e^{i s} & b e^{-2 i s} & 0 \\
c e^{i s} & d e^{-2 i s} & 0 \\
0 & 0 & e^{i t} e^{i s}
\end{array}\right] \text {, }
$$

we immediately obtain $e^{i s}=1$, i.e. $m_{s}(\varepsilon)=\mathrm{id}=e$ independently of ε. Choosing $\varepsilon=-1$, we see that A must be diagonal, i.e.,

$$
k=\left[\begin{array}{ccc}
e^{i u} & 0 & 0 \\
0 & e^{i v} & 0 \\
0 & 0 & e^{i t}
\end{array}\right] \quad u+v+t \in 2 \pi \mathbb{Z}
$$

We stress that we have proved that if $\langle k\rangle \in X_{1}$, then $f k f=k$ for all $f \in F_{2}$, a very special situation which will be used in the proof of 5.6. Nonetheless, $X_{1} \neq W$. In order to obtain W as the fixed point set of (smooth) involutions, we need to consider the action of F_{4} on $\operatorname{Fix}\left(F_{2}, K_{0} / M_{0}\right)$. This fact illustrates a general situation. Observe that if $\langle k\rangle \in X_{1}$ and $f \in F_{4}$, then:

$$
f k f^{-1}=\left[\begin{array}{ccc}
0 & 0 & i \varepsilon \\
0 & 1 & 0 \\
i \varepsilon & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
e^{i u} & 0 & 0 \\
0 & e^{i v} & 0 \\
0 & 0 & e^{i t}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & -i \varepsilon \\
0 & 1 & 0 \\
-i \varepsilon & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
e^{i t} & 0 & 0 \\
0 & e^{i v} & 0 \\
0 & 0 & e^{i u}
\end{array}\right],
$$

so that F_{4} sends fixed points into fixed points. Now, the requirement that $\langle k\rangle \in$ $\operatorname{Fix}\left(F_{4}, X_{1}\right)$ is equivalent to asking that, given ε, there exists $m \in M_{0}$ such that $f k f^{-1}=k m$. Since

$$
k m=\left[\begin{array}{ccc}
e^{i(u+s)} & 0 & 0 \\
0 & e^{i(v-2 s)} & 0 \\
0 & 0 & e^{i(t+s)}
\end{array}\right]
$$

we obtain the system

$$
\left\{\begin{array}{l}
u+s=t+2 n_{1} \pi \\
v-2 s=v+2 n_{2} \pi \\
t+s=u+2 n_{3} \pi
\end{array}\right.
$$

for some integers n_{1}, n_{2} and n_{3}, that is:

$$
s=n \pi, \quad u=t+n^{\prime} \pi,
$$

for some integers n and n^{\prime}. If n is odd, then $m=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$, and $f k f=k m$ implies $e^{i t}=-e^{i u}$, whence $v=\left(2 n^{\prime \prime}+1\right) \pi-2 u$, and so:

$$
k=\left[\begin{array}{ccc}
-e^{i t} & 0 & 0 \\
0 & -e^{-2 i t} & 0 \\
0 & 0 & e^{i t}
\end{array}\right] \in M_{0}^{\prime} .
$$

Finally, if n is even, then $m=\operatorname{id}$ and $f k f=k m$ forces $e^{i t}=e^{i u}$, whence $e^{i v}=-e^{-2 i t}$, i.e.

$$
k=\left[\begin{array}{ccc}
e^{i t} & 0 & 0 \\
0 & e^{-2 i t} & 0 \\
0 & 0 & e^{i t}
\end{array}\right] \in M_{0} \subset M_{0}^{\prime} .
$$

This shows that $\operatorname{Fix}\left(F_{4}, X_{1}\right)=W$.

For the reader's convenience, we conclude this section by briefly recalling the general structure of a root system of type $(B C)_{l}$ because it will be used in Section 5. The root system associated to $S U(2,1)$ is of course of type $(B C)_{1}$. Let e_{j} denote the $j^{\text {th }}$ standard basis element in \mathbb{R}^{l}. The rank l root system of type $(B C)_{l}$ is (isomorphic to):

$$
(B C)_{l}=\left\{ \pm e_{i} \pm e_{j}, 1 \leq i<j \leq l, \pm e_{j}, 1 \leq j \leq l, \pm 2 e_{j}, 1 \leq j \leq l\right\}
$$

Slightly modifying the standard notation ([6], Theorem 3.25, Ch. X, p. 475), a basis $\Delta=\left\{\delta_{0}, \delta_{1}, \ldots \delta_{l-1}\right\}$ of simple roots is given by:

$$
\delta_{0}=e_{l}, \quad \delta_{j}=e_{j}-e_{j+1}, \quad 1 \leq j \leq l-1 .
$$

Finally we list the expression of the positive roots in terms of the basis elements; here $1 \leq i<j \leq l$, and if $j=l$ the sum $\delta_{j}+\ldots+\delta_{l-1}$ is zero:

$$
\begin{aligned}
& e_{i}-e_{j}=\delta_{i}+\ldots+\delta_{j-1} \\
& e_{j}=\delta_{0}+\left(\delta_{j}+\ldots+\delta_{l-1}\right) \\
& 2 e_{j}=2 \delta_{0}+2\left(\delta_{j}+\ldots+\delta_{l-1}\right) \\
& e_{i}+e_{j}=\left(\delta_{i}+\ldots+\delta_{j-1}\right)+2 \delta_{0}+2\left(\delta_{j}+\ldots+\delta_{l-1}\right)
\end{aligned}
$$

Using the terminology introduced in the first remark following Theorem 3, the only even roots in $(B C)_{l}$ are $2 e_{j}$, for $j=1, \ldots, l$.

5. Bruhat decomposition and $S U(2,1)$ reduction. The general case.

We recall that if $B_{0}=N_{0} A_{0} M_{0}$, then the Bruhat decomposition of G_{0} is the disjoint union:

$$
G_{0}=\coprod_{w \in W} B_{0} w B_{0} .
$$

A better parametrization of the double cosets $B_{0} w B_{0}$ may be achieved as follows (see [5]). For $w \in W$, let $\Sigma_{w}^{+}=\left\{\alpha \in \Sigma^{+} \mid-w \alpha \in \Sigma^{+}\right\}$, and set

$$
\overline{\mathfrak{n}}_{w}=\sum_{\alpha \in \Sigma_{w}^{+}} \mathfrak{g}_{w \alpha}, \quad N_{w}^{-}=\exp \overline{\mathfrak{n}}_{w}
$$

Then the Bruhat decomposition may be rewritten as

$$
G_{0}=\coprod_{w \in W}\left(N_{0} A_{0}\right) N_{w}^{-} w M_{0},
$$

giving rise to a "Bruhat decomposition" of K_{0} :

$$
K_{0}=\coprod_{w \in W} k\left(N_{w}^{-}\right) w M_{0},
$$

where $k(\cdot)$ refers to the K_{0}-coordinate function in the Iwasawa decomposition $G_{0}=N_{0} A_{0} K_{0}$. When we write $k=k(\bar{n}) w m$, we think of w as a fixed representative in M_{0}^{\prime}.
We will write $\mathcal{B}(w)=B_{0} w B_{0}=\left(N_{0} A_{0}\right) N_{w}^{-} w M_{0}$ and $\mathcal{C}(w)=k\left(N_{w}^{-}\right) w M_{0}$, and refer to $\mathcal{B}(w)$ and $\mathcal{C}(w)$ as the Bruhat cells of G_{0} and K_{0}, respectively. Observe that:

$$
\mathcal{C}=k(\mathcal{B}) .
$$

Next, we recall ([1]) a few crucial properties enjoied by the cells $\mathcal{B}(w)$, and show that they hold for the cells $\mathcal{C}(w)$ as well.
Let S be a set of generators of W, with $e \notin S$. Let $s \in S$ and $w \in W$, then

$$
\mathcal{B}(s) \mathcal{B}(w)=\left\{\begin{array}{lll}
\mathcal{B}(s w) & \text { if } \quad \mathcal{B}(w) \not \subset \mathcal{B}(s) \mathcal{B}(w) \tag{2}\\
\mathcal{B}(w) \cup \mathcal{B}(s w) & \text { if } \quad \mathcal{B}(w) \subset \mathcal{B}(s) \mathcal{B}(w)
\end{array}\right.
$$

Let $w=s_{1} \cdot \ldots \cdot s_{p}$ be a reduced expression in terms of generators, and let $v \in W$; then

$$
\begin{equation*}
\mathcal{B}\left(s_{1} \cdot \ldots \cdot s_{p}\right) \mathcal{B}(v) \subset \coprod_{1 \leq i_{1} \leq \ldots \leq i_{t} \leq p} \mathcal{B}\left(s_{i_{1}} \cdot \ldots \cdot s_{i_{t}} v\right), \tag{3}
\end{equation*}
$$

where $\left(i_{1}, \ldots, i_{t}\right)$ ranges over all - possibly empty - t-uples of increasing integers in the interval $[1, p]$. Finally, let $l_{S}(\cdot)$ denote the length function on W with respect to the set S of generators of W. Let $w_{1}, \ldots, w_{p} \in W$ and suppose that $l_{S}(w)=l_{S}\left(w_{1}\right)+\ldots+l_{S}\left(w_{p}\right)$, then $\mathcal{B}(w)=\mathcal{B}\left(w_{1}\right) \cdot \ldots \cdot \mathcal{B}\left(w_{p}\right)$. In particular, if $w=s_{1} \cdot \ldots \cdot s_{p}$ is a reduced expression of w in terms of generators, then:

$$
\begin{equation*}
\mathcal{B}(w)=\mathcal{B}\left(s_{1}\right) \cdot \ldots \cdot \mathcal{B}\left(s_{p}\right) \tag{4}
\end{equation*}
$$

Our first concern will be to show that 2,3 and 4 hold for $\mathcal{C}(w)$ as well.

Lemma 5.1. Let $u, w \in W$. Then $k(\mathcal{B}(u)) \cdot k(\mathcal{B}(w))=k(\mathcal{B}(u) \cdot \mathcal{B}(w))$.
Proof. Let $x \in \mathcal{B}(u)$ and $y \in \mathcal{B}(w)$. Write $x=b_{1} u b_{2}, b_{i} \in B_{0}$, and $y=n a \cdot k(y)$. Then $x y=b_{1} u b_{2} n a \cdot k(y)=\left(b_{1} u b_{2}^{\prime}\right) \cdot k(y)$. Since $b_{1} u b_{2}^{\prime} \in \mathcal{B}(u)$, $b_{1} u b_{2}^{\prime}=n^{\prime} a^{\prime} k^{\prime}$ with $k^{\prime} \in k(\mathcal{B}(u))$. Thus $x y=n^{\prime} a^{\prime} k^{\prime} \cdot k(y)$, so that $k(x y)=$ $k^{\prime} \cdot k(y) \in k(\mathcal{B}(u)) \cdot k(\mathcal{B}(w))$, thereby showing $k(\mathcal{B}(u) \cdot \mathcal{B}(w)) \subset k(\mathcal{B}(u)) \cdot k(\mathcal{B}(w))$. On the other hand, $k(\mathcal{B}(u)) \cdot k(\mathcal{B}(w))=k(\mathcal{B}(u) \cdot k(\mathcal{B}(w))) \subset k(\mathcal{B}(u) \cdot \mathcal{B}(w))$, and the lemma is proved.

Lemma 5.2. $\quad k(\mathcal{B}) \subset \mathcal{B}$ and $N_{0} A_{0} \cdot k(\mathcal{B})=\mathcal{B}$.

Proof. As for the first statement, let nak $\in \mathcal{B}=B_{0} w B_{0}$ and put $b=(n a)^{-1} \in$ $N_{0} A_{0} M_{0}=B_{0}$. Then $k=b(n a k) \in B_{0} \mathcal{B}=\mathcal{B}$. As for the second, $N_{0} A_{0} \cdot k(\mathcal{B}) \subset$ $B_{0} \cdot k(\mathcal{B}) \subset B_{0} \mathcal{B}=\mathcal{B}$, and $\mathcal{B} \subset n(\mathcal{B}) \cdot a(\mathcal{B}) \cdot k(\mathcal{B}) \subset N_{0} A_{0} \cdot k(\mathcal{B})$.

Corollary 5.3. Formulae (2), (3) and (4) hold for the Bruhat cells in K_{0}.

Proof. \quad Suppose $\mathcal{C}(w) \subset \mathcal{C}(s) \mathcal{C}(w)$, i.e. $\quad k(\mathcal{B}(w)) \subset k(\mathcal{B}(s)) k(\mathcal{B}(w))$. Then $N_{0} A_{0} \cdot k(\mathcal{B}(w)) \subset N_{0} A_{0} \cdot k(\mathcal{B}(s)) N_{0} A_{0} \cdot k(\mathcal{B}(w))$, that is, by Lemma $5, \mathcal{B}(w) \subset$ $\mathcal{B}(s) \mathcal{B}(w)$. Thus (2) gives $\mathcal{B}(s) \mathcal{B}(w)=\mathcal{B}(w) \cup \mathcal{B}(s w)$, so that, applying Lemma 4 and observing that $k(A \cup B)=k(A) \cup k(B)$, we obtain $\mathcal{C}(s) \mathcal{C}(w)=\mathcal{C}(w) \cup \mathcal{C}(s w)$. If instead $\mathcal{C}(w) \not \subset \mathcal{C}(s) \mathcal{C}(w)$, then necessarily $\mathcal{B}(w) \not \subset \mathcal{B}(s) \mathcal{B}(w)$, otherwise taking $k(\cdot)$ and applying Lemma 5.1 we would obtain the inclusion which negates our assumption. But then, by $(2), \mathcal{B}(s) \mathcal{B}(w)=\mathcal{B}(s w)$, which yields $\mathcal{C}(s) \mathcal{C}(w)=$ $\mathcal{C}(s w)$. This proves that 2 holds for the cells in K_{0}. As for 3 and 4 , simply apply Lemma 5.1.

Next we analyze the action of F_{2} on the Bruhat cells $\mathcal{C}(w)$. We simply write $f k f$ in place of (1), and keep in mind the convention established at the end of Section 2.

Lemma 5.4. $\quad F_{2}$ leaves each Bruhat cell $\mathcal{C}(w)$ invariant. In particular, if $f \in F_{2}$ and $k=k\left(\bar{n}_{w}\right) w m \in \mathcal{C}(w):$

$$
f k f=k\left(f \bar{n}_{w} f\right) w^{f} m
$$

where $f \bar{n}_{w} f \in N_{w}^{-}, w^{f}=w \cdot m(f, w) \in M_{0}^{\prime}$, and $m(f, w) \in M_{0}$.
Proof. Let $\bar{n}_{w}=n a u$ be the Iwasawa decomposition of \bar{n}_{w}, so that $u=k\left(\bar{n}_{w}\right)$. Then $f \bar{n}_{w} f=(f n f)(f a f)(f u f)=n^{\prime} a(f u f)$, where clearly

$$
f n f=\exp \sum_{\alpha \in \Sigma^{+}} \operatorname{Ad} f X_{\alpha}=\sum_{\alpha \in \Sigma^{+}} e^{i \pi \alpha(A)} X_{\alpha} \in N_{0}
$$

Therefore $k\left(f \bar{n}_{w} f\right)=f k\left(\bar{n}_{w}\right) f$.
Moreover, if $f=\exp i \pi A$, and $\bar{n}_{w}=\exp \sum_{\alpha \in \Sigma_{w}^{+}} X_{w \alpha}$, then

$$
f \bar{n}_{w} f=\exp \sum_{\alpha \in \Sigma_{w}^{+}} \operatorname{Ad} f X_{w \alpha}=\exp \sum_{\alpha \in \Sigma_{w}^{+}} e^{i \pi w \alpha(A)} X_{\alpha} \in N_{w}^{-}
$$

so that $f \bar{n}_{w} f \in N_{w}^{-}$. Next, it is clear that since f centralizes $M_{0}, w^{f}=f w f$ normalizes \mathfrak{a}_{0} :

$$
\operatorname{Ad} w^{f} A=\operatorname{Ad} f w f A=\operatorname{Ad} f w A=\operatorname{Ad} w A \in \mathfrak{a}_{0}
$$

which also shows that $w^{f} \in M_{0}^{\prime}$ coincides with w modulo M_{0}, i.e. $w^{f}=w m(f, w)$. The result follows, since $f k f=\left(f k\left(\bar{n}_{w}\right) f\right)(f w f)(f m f)$ and $f m f=m$.

Let now $S=\left\{s_{1}, \ldots, s_{l}\right\}$ be the set of generators of W consisting of all the reflections associated with the simple roots $\Delta=\left\{\delta_{1}, \ldots, \delta_{l}\right\}$. Recall that $\left\{H_{1}, \ldots, H_{l}\right\}$ is the dual basis of Δ. Thus to each $s \in S$ there corresponds a unique H of the basis, and viceversa.

Lemma 5.5. Let $s \neq s_{0}$, with $s, s_{0} \in S$. Let $f_{0}=\exp i \pi H_{0} \in F_{2}$, where H_{0} is the element corresponding to s_{0}. Then f_{0} leaves $\mathcal{C}(s)$ pointwise fixed.

Proof. Let $k \in \mathcal{C}(s)$. Thanks to Lemma (5.4), if $k=k\left(\bar{n}_{s}\right) s m$, then $f_{0} k f_{0}=$ $k\left(f_{0} \bar{n}_{s} f_{0}\right) s^{f_{0}} m$. Now, Σ_{s}^{+}consists of the integral multiples of δ in Σ^{+}. Indeed, s permutes the positive roots which are not multiples of δ, and sends δ (resp. 2 δ) to $-\delta($ resp. $-2 \delta)$. It follows that $\bar{n}_{s}=\exp \left(X_{-\delta}+X_{-2 \delta}\right)$, where we agree that $X_{-2 \delta}=0$ if 2δ is not a root. Therefore:

$$
\begin{aligned}
f_{0} \bar{n}_{s} f_{0} & =f_{0} \exp \left(X_{-\delta}+X_{-2 \delta}\right) f_{0} \\
& =\exp \operatorname{Ad} f_{0}\left(X_{-\delta}+X_{-2 \delta}\right) \\
& =\exp \operatorname{Ad}\left(\exp i \pi H_{0}\right)\left(X_{-\delta}+X_{-2 \delta}\right) \\
& =\exp e^{\operatorname{ad} i \pi H_{0}}\left(X_{-\delta}+X_{-2 \delta}\right) \\
& =\exp \left(e^{-i \pi \delta\left(H_{0}\right)} X_{-\delta}+e^{-i \pi 2 \delta\left(H_{0}\right)} X_{-2 \delta}\right) \\
& =\exp \left(X_{-\delta}+X_{-2 \delta}\right) \\
& =\bar{n}_{s}
\end{aligned}
$$

Moreover, Ad $s H_{0}=\sum_{j=1}^{l} \nu_{j} H_{j}$ for some coefficients ν_{1}, \ldots, ν_{l}. But if δ corresponds to s, from the fact that $\delta\left(H_{0}\right)=0$ it follows:

$$
\nu_{j}=\delta_{j}\left(\operatorname{Ad} s H_{0}\right)=s \cdot \delta_{j}\left(H_{0}\right)=\left(\delta_{j}-c_{\delta_{j}, \delta} \delta\right) H_{0}=\delta_{j}\left(H_{0}\right),
$$

namely $\operatorname{Ad} s H_{0}=H_{0}$. Thus

$$
s f_{0} s=\exp i \pi\left(\operatorname{Ad} s H_{0}\right)=\exp i \pi H_{0}=f_{0}
$$

that is $s^{f_{0}}=s$.
Let now $\Sigma=\cup_{j} \Sigma^{j}$ be the decomposition of Σ into irreducible root systems, and assume Σ non-reduced. Then at least one of the Σ^{j} is non-reduced, hence of type $(B C)_{l}\left([6]\right.$, Theorem 3.25, Ch. X, p. 475). Let $\Sigma_{0}=\cup_{j} \Sigma_{0}^{j}$ denote the collection of all such subsystems, let δ_{0}^{j} be the only simple root in Σ_{0}^{j} such that $2 \delta_{0}^{j}$ is a root, and let H_{0}^{j} be associated with δ_{0}^{j}. These data enable us to select special elements in F_{2}, namely

$$
f_{0}^{j}=\exp i \pi H_{0}^{j} .
$$

Denote by F_{2}^{0} the set of all such elements and define a new set of elements of order 4 :

$$
F_{4}=\left\{f \in \exp i \mathfrak{a}_{0} \mid f^{2} \in F_{2}^{0}\right\}
$$

For simplicity, we may assume that Σ_{0} consists of a single system, so that F_{2}^{0} reduces to $\left\{f_{0}\right\}$. All the results that follow hold in full generality, but in order to avoid cumbersome notation, they will be stated and proved under this simplifying assumption. The necessary modifications are obvious.

Lemma 5.6. Let $k \in \mathcal{C}\left(s_{0}\right)$ be such that $f_{0} k f_{0}=k m$ for some $m \in M_{0}$. Then $m=e$.

Proof. Let $k=k\left(\bar{n}_{0}\right) s_{0} \mu$. Then $\bar{n}_{0}=\exp \left(X_{0}^{1}+X_{0}^{2}\right)$, with X_{0}^{1} (resp. X_{0}^{2}) in the root space corresponding to $-\delta_{0}$ (resp. $-2 \delta_{0}$). Select now two non-zero vectors in these spaces, coinciding with X_{0}^{1} and X_{0}^{2} if neither one vanishes, and
denote them again X_{0}^{1} and X_{0}^{2}. Then since δ_{0} is indivisible, the Lie algebra \mathfrak{g}_{0}^{*} generated by $X_{0}^{1}, X_{0}^{2}, \theta X_{0}^{1}$ and θX_{0}^{2} is isomorphic to $\mathfrak{s u}(2,1)$ ([6], Theorem 3.1, Ch. IX, p. 409). Give now to all general Lie algebra concepts connected with \mathfrak{g}_{0}^{*} the superscript *. In particular, let $G_{0}^{*}, K_{0}^{*} A_{0}^{*}, N_{0}^{*}$ and \bar{N}_{0}^{*} be the analytic subgroups corresponding to $\mathfrak{g}_{0}^{*}, \mathfrak{k}_{0}^{*}, \mathfrak{a}_{0}^{*}, \mathfrak{n}_{0}^{*}$ and $\overline{\mathfrak{n}}_{0}^{*}$. In particular $\overline{n_{0}} \in \exp \overline{\mathfrak{n}}_{0}^{*}$. Next, consider the elements $Y \in \mathfrak{p}_{0}^{*}$ and $Z \in \mathfrak{k}_{0}^{*}$ corresponding to

$$
\bar{Y}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right] \in \mathfrak{s u}(2,1), \quad \bar{Z}=\left[\begin{array}{ccc}
0 & i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \in \mathfrak{s u}(2,1),
$$

respectively. It is immediate to check that for all $H \in \mathfrak{a}_{0}^{*}$:

$$
[H, Y]=\delta_{0}(H) Z, \quad[H, Z]=\delta_{0}(H) Y
$$

Thus, ([6], Lemma 2.4, Ch. VII, p. 286), s_{0} may be realized as

$$
s_{0}=\exp \left(\frac{\pi}{\left\langle\delta_{0}, \delta_{0}\right\rangle^{1 / 2}} Z\right) \in G^{*} \cap K_{0}=K_{0}^{*}
$$

Observe also that $k\left(\bar{n}_{0}\right) \in K_{0}^{*}$. It follows that the equality $f_{0}\left(k\left(\bar{n}_{0}\right) s_{0} \mu\right) f_{0}=$ $\left(k\left(\bar{n}_{0}\right) s_{0} \mu\right) m$ in K_{0} yields the equality:

$$
f_{0}\left(k\left(\bar{n}_{0}\right) s_{0}\right) f_{0}=\left(k\left(\bar{n}_{0}\right) s_{0}\right) \mu m \mu^{-1}
$$

in K_{0}^{*}, that is in $S\left(U_{2} \times U_{1}\right) \subset S U(2,1)$. This gives $\mu m \mu^{-1}=e$, namely $m=e$.

Remark. The previous lemma should be thought of as an " $S U(2,1)$-reduction". It also explains the first reason for choosing δ_{0} as we did; the second reason will become clear in the proof of Theorem 12.

Theorem 5.7. Let k be such that $\langle k\rangle \in \operatorname{Fix}\left(F_{2}, K_{0} / M_{0}\right)$. Then $f_{0} k f_{0}=k$.
Proof. Let $k \in \mathcal{C}(w)$ be as in the statement. We now show by induction on $l_{S}(w)$ that $f_{0} k f_{0}=k$.
If $l_{S}(w)=1$ the results follows from Lemma 5.5 and Lemma 5.6.
Suppose the statement true for $l_{S}(w) \leq p$ and let $w=s s_{1} \cdot, \ldots \cdot s_{p}$ be a reduced expression. Two cases arise: either $s \neq s_{0}$ or $s=s_{0}$.
Suppose first that $s \neq s_{0}$. By hypothesis, $f_{0} k f_{0}=k m$ for a suitable $m \in M_{0}$. Because of (4), $\mathcal{C}(w)=\mathcal{C}(s) \mathcal{C}\left(s_{1} \cdot \ldots \cdot s_{p}\right)$ and writing $\sigma=s_{1} \cdot, \ldots \cdot s_{p}$, we have $k=k_{s} k_{\sigma}$, where evidently $k_{s} \in \mathcal{C}(s)$ and $k_{\sigma} \in \mathcal{C}(\sigma)$. But $s \neq s_{0}$, so that Lemma (5.5) gives $f_{0} k_{s} f_{0}=k_{s}$. Therefore

$$
f_{0}\left(k_{s} k_{\sigma}\right) f_{0}=\left(f_{0} k_{s} f_{0}\right)\left(f_{0} k_{\sigma} f_{0}\right)=k_{s}\left(f_{0} k_{\sigma} f_{0}\right)
$$

and this is equal to $k_{s} k_{\sigma} m$. It follows that $f_{0} k_{\sigma} f_{0}=k_{\sigma} m$. By induction, $m=e$. Suppose next that $s=s_{0}$. Put again $\sigma=s_{1} \cdot, \ldots \cdot s_{p}$ and $k=k_{s} k_{\sigma}$. From $\left(f_{0} k_{s} f_{0}\right)\left(f_{0} k_{\sigma} f_{0}\right)=k_{s} k_{\sigma} m$ we obtain

$$
f_{0} k_{s} f_{0}=k_{s}\left(k_{\sigma} m f_{o} k_{\sigma}^{-1} f_{0}\right)
$$

Now $k_{s} \in \mathcal{C}(s)$, and let $k_{\sigma} m f_{o} k_{\sigma}^{-1} f_{0} \in \mathcal{C}(u)$, so that:

$$
f_{0} k_{s} f_{0} \in \mathcal{C}(s) \cap \mathcal{C}(s) \mathcal{C}(u)
$$

Using now (2), we infer that
a) either $f_{0} k_{s} f_{0} \in \mathcal{C}(s) \cap \mathcal{C}(s u)$.
b) or $f_{0} k_{s} f_{0} \in \mathcal{C}(s) \cap \mathcal{C}(u)$.

In case a), u must be equal to e, which yields $k_{\sigma} m f_{o} k_{\sigma}^{-1} f_{0} \in \mathcal{C}(e)=M_{0}$, that is $f_{0} k_{s} f_{0}=k_{s} \mu$ for suitable $\mu \in M_{0}$ which is forced to be e by induction. Thus $k_{\sigma} m=f_{0} k_{\sigma} f_{0}$ and again by induction $m=e$.
Next, we see that case b) cannot occur. Indeed, in this circumstance $u=s$. Let us be more precise about u. The defining condition is that

$$
\rho:=\left(k_{\sigma} m\right)\left(f_{0} k_{\sigma}^{-1} f_{0}\right) \in \mathcal{C}(u) .
$$

But $k_{\sigma} m \in \mathcal{C}(\sigma)$ and $f_{0} k_{\sigma}^{-1} f_{0} \in \mathcal{C}\left(\sigma^{-1}\right)$. By (3)

$$
\mathcal{C}\left(s_{1} \cdot \ldots \cdot s_{p}\right) \mathcal{C}\left(\sigma^{-1}\right) \subset \coprod_{1 \leq i_{1} \leq \ldots \leq i_{t} \leq p} \mathcal{C}\left(s_{i_{1}} \cdot \ldots \cdot s_{i_{t}} \sigma^{-1}\right),
$$

so that $\rho \in \mathcal{C}\left(s_{i_{1}} \cdot \ldots \cdot s_{i_{t}} \sigma^{-1}\right)$ for a suitable choice of indices. On the other hand, $s_{i_{1}} \cdot \ldots \cdot s_{i_{t}} \sigma^{-1}=u=s$, i.e. $s_{i_{1}} \cdot \ldots \cdot s_{i_{t}}=s \sigma=w$. This is a contradiction because $l_{S}\left(s_{i_{1}} \cdot \ldots \cdot s_{i_{t}}\right)=t \leq p<p+1=l_{S}(w)$.

Recall that the set F_{4} of order 4 elements is now assumed for simplicity to be:

$$
F_{4}=\left\{f \in \exp i \mathfrak{a}_{0} \mid f^{2}=f_{0}\right\} .
$$

Proposition 5.8. $\quad F_{4}$ acts on $X_{1}=\operatorname{Fix}\left(F_{2}, K_{0} / M_{0}\right)$.
Proof. With the notation of Section 2, the action of F_{4} on X_{1} is given by $f \cdot\langle k\rangle=\left\langle\operatorname{Ad}^{-1}\left(f k_{*} f^{-1}\right)\right\rangle$. As agreed earlier, however, whenever appropriate we will think of all the supgroups of G_{0} as subgroups of G under Ad (whereby the center has become trivial), and remove the subscript $*$.
Let $K_{1}=\left\{k \in K_{0} \mid f_{0} k f_{0}=k\right\}$, a closed, hence compact, Lie subgroup of K_{0}. Let \mathfrak{k}_{1} be its Lie algebra. Our first concern is to show that:

$$
\begin{equation*}
\operatorname{Ad} f_{0} T=T, \quad \forall T \in \mathfrak{k}_{1} \tag{5}
\end{equation*}
$$

Indeed, for all $t \in \mathbb{R}$:

$$
\exp \left(t \operatorname{Ad} f_{0} T\right)=f_{0}(\exp t T) f_{0}=(\exp t T) \in K_{1}
$$

thereby showing $\operatorname{Ad} f_{0} T \in \mathfrak{k}_{1}$. Next, since $\operatorname{Ad} f_{0}$ is an involution on \mathfrak{k}_{1}, we have a vector space decomposition $\mathfrak{k}_{1}=\mathfrak{k}_{1}^{+}+\mathfrak{k}_{1}^{-}$corresponding to the ± 1 eigenvalues of $\operatorname{Ad} f_{0}$. Thus, if $T=T^{+}+T^{-}$is the resulting decomposition of T, then for all $t \in \mathbb{R}$:

$$
\exp \left(t\left(T^{+}-T^{-}\right)\right)=\exp \left(t \operatorname{Ad} f_{0} T\right)=f_{0}(\exp t T) f_{0}=\exp t T=\exp \left(t\left(T^{+}+T^{-}\right)\right)
$$

For t sufficiently small, this yields $T^{-}=0$, which is equivalent to saying $\mathfrak{k}_{1}^{-}=0$. This proves (5).
Now we prove that if $k \in K_{1}$, then $f k f^{-1}$ is fixed by Θ. In fact since $f^{2}=f_{0}$, we have

$$
f=f^{-1} f_{0}=f_{0} f^{-1}, \quad f^{-1}=f f_{0}=f_{0} f
$$

On the other hand, since $\Theta(f)=\Theta(\exp i A)=\exp (i \theta A)=\exp (-i A)=f^{-1}$ we have

$$
\Theta\left(f k f^{-1}\right)=f^{-1} k f=f f_{0} k f_{0} f^{-1}=f k f^{-1} .
$$

Suppose now $k=\exp T \in K_{1}$. We may take $T \in \mathfrak{k}_{1}$. Then $f k f=\exp (\operatorname{Ad} f T)$ and if σ denotes conjugation in \mathfrak{g} with respect to \mathfrak{g}_{0}, then by (5)

$$
\begin{aligned}
\sigma(\operatorname{Ad} f T) & =\sigma(\operatorname{Ad}(\exp i A) T) \\
& =\operatorname{Ad}(\exp \sigma(i A))(\sigma(T)) \\
& =\operatorname{Ad}(\exp -i A) T \\
& =\operatorname{Ad} f^{-1} T \\
& =\operatorname{Ad} f f_{0} T \\
& =\operatorname{Ad} f T
\end{aligned}
$$

Thus, $\operatorname{Ad} f T \in \mathfrak{k}_{0}$, i.e. $f k f^{-1} \in K_{0}$.
Finally, let $\langle k\rangle \in X_{1}$, so that, by Theorem 5.7, $k \in K_{1}$ and by the above argument $f k f^{-1} \in K_{0}$. In order to see that F_{4} sends fixed points of F_{2} into fixed points of F_{2}, we must show that for all $f \in F_{4}$ and for all $g \in F_{2}$ there exists $m \in M_{0}$ such that $g\left(f k f^{-1}\right) g=\left(f k f^{-1}\right) m$. But this is obvious because f and g commute, and there exists $m \in M_{0}$ such that $g k g=k m$.

Theorem 5.9. $\operatorname{Fix}\left(F_{4}, X_{1}\right)=W$.
Proof. Since Σ_{0} is of type $(B C)_{l}$, all roots of the form $\alpha=\sum_{j=0}^{l-1} \nu_{j}(\alpha) \delta_{j}$ with $\nu_{j}(\alpha) \in 2 \mathbb{Z}$ (i.e. even roots) are such that $\nu_{0}(\alpha)= \pm 2$, as it is clear from the list at the end of Section 2. More precisely, all the non-vanishing coefficients of an even root must be equal to ± 2, but for each fixed $\delta_{j} \neq \delta_{0}$ there is an even root α for which $\nu_{j}(\alpha)=0$. This is the second reason for choosing δ_{0} as we did.
Let now $\langle k\rangle \in \operatorname{Fix}\left(F_{4}, X_{1}\right), \bar{H} \in \mathfrak{a}_{0}$ a regular element, and $Y=\operatorname{Ad} k \bar{H}$. Then Y is fixed by all elements of F_{4}. According to the remark following Theorem 3.3, we may write:

$$
Y=Y_{0}+\sum_{\alpha \in E} Y_{\alpha},
$$

where E is the set of even roots in Σ_{0}. Therefore, if $f=\exp i A_{0}$

$$
Y_{\alpha}=e^{i \alpha\left(A_{0}\right)} Y_{\alpha}
$$

Take now $A_{0}=\frac{\pi}{2} H_{0}$ (so that $\left.\left(\exp i A_{0}\right)^{2}=f_{0}\right)$ and observe that:

$$
\alpha\left(A_{0}\right)=\sum_{j=0}^{l-1} \nu_{j}(\alpha) \delta_{j}\left(\frac{\pi}{2} H_{0}\right)=\frac{\pi \nu_{0}(\alpha)}{2}= \pm \pi .
$$

Thus $Y_{\alpha}=-Y_{\alpha}=0$ and $Y \in \mathfrak{a}_{0}$. Hence $k \in M_{0}^{\prime}$, that is $\langle k\rangle \in W$, which shows that $\operatorname{Fix}\left(F_{4}, X_{1}\right) \subset W$. The reverse inclusion is obvious.

Acknowledgements. I would like to thank V. Baldoni Silva, C. Bartocci, M. Pedroni and R. Stanton for very useful conversations.

References

[1] Bourbaki, N., "Eléments de Mathématique. Groupes et algèbres de Lie," Ch. IV, Hermann, Paris, 1960-75.
[2] De Mari, F. and M. Pedroni, Toda flows and real Hessenberg manifolds, Jour. Geom. An., to appear.
[3] De Mari, F., C. Procesi and M. A. Shayman, Hessenberg varieties, Trans. Amer. Math. Soc. 332 (1992), 529-534.
[4] Floyd, E. E., Periodic Maps via Smith theory, Seminar on Transformation Groups, A. Borel ed., 1960, Ann. Math. Std. n. 46 Princeton U.P., Princeton N.J.
[5] Goodman, R. and N. R. Wallach, Classical and Quantum Mechanical Systems of Toda-Lattice Type II, Solutions of the Classical Flows, Commun. Math. Phys. 94 (1984), 177-217.
[6] Helgason, S., "Differential Geometry, Lie Groups and Symmetric Spaces," Academic Press, New York, 1978.
[7] Helgason, S., "Groups and Geometric Analysis," Academic Press, New York, 1984.
[8] Kostant, B. and S. Rallis, Orbits and Lie group representations associated to symmetric spaces, Amer. J. Math. 93 (1971), 753-809.

Filippo De Mari
Dipartimento di Matematica,
Università di Genova,
Via Dodecaneso 35,
16146 Genova, Italy
demari@dima.unige.it

Received January, 161996
and in final form April, 261996

