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Abstract. In this note we show that the existence of a central extension

of a Lie group G for a prescribed central extension of its Lie algebra can
be completely characterized by the exactness of a certain set of 1 -forms on

G which are obtained by contracting the left-invariant 2 -form Ω defined by

the 2 -cocycle of the Lie algebra extension with right-invariant vector fields.
This criterion simplifies a criterion derived by Tuynman and Wiegerinck in

the sense that they required in addition that the group of periods of Ω is

discrete.

Introduction

Let G be a connected Lie group with Lie algebra g and A a connected abelian
Lie group with Lie algbera a . A central extension of G by A is a short exact
sequence of Lie groups

(∗) {1}−−−−→A−−−−→H−−−−→G−−−−→{1}.

It is clear that each such sequence induces a short exact sequence

(∗∗) {0}−−−−→a−−−−→h−−−−→g−−−−→{0}

on the level of Lie algebras, but in general a central extension of Lie algebras
does not integrate to a central extension on the group level.

In [TW87] Tuynman and Wiegerinck have shown that for dimA = 1 ,
the existence of the central extension on the group level can be characterized
by two conditions. To explain these conditions, we write h as g × R with the
bracket given by

[(X, t), (X ′, t′)] =
(
[X,X ′], ω([X,X ′]),

where ω ∈ Λ2(g∗) is a cocycle defining the Lie algebra extension of g by a . Let
Ω denote the corresponding left-invariant 2-form on G defined by

Ω(g)(dλg(1)v, dλg(1)w) := ω(v, w)
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for v, w ∈ g ∼= T1(G), where λg(x) = gx denotes the left-translations on G . Let
further

Per Ω :=
{∫

γ

Ω: γ 2-cycle on G
}
⊆ R

denote the group of periods of Ω. Since the mapping γ →
∫
γ

Ω is a homomor-
phism of abelian groups, it is clear that Per Ω is a subgroup of R .

To formulate the aforementioned criterion, we need one more definition.
For g ∈ G we write ρg:x 7→ xg for the right translations on G and for X ∈ g we
write Xr for the right-invariant vector field on G given by Xr(g) = dρg(1).X ,
g ∈ G .

Now the criterion proved in [TW87, Th. 5.4] states that for a Lie algebra
extension (∗∗) a central extension (∗) exists if and only if

(C1) for each X ∈ g the 1-form i(Xr).Ω on G is exact, and

(C2) Per Ω is a discrete subgroup of R .

In this note we show that (C2) is superfluous, i.e., that the existence of H
as in (∗) is equivalent to (C2). In view of the results of Tuynman and Wiegerinck,
this shows in particular that (C1) implies (C2). The basic tool in our proof is
Lie’s Third Theorem which ensures the existence of a simply connected Lie group
for a given finite dimensional Lie algebra. We note that a general treatment of
extensions of connected Lie groups by abelian groups can be found in [Ho51].

I. A Criterion for the Existence of a Central Extendsion

We consider the situation described in the introduction where

{0}−−−−→a−−−−→h−−−−→g−−−−→{0}

is a central extension of the Lie algebra g by the abelian Lie algebra a . We
are asking for a criterion which describes the condition under which this central
extension integrates to a central extension of G by A .

Let Ã , G̃ and H̃ denote the simply connected Lie groups with Lie
algebras a , g and h . Further we write qA: Ã → A and qG: G̃ → G for the
corresponding covering homomorphisms.

Lemma I.1. The natural homomorphisms Ã → H̃ → G̃ define a central
extension of G̃ by Ã .

Proof. Since H̃ is simply connected, the connected normal subgroup exp
H̃

a

which is the image of Ã under the natural map i
Ã

: Ã→ H̃ is closed and simply
connected ([Ho65, p.135]). Therefore i

Ã
is an embedding and in particular

injective.

Moreover, H̃/Ã is also simply connected ([Ho65, p.135]), so that the

fact that its Lie algebra is h/a ∼= g implies that the kernel of the map H̃ → G̃

coincides with Ã .



Neeb 209

In the preceding lemma we have used Lie’s Third Theorem which ensures
the existence of at least a central extension on the level of simply connected
groups. Now we have to modify this “first approximation” appropriately to find
a solution of our problem. The first crucial observation is that the kernel of the
adjoint representation Ad

H̃
: H̃ → Aut(h) coincides with the center of H̃ , hence

contains Ã and thus factors to a representation Ad
G̃,h

: G̃ → Aut(h). Further

we recall that ker qG ⊆ G̃ can be identified with the fundamental group π1(G).
Now we can state our group theoretical condition for the existence of the central
extension:

Theorem I.2. If G and A are given, then a central extension a → h → g
integrates to a central extension A → H → G if and only if the fundamental
group π1(G) acts trivially on h , i.e., π1(G) ⊆ ker Ad

G̃,h
.

Proof. Suppost first that the central extension A → H → G exists. Then
the adjoint representation AdH :H → Aut(h) factors to a representation AdG,h
of G on h satisfying AdG,h ◦qG = Ad

G̃,h
. It follows in particular that π1(G) =

ker qG ⊆ ker Ad
G̃,h

. This proves the necessity of the stated condition.

Now we assume that π1(G) acts trivially on h . We identify Ã with a

subgroup of H̃ (Lemma I.1) and write β: H̃ → G̃ for the canonical homomor-
phism. Let C := β−1

(
π1(G)

)
and note that our assumption implies that

C = ker(qG ◦ β) ⊆ ker Ad
H̃

= Z(H̃).

It follows in particular that C is a closed abelian subgroup of H̃ . Moreover,
g ∼= h/a implies that the identity component C0 of C coincides with Ã . Now
we have an exact sequence

{1}−−−−→Ã ∼= C0−−−−→C−−−−→π1(G)−−−−→{1},

and since the group Ã which is isomorphic to the additive group a is in particular
divisible, the identity map Ã→ Ã extends to a homomorphism C → Ã of abelian
groups which is continuous because it is continuous on the identity component.
We conclude that C ∼= C0 × π1(G). In this sense we identify π1(G) in a non-

canonical fashion with a discrete subgroup of Z(H̃).

Now let D := π1(A) × π1(G) and note that this is a discrete subgroup

of C , hence a discrete central subgroup of H̃ . We put H := H̃/D and write

qH : H̃ → H for the quotient map. Then ker qH ∩ Ã = π1(A), so that Ã → H̃

factors to an embedding A ∼= Ã/π1(A) → H . Moreover, D ⊆ ker(qG ◦ β), so
that there exists a morphism of Lie groups γ:H → G with γ ◦qH = qG ◦β . Then
g ∼= h/a implies that γ is surjective, and γ(A) = γ

(
qH(Ã)

)
= qG

(
β(Ã)

)
= {1} .

Conversely, x = qH(y) ∈ ker γ implies that y ∈ ker(qG ◦ β) = C , hence that

x ∈ qH(C) = qH(Ã) = A . This proves that ker γ = A , i.e., that A→ H → G is
a central extension.

Corollary I.3. The existence of the central extension A → H → G for a
given Lie algebra extension a → h → g does not depend on the global structure
of the group A .
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Example I.4. A typical example of a Lie algebra extension which does not
integrate to an extension of the corresponding group is the following. Let g = R2

with the cocycle ω(x, y) = x1y2−x2y1 defining the central extension R→ h→ g ,
where h is the three dimensional Heisenberg algebra.

If we consider the group G := R2/Z2 , a two-dimensional torus, then the
fact that Z2 acts non-trivially via the adjoint action on h implies that there
exists no central extension

A−−−−→H−−−−→G.

This example also shows clearly that the difficulties for the existence of
global central extensions are caused by the fact that for a central subgroup A of
a Lie group H the center of H/A might be bigger than the image Z(H)/A of
the center of H . Thus for any discrete central subgroup D ⊆ H/A which is not
contained in Z(H)/A the central extension a → h → h/a does not integrate to
a central extension of the type

A1−−−−→H1−−−−→(H/A)/D.

II.2. An Interpretation in Terms of Coadjoint Orbits

To see how Theorem I.2 can be interpreted in the light of the criterion of Tuynman
and Wiegerinck, we assume from now on that dim a = 1. We consider the Lie
algebra h = g× R with the bracket

[(X, t), (X ′, t′)] =
(
[X,X ′], ω([X,X ′]),

where ω ∈ Λ2(g∗) is a cocycle defining the central extension.

Let λ := (0, 1) ∈ h∗ denote the linear functional given by λ(X, t) = t .

We recall that the adjoint representation Ad
H̃

of H̃ also defines an action on the

dual h∗ of h which is given by Ad∗
H̃

(h) := Ad
H̃

(h−1)∗ and called the coadjoint

action. We also note that this action clearly factors to a representation Ad∗
G̃,h

of G̃ on h∗ . We write Of for the coadjoint orbit of the element f ∈ h∗ .

The following lemma shows that the action of G̃ on the orbit Oλ already
displays the obstruction for the existence of the central extension.

Lemma II.1. The following conditions are equivalent:

(1) π1(G) acts trivially on g .

(2) π1(G) acts trivially on g∗ .

(3) π1(G) acts trivially on Oλ .

(4) The functional λ is fixed by π1(G) .

Proof. The equivalence of (1) and (2) is trivial, and also that (2) implies (3)
implies (4).

To see that (4) implies (2), we note that the dual g∗ of g ∼= h/a can
be identified with the subspace a⊥ = {(α, 0) ∈ h∗:α ∈ g∗} in a natural way.
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It follows in particular that the corresponding natural embedding g∗ → h∗ is
equivariant with respect to the action of the group G̃ on g∗ and h∗ . So it
is clear that π1(G) acts trivially on the hyperplane g∗ ⊆ h∗ . Therefore the
assumption that π1(G) fixes the element λ = (0, 1) implies that π1(G) acts
trivially on g∗ .

Now we will show that (3) in the preceding lemma can directly be
shown to be equivalent to condition (C1) from the introduction. To see this,

let η: G̃ → Oλ denote the orbit map and Ωλ the canonical symplectic form on
Oλ which satisfies

Ωλ(λ)(λ ◦ adX,λ ◦ adY ) = λ([X,Y ])

for X,Y ∈ h .

Lemma II.2. η∗Ωλ = q∗GΩ .

Proof. The mapping η: G̃→ Oλ is equivariant with respect to the left action
of G̃ on itself. This shows that both 2-forms are left-invariant, and thus we only
have to check at the idetity that they coincide. For the right hand side we have

(2.1) (q∗GΩ)(1)(X,Y ) = ω(X,Y ).

To calculate the left hand side we note that

dη(1)(X) =
d

dt t=0
exp(tX).λ =

d

dt t=0
λ ◦ e−t adh(X,0) = −λ ◦ adh(X, 0).

Thus

(η∗Ωλ)(1)(X,Y ) = Ωλ(λ)
(
λ ◦ adh(X, 0), λ ◦ adh(Y, 0)

)
= λ([(X, 0), (Y, 0)])

= λ
(
[X,Y ], ω(X,Y )

)
= ω(X,Y ).

In view of (2.1), this proves the lemma.

Proposition II.3. The group π1(G) acts trivially on Oλ if and only if the
condition (C2) is satisfied.

Proof. Let us first assume that π1(G) acts trivially on Oλ and pick X ∈ g .
We have to show that the 1-form i(Xr).Ω on G is exact. For that purpose we

first note that the orbit map η: G̃ → Oλ factors to an orbit map ηG:G → Oλ .
We consider the function

fX :G→ R, g 7→ 〈(X, 0), ηG(g)〉

and note that HX :Oλ → R, α 7→ α(X, 0) is a linear functional with fX = η∗GHX .

For α ∈ Oλ ⊆ h∗ and Y ∈ h we have

dHX(α)(α ◦ adY ) =
d

dt t=0
〈α ◦ et adY , (X, 0)〉 = α([Y, (X, 0)])

= Ωλ(α)(α ◦ adY, α ◦ ad(X, 0)) = −
(
iXh

Ωλ
)
(α)(α ◦ Y ),
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where Xh is the vector field on Oλ given by Xh(α) = α ◦ ad(X, 0). Next we
observe that (ηG)∗.Xr = Xh follows from ηG(exp tXg) = ηG(g) ◦ e−t ad(X,0) for
all g ∈ G . Now we can calculate

i(Xr)Ω = i(Xr)η
∗
GΩλ = η∗G

(
i(Xh)Ωλ

)
= −η∗GdHX = −d(η∗GHX) = −dfX .

This shows that (C2) is satisfied.

Suppose, conversely, that the condition (C2) is satisfied and that fX is

a function on G with dfX = −i(Xr)Ω. Then the function f̃X := fX ◦ qG on G̃

satisfies df̃X = −i(Xr)(q
∗
GΩ). On the other hand the calculations from above

applied to G̃ instead of G imply that

i(Xr)(q
∗
GΩ) = −d(HX ◦ η).

We conclude that the function HX◦η−f̃X is constant, which implies in particular
that HX ◦ η is constant on the cosets of the subgroup π1(G).

Since the function α 7→ α(0, 1) is constant on the orbit Oλ ⊆ h∗ because
(0, 1) ∈ h is central, the functions HX , X ∈ g separate the points on Oλ .
Therefore the fact that all these functions are π1(G)-invariant implies that π1(G)
acts trivially on Oλ . This completes the proof.

We collect our observations in the following theorem.

Theorem II.4. Let R → h → g be a central extension of the Lie algebra g
and G a connected group with Lie algebra g . Let further ω ∈ Λ2(g∗) denote
a cocycle defining the Lie algebra extension by identifying h with g × R with
the bracket [(X, t), (X ′, t′)] =

(
[X,X ′], ω(X,X ′)

)
, Ω on G the corresponding

left-invariant 2-form, and λ = (0, 1) ∈ h∗ . Then the following are equivalent:

(1) There exists a central extension A → H → G corresponding to the Lie
algebra extension a ∼= R→ h→ g .

(2) π1(G) acts trivally on the Lie algebra h .

(3) π1(G) acts trivally on the coadjoint orbit Oλ ⊆ h∗ .

(4) π1(G) fixes the functional λ ∈ h∗ .

(5) The 1-forms i(Xr).Ω , X ∈ g on G are exact.

Remark II.5. In view of the criterion of Tuynman and Wiegerinck, it follows
that the condition (C1) implies the condition (C2) that the group of periods
Per Ω ⊆ R is discrete.
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