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24 Olver[34], and by Mal'cev, [19], who pointed out the crucial connection betweenassociativity and globalizability. Mal'cev proved that a necessary and su�cientcondition for the existence of a global topological group containing a givenlocal group is that it satisfy a certain \global" associativity hypothesis | seeDe�nition 4 below. Their work was continued by, among others, Van Est, [35],Douady, [9], and, more recently, Plaut, [27], in connection with the study oflocal groups of isometries, metric convergence, and pinching, cf. [26]. However,these authors have tended to emphasize the in�nite-dimensional version of Lie'sThird Theorem, and all the examples of non-globalizable Lie groups appearingin their work are in�nite-dimensional topological groups. Less well investigated,but also of interest is the �nite-dimensional framework that forms the subjectof this paper. A paper of Jacoby, [17], stated some globalizability theorems for�nite-dimensional local groups, but his proofs are 
awed. Indeed, the examplesto be presented are readily seen to provide counterexamples to Jacoby's mainglobalizability theorem.In this paper we describe a simple technique for constructing large fam-ilies of examples of non-globalizable local Lie groups, and prove that every localLie group is contained in one of these examples. The basic method is to startwith a Lie group G , and let S � G be an arbitrary closed subset not contain-ing the identity element of G . It is not hard to see that any covering manifold�:L ! G n S can be endowed with the structure of a local Lie group which, inmany instances, cannot be contained in any global Lie group. (A similar con-struction appears in [2; p. 388].) Indeed, if, as usually happens, the resultinglocal Lie group does not satisfy the global associativity axiom, Mal'cev's Theo-rem implies that it cannot be globalized. This paper includes a rather detailedanalysis of the very simplest example of this general construction, when G = R2is the two-dimensional abelian Lie group and S is a single point. However, thereader can readily see how these particular constructions can be generalized.Thus, the results in this paper provide an interesting counterpoint tothe in�nite dimensional examples of Mal'cev, Van Est and Douady, leading toa wide class of �nite dimensional local Lie groups, which, by the globalizabilitytheorem of Cartan, are locally isomorphic to a neighborhood of the identity ofa global Lie group, but which are not themselves embeddable into any globalLie group. Thus, in analogy with the tripartite division of the theory of Liesemigroups proposed in [12], the theory of �nite-dimensional Lie groups alsodivides into three parts | the in�nitesimal theory, the local theory, and theglobal theory. The present paper shows that the local theory is not a simplecorollary of the global theory of Lie groups, but has its own set of interestingand delicate geometrical structures. Furthermore, our examples can be viewedas particular instances of non-associative local group actions on manifolds | wejust view the group acting on itself by left multiplication | and can thus serveas useful test cases for the commonly misunderstood role played by associativityin the analysis of local transformation groups. See Mostow, [22], and Palais, [25],for results on globalizing local transformation group actions.This work arose during the course of writing the book [24], when Iwas attempting to establish a global version of the local equivalence resultsfound by Cartan's method of equivalence, [7], [10]. The equivalence method,



Olver 25which (in the cases relevant to our constructions) is based on the FrobeniusTheorem, cf. [24; Chapter 14], [36], governing the existence of solutions to certaininvolutive systems of partial di�erential equations, can, in fact be employed toprove that these examples are the most general possible: every local Lie group isa generalized covering, in the sense of De�nition 16, of an open subset of a globalLie group, leading to a complete characterization of the most general possiblelocal Lie group. See Theorem 21 for a precise statement of this result. In the�nal section, we revisit Mal'cev's Theorem, adapting and 
eshing out the proofto show that a local Lie group can be globalized if and only if it satis�es theglobal associativity condition.2. Local and Global Lie GroupsWe begin by formalizing the de�nitions of local and global Lie groups. For sim-plicity we work in the smooth category, although results of Lie, [18; p. 366],and Schur, [32], could be used to signi�cantly relax our di�erentiability hypothe-ses. To avoid constant repetition, we assume the blanket hypothesis that allgroups and manifolds are assumed to be connected. We begin with the standardde�nition of a Lie group.De�nition 1. A global Lie group is a group G which also carries the structureof a smooth manifold so that the operations of group multiplication�:G�G �! G; �(g; h) = g � h; g; h 2 Gand inversion �:G �! G; �(g) = g�1; g 2 Gare smooth, globally de�ned maps.While the de�nition of a global Lie group is standard, the precise de�ni-tion of a local Lie group varies from author to author. The following one is slightlyadapted from that appearing in Pontryagin, [28; p. 83]; see also [4; xIII.1.10], [23;De�nition 1.20]. The group multiplication is de�ned locally, meaning one of themultiplicands must be su�ciently close to the identity element. The only di�er-ence between our de�nition and Pontryagin's is that we require the left and rightinverses of a group element to both be de�ned, and the same, whenever one orthe other exists. This requirement could clearly be relaxed, without appreciablecomplication.De�nition 2. A smooth manifold L is called a local Lie group if there existsa) a distinguished element e 2 L , the identity element, b) a smooth product map�: U ! L de�ned on an open subset (feg � L) [ (L � feg) � U � L � L , andc) a smooth inversion map �:V ! L de�ned on an open subset e 2 V � L suchthat V � �(V) � U , and �(V) �V � U , all satisfying the following properties:(i) Identity: �(e; x) = x = �(x; e) for all x 2 L .(ii) Inverse: �(�(x); x) = e = �(x; �(x)) for all x 2 V .



26 Olver(iii) Associativity: If (x; y) , (y; z) , (�(x; y); z) , and (x; �(y; z)) all belongto U , then �(x; �(y; z)) = �(�(x; y); z): (1)In the classical texts, L is assumed to be an open subset of Euclideanspace, so that the multiplication map �(x; y) and the inversion map �(x) areexpressed in terms of coordinates. However, allowing more general manifoldsdoes not lead to any appreciable change in either the methods or the results tobe presented here.Example 3. The most basic example of a local Lie group is provided by anyneighborhood e 2 N � G of the identity element in a global Lie group. Indeed,we set U to be any open subset of N �N such that (feg �N) [ (N � feg) �U � (N �N) \ ��1(N) , and V to be any open subset of N such that feg �V � N \ ��1(N) and (V � �(V)) [ (�(V) � V) � U . The group multiplication� and inversion � on G then clearly restrict to de�ne local group multiplicationand inversion maps on N .Note that we can restrict the domains of de�nition of the local groupmultiplication and inversion maps, leading to a family of \restricted" local groupstructures on L . Two local group structures on the manifold L are locallyhomeomorphic if they have a common restriction. In other words, the twolocal group structures on the same manifold L , de�ned by (�; U ; �;V) , and(e�; eU ;e�; eV) , as per De�nition 2, are locally homeomorphic provided there existsopen sets (feg � L) [ (L � feg) � bU � U \ eU , and e 2 bV � V \ eV , onwhich the two multiplications and inversions agree: �j bU = e� j bU , �jbV = e� jbV .Continuity then implies that the two local group structure agree on the connectedcomponents (U \ eU)0 , (V \ eV)0 of the intersections of their domains. However,the two local group structures need not agree on the entire intersections U \ eU ,V\ eV , which precludes the existence of a \maximal" local group structure amongthe locally homeomorphic local group structures on a given manifold L . Byabuse of terminology, though, we shall refer to \the local Lie group L" withthe understanding that the local group structure may need to be appropriatelyrestricted if necessary.There are several inequivalent ways of imposing the associativity require-ment on a local Lie group. The least restrictive is to require that it hold locally,meaning for triples of group elements where two are su�ciently close to theidentity; in other words, we require (1) hold for (x; y; z) 2 W , where(feg � feg �L) [ (feg � L� feg) [ (L� feg � feg) � W � Z � L� L�L;is an open subset contained in the setZ = �(11� �)�1 U \ (L � U)� \ �(11� �)�1 U \ (L� U)� � L� L�Lof all (x; y; z) 2 L� L� L for which both sides of equation (1) are de�ned. Weshall call such local groups locally associative. A similar condition appears in[17], [13; p. 542], where one assumes the existence of an open set e 2 Y � V suchthat Y � Y � U , and requires (1) to hold whenever x; y; z; �(x; y); �(y; z) 2 Y ;



Olver 27this amounts to requiring local associativity with W = (Y � Y � Y) \ (Y ���1(Y)) \ (��1(Y) �Y) .More restrictively, one can require that the associativity law hold for alltriples of group elements for which the required group products are de�ned. Thismeans that W = Z , and this is the version that I have chosen in De�nition 2.Such local groups will be called associative for short.There is a further generalized associative law that requires that associa-tivity holds for all possible iterated products. From now on, if S is any set, welet S�n = S � � � � � S denote the n-fold Cartesian product of S with itself.Given an ordered n-tuple (x1; : : : ; xn) 2 L�n of local group elements, we can,provided they are de�ned, form a variety of n-fold products. For example, thetwo sides of the associativity law (1) de�ne the two possible three-fold prod-ucts. There are, potentially, �ve di�erent products associated with an orderedfour-tuple (x1; x2; x3; x4) 2 L�4 , namely�(x1; �(x2; �(x3; x4))); �(x1; �(�(x2; x3); x4)); �(�(x1; x2); �(x3; x4));�(�(x1; �(x2; x3)); x4); �(�(�(x1; x2); x3); x4):Each possible n-fold producty of a given n-tuple is determined by an n-foldparenthesis system, cf. [8; p. 53], or, equivalently, a complete, planar, rootedbinary tree on whose leaves are labeled by the xi 's, cf. [29; p. 4]. The precisenumber of possible n-fold products of an ordered n-tuple of group elements(x1; : : : ; xn) 2 L�n , that is the number of possible ways of introducing paren-theses into the list, is therefore given by the Catalan number Cn = 1n�2n� 2n� 1 �.De�nition 4. A local Lie group is associative to order n if, for every3 � m � n , and every ordered m-tuple of group elements (x1; : : : ; xm) 2 L�m ,all corresponding well-de�ned m-fold products are equal. A local group is calledglobally associative if it is associative to every order n � 3.Note that, in particular, the associativity assumption (iii) in De�nition2 requires that any local group be associative to order 3 (at least). Of course, fora global group, associativity to order 3 automatically implies global associativity.The remarkable fact, which is explicitly borne out by our examples, is that thisis not the case for local groups. Mal'cev's theorem, [19], demonstrates that thecondition of globally associativity is both necessary and su�cient condition for aglobally inversional local topological group to be globalizable. Moreover, Mal'cevexhibits in�nite-dimensional examples of globally inversional topological groupswhich are associative to some �xed order n , but which fail to satisfy the globalassociativity requirement, and hence cannot be contained in any global group.Later, we shall see how to produce similar examples of local Lie groups that areassociative, but not globally associative.Remark. In an attempt to generalize the Gleason{Montgomery{Zippin Theo-y Of course, not all of these products may be well de�ned.



28 Olverrem, [21], on topological groups and thereby solve Hilbert's Fifth Problemz forlocal Lie groups, Jacoby, [17], claimed to prove that any locally Euclidean localgroup is contained in a global Lie group. However, as pointed out by Plaut, [27],Jacoby did not appreciate the signi�cance of the global associativity assumption.Indeed, Jacoby's Theorem 8, which is stated without proof, essentially makesthe false claim that local associativity implies global associativity. Despite thisinitial 
aw, it is likely that some of Jacoby's results can be recovered in a localor germ sense, or, alternatively, subject to an appropriate global associativityassumption. Thus, it is probably correct to state that every locally Euclideanlocal group is locally isomorphic to a neighborhood of the identity in a global Liegroup. Unfortunately, since the rest of Jacoby's paper relies heavily on his incor-rect Theorem 8, the re-establishment of his results (in an appropriately amendedform) would require a signi�cant e�ort. Such a project would not be withoutmotivation | for instance, results of Brown and Houston, [5], and Hofmannand Weiss, [16], that provide a positive solution to Hilbert's Fifth Problem forsemigroups on manifolds, rely heavily on Jacoby's results.A map between local groups is a local group homomorphism provided itrespects the two multiplication and inversions where they are de�ned. Speci�-cally:De�nition 5. Let (L;�; U ; �;V) , and (eL; e�; eU ;e�; eV) , be local Lie groups. Asmooth map �:L! eL is called a local group homomorphism if(i) �� �( U) � eU , �(V) � eV , �(e) = ~e ,(ii) �(�(g; h)) = e�(�(g);�(h)) for (g; h) 2 U , and(iii) �(�(g)) = e� (�(g)) for g 2 V .A local group homomorphism is called a homeomorphism if it is one-to-one, onto,with smooth inverse.Note that the image of a local group homeomorphism �:L ! eL e�ec-tively identi�es L as a restriction of the local group structure on eL . We couldfurther relax the requirement for a local group homomorphism by only requiringthat � respect the group multiplication and inversion maps on suitably smallopen subsets. However, this completely local de�nition can be subsumed in thepresent de�nition by utilizing a suitable restriction of the local group structureon L . The main focus of the present paper is to understand to what extentlocal groups can be globalized, thereby identifying them as a neighborhood ofthe identity element in a global Lie group of the same dimension. This will beformalized in the following de�nition.De�nition 6. A local Lie group L is called globalizable if there exists a localgroup homeomorphism �:L! N mapping L onto a neighborhood e 2 N � Gof the identity of a global Lie group G .z Hilbert's �fth problem concerns the role of analyticity in general transforma-tion groups, and seeks to generalize the result of Lie, [18; p. 366], and Schur, [32]. TheGleason{Montgomery{Zippin result only addresses the special case when a global Liegroup acts on itself by right or left multiplication.



Olver 29Example 7. Before proceeding further, it is useful to illustrate these conceptsby a simple example of a one-dimensional local Lie group, cf. [23; pp. 19{20]. LetM = R . The identity element will be e = 0. The formulas for the multiplicationand inversion maps are given by�(x; y) = 2xy � x� yxy � 1 ; �(x) = x2x� 1 : (2)First, we restrict the multiplication and inversion maps by de�ning L = fjxj <12g , and usingU = �(x; y) �� jxj < 12 ; jyj < 12 ; (3x � 2)(3y � 2) > 1; (5x � 2)(5y � 2) < 9	 ;V = f�12 < x < 14g;as the domains of de�nition of the multiplication and inversion maps. The readercan straightforwardly verify that (2) does indeed de�ne a globally associative,abelian, local Lie group. Indeed, the local Lie group L can be globalized viaan embedding into the unique global, simply connected, one-dimensional Liegroup G = R . The map �:L ! G given by �(x) = x=(x � 1) satis�es�(�(x; y)) = �(x) + �(y) , and �(�(x)) = ��(x) where de�ned. Therefore �provides the desired local group homeomorphismmapping L to the open intervalN = f�1 < x < 13g � G .In fact, one can expand the domains of de�nition of the multiplicationand inversion maps in this example, but this leads to a curious phenomenon.The largest possible domains that will still satisfy the local group axioms arebU = f(x; y) j jxyj 6= 1g � M �M and bV = fx jx 6= 12 ; x 6= 1g � M . However,in this situation, the group element 1 2 M plays a strange role. We �nd�(x; 1) = �(1; x) = 1 for all x 6= 1, so that 1 de�nes an \in�nite group element".Moreover, its \inverse" �(1) = 1 can even be de�ned, although the product ofthe two, �(1; �(1)), is not de�ned, and hence not equal to the identity. On theother hand, the in�nite group element is \inaccessible" since �(x; y) = 1 if andonly if either x = 1 or y = 1. Note that we can complete M and G by adjoininga point at in�nity, realizing both as subsets of the projective line: M;G � RP1 .The \group homomorphism" � then extends to a global projective map of RP1 ,thereby endowing the projective line with the structure of a local Lie group withan in�nite group element, containing a global Lie group as a dense open subset.Remark. The latter construction in Example 7 is a special instance of a generalcompacti�cation process that can be applied to any noncompact, but locallycompact group; see [31] for details.To avoid the pathologies caused by such in�nite local group elements,we must impose an additional invertibility assumption on the local group. Themost common way to do this, advocated in [19], [33], is to require that everygroup element have an inverse.De�nition 8. A local Lie group L is called globally inversional if the inversionmap � is de�ned everywhere, so that V = L .



30 OlverFor example, a local group feg � N � G given by a neighborhood ofthe identity element in a global Lie group will be globally inversional if and onlyif it satis�es the symmetry restriction N = �(N) . Bourbaki's Lie group germsy ,[4; xIII.1.10], are the same as globally inversional local Lie groups.For our purposes, though, it is useful to weaken the rather severe globalinversionality assumption, without permitting the pathology of in�nite groupelements. One way to do this is to require that the group multiplication mapdoes not degenerate. More speci�cally, de�ne the left and right multiplicationmaps �x , �x so that �x(y) = �(x; y); �x(y) = �(y; x): (3)De�nition 9. A local Lie group L is called regular if, for each x 2 L , themaps �x , �x de�ning left and right multiplication, (3), are di�eomorphisms ontheir respective domains of de�nition.Thus, in the local Lie group of Example 7, in order to retain regularitywe must throw away the in�nite group element 1, since its left and right mul-tiplication maps are constant. A slightly more restrictive approach is to requirethat the group elements always be expressible as products of invertible ones.De�nition 10. An element x of a local Lie group L is called inversionalif there exist invertible elements x1; : : : ; xn 2 V such that x equals an n-foldproduct of the xi 's. A local Lie group L is called inversional if every x 2 L isan inversional element.The following result is straightforward; its converse, though, is not nec-essarily valid, since the group might include additional components containingregular, but non-invertible elements.Proposition 11. Every inversional local Lie group is regular.The property of being inversional is related to the notion of connectivityof a local Lie group. A global Lie group is connected if it forms a connectedmanifold. Although a �rst glance this appears a reasonable de�nition in thecase of a local Lie group, we have seen that it permits inaccessible, non-regulargroup elements. Moreover, one of the principalmeans of characterizing connectedglobal Lie groups, which lies at the foundations of the in�nitesimal approach toLie group analysis, [23], is no longer equivalent to the mere connectivity of themanifold in the case of local groups.De�nition 12. A subset U � L of a local Lie group L is said to generateL if L = S1n=1U (n) . Here U (n) � L denotes the subset consisting of all groupelements x 2 L which can be written as a well-de�ned n-fold product of elementsx1; : : : ; xn 2 U .For example, De�nition 10 just says that a local Lie group is inversionalif and only if the domain V of the inversion map generates L . A key resultin the theory of global Lie groups states that any open neighborhood e 2 U ofy The original French version [3; xIII.1.10] uses the wonderful term \groupuscle"for a local group or group germ.



Olver 31the identity of a connected global Lie group G generates the entire Lie groupG , cf. [36; Proposition 3.18]. In particular, choosing U to be contained inthe image of the exponential map exp: g ! G , we deduce that every elementof a connected Lie group can be written as a �nite product of exponentials:g = exp(v1) � : : : � exp(vn) for vi 2 g . Example 7 shows that, without additionalassumptions, this result is not necessarily valid for local Lie groups. We aretherefore led to propose a more restrictive notion of connectedness for a local Liegroup.De�nition 13. A local Lie group L is connected if(i) L is a connected manifold,(ii) the domains of de�nition of the multiplication and inversion maps arealso connected,(iii) if U � L is any neighborhood of the identity, then U generates L .Note that a connected global Lie group satis�es the revised De�nition13. In particular, we can choose the generating neighborhood to be U = V , andthus deduce that connected local Lie groups are automatically inversional:Proposition 14. Any connected local Lie group is inversional, and henceregular. >From now on, in accordance with our blanket hypothesis, all local Liegroups are be assumed to be connected in the sense of De�nition 13. Thuswe replace a more general local Lie group L , by the connected component L0containing the identity, which is de�ned the largest open, connected, local Liesubgroup L0 � L . 3. The Simplest ExamplesIn order to understand our general construction of non-associative local Liegroups, it is helpful to discuss the very simplest examples in some detail. The�rst example will be an associative, regular, local Lie group which fails to beglobally associative. This preliminary example however, does not satisfy theglobal inversional property, and so we describe a straightforward modi�cationwhich is, in addition, globally inversional. The failure of the global associativityaxiom implies that neither example can be contained in any global Lie group.Let G = R2 denote the real, simply connected two-dimensional abelianLie group. It is convenient to identify G with the complex plane C ' R2, and usecomplex notation for the elements of G , even though we are considering G as areal Lie group. Let M = G n f�1g denote the punctured plane. (Other than thefact that it is not the identity, there is nothing special about choosing �1 as thedistinguished point to omit.) Let L ' R2 denote the simply connected coveringspace of M , and let �:L ! M denote the covering map. Note that L can beidenti�ed with the Riemann surface associated with the function log(z +1). Anelement ẑ 2 L is described by its projection z = �(ẑ) and an integer n 2 Zindicating which sheet in the covering space ẑ = (z; n) lies in. In the sequel,we shall consistently use the notation z;w , etc. for the projections of local
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v + w + zFigure 1. Non{associativity.group elements ẑ; ŵ , etc. If we introduce polar coordinates (relative to thepoint �1) then we can identify L with the half plane L ' f(r; �) j r > 0g .The projection is explicitly given by �(r; �) = rei� � 1. Thus, the point (r; �)corresponds to ẑ = (z; n) , where z = rei� � 1, and n is the integer such that(2n�1)� < � � (2n+1)� . Suppose C �M is any (connected) curve not passingthrough �1, and let z 2 C . Given a point ẑ 2 ��1fzg , we can �nd a uniquelifted connected curve bC � L passing through ẑ and which projects back downto C . In particular, if C is a closed curve, then bC is also closed if and only ifthe winding number of C with respect to �1 is zero.We shall endow L with the structure of a connected, regular local Liegroup which does not satisfy the global associativity property, and hence cannotbe contained in any global Lie group. The group multiplication law on L will,locally, agree with vector addition on R2. The identity element will be theelement ê = (1; 0) lying in the zeroth sheet of L which projects to e = 0, theidentity element of the abelian Lie group G . The multiplication �(ẑ; ŵ) betweentwo elements ẑ; ŵ 2 L will be de�ned provided one or the other is su�cientlyclose to the identity. When de�ned, the product v̂ = �(ẑ; ŵ) will have projectionv = z+w in M . Moreover, the product �(ẑ; ŵ) itself is de�ned either by liftingthe line segment connecting z to z+w to form a curve connecting ẑ to �(ẑ; ŵ)in L , or, alternatively, by lifting the segment connecting w to z +w to connectŵ to �(ẑ; ŵ) . Note that the lifted line segment will be unambiguously de�ned aslong as the line segment in question does not pass through the forbidden point�1. Our goal is to suitably prescribe the domain of de�nition of the product� so that all three local group axioms are valid, (and the group is even locallycommutative!), but then prove that the group fails to satisfy the globally asso-ciativity property. The key technical complication is to appropriately restrict thedomain of de�nition of � so that the ordinary associativity law (1) holds. Notethat if we allow too large a domain of de�nition, then the resulting local groupwill only be locally associative. Indeed, let v̂; ŵ; ẑ 2 L be group elements whoseprojections v;w; z , have the property that the triangle with vertices z , w + z ,
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Figure 2. The domain L0 � L .v+w+z , contains the singular point �1 in its interior (and hence the triangle hasnonzero winding number); see Figure 1. Then the product �(v̂; �(ŵ; ẑ)) cannotequal �(�(v̂; ŵ); ẑ) since the �nal points would have to lie on di�erent sheets ofthe covering space L . In this way, we see that associativity of an n-fold productis related to the winding number of a certain polygonal path with respect to thedistinguished point �1.The domain of de�nition of the product on L will now be �xed as follows.Let L0 = �(r; �) �� 12 sec � < r < 32 sec �;�12� < � < 12�	 (4)denote that part of the zeroth sheet of L (i.e., the sheet containing the identityê) which lies above the strip M0 = f�12 < Re z < 12g ; see Figure 2. Note thatthe projection �:L0 !M0 is one-to-one when restricted to L0 . Further letL1 = �(r; �) �� �12� < � < 12�	 (5)denote that part of the zeroth sheet of L which projects di�eomorphically ontothe half plane M1 = fRe z > �1g . A trivial, but important observation is thatif z;w 2M0 , then z + w 2M1 .Given z;w 2 M , we let �� < �(z;w) � � denote the angle from z tow with respect to the singular point �1; see Figure 3. Given z 2M , de�neHz = �ŵ 2 L0 �� �12� < �(z; z + w) < 12�	 : (6)The domain of de�nition of the group operation is then taken to beU = f(ẑ; ŵ) 2 L�L j ẑ 2 Hw or ŵ 2 Hzg : (7)
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Figure 3. The angle � = �(z;w) .
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Figure 4. The domain of de�nition of the product.In other words, the product �(ẑ; ŵ) is de�ned provided either ŵ 2 Hz or ẑ 2 Hw .In the former case, ŵ 2 Hz , and the product is de�ned by lifting the line segmentconnecting z to z + w to form a connected curve from ẑ to �(ẑ; ŵ) in L ; inthe latter case, ẑ 2 Hw , we lift the segment connecting w to z + w to connectŵ to �(ẑ; ŵ) . Note that the restriction on the domain implies that the linesegment in question does not pass through the forbidden point �1, and hencethe lifted line segment is unambiguously de�ned. Given a point ẑ with projectionz , the shaded region in Figure 4 represents the projection of the set of possible
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Figure 5. Fundamental parallelogram.products �(ẑ; ŵ) for all ŵ 2 Hz ; the domain Hz is obtained by translating the�gure so as to place z at the origin. Further, we de�ne the domain of de�nitionof the inversion map � to be V = L0 , as given in (4). Given ẑ 2 L0 , the inverse�(ẑ) is the unique element in L0 projecting to �z .Theorem 15. Under the above constructions, the product �: U ! L and in-version �:V ! L endow L with the structure of a regular, connected, associative,local Lie group which is not globally associative.Proof. The identity and inverse requirements are immediate. Local associa-tivity of L is also not di�cult. To prove that L is associative (to order 3) weneed to show that �(v̂; �(ŵ; ẑ)) = �(�(v̂; ŵ); ẑ); (8)whenever both sides of the equation are de�ned. The left-hand side of (8) isde�ned provided either a) ẑ 2 Hw or b) ŵ 2 Hz , and either a) v̂ 2 Hw+zor b) �(ŵ; ẑ) 2 Hv , leading to four di�erent possibilities. Similarly, there arefour di�erent ways that the right hand side could be de�ned: a) v̂ 2 Hw orb) ŵ 2 Hv , and a) ẑ 2 Hv+w or b) �(v̂; ŵ) 2 Hz . Therefore, there is agrand total of sixteen di�erent ways in which (8) could make sense! We labelthe di�erent possibilities by four letters, each either a or b, indicating whichone of the preceding di�erent possibilities; for example, Case abba would requireẑ 2 Hw , �(ŵ; ẑ) 2 Hv , ŵ 2 Hv , and ẑ 2 Hv+w . The sixteen cases subdivideinto four classes, each of which is handled by a slightly di�erent proof.The �rst class consists solely of Case aaaa, which means ẑ 2 Hw ,v̂ 2 Hw+z , v̂ 2 Hw , ẑ 2 Hv+w . Consider the fundamental parallelogram, de�nedas the parallelogram contained in M with vertices w , v+w , w+z and v+w+z| see Figure 5. Clearly, the associative law (8) holds in this case if and only ifthe point �1 does not lie in the interior of this fundamental parallelogram. InCase aaaa, the four angles�(w;w + z); �(w + z; v + w + z); �(w; v + w); �(v + w; v + w + z);
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Figure 6. Case abaa.are all strictly less than 12� , which, as illustrated in Figure 5 immediately impliesthat the fundamental parallelogram cannot contain �1.The second class is exempli�ed by Case abaa, which requires ẑ 2 Hw ,�(ŵ; ẑ) 2 Hv , v̂ 2 Hw , ẑ 2 Hv+w . In this case, v; z;w + z 2 M0 , and hencew = (w+ z)� z and v+w+ z lie in M1 . This means that the only vertex of thefundamental parallelogram which can lie to the left of the line fRe z = �1g isv+w . On the other hand, the two angles �(w; v+w) and �(v+w; v+w+z) mustbe less than 12� , which is impossible unless v + w 2 M1 also | see Figure 6.Thus �1 is not contained in the fundamental parallelogram, and associativityholds here also. Similar arguments apply to Cases aaab, aaba, aabb, baaa, andbaba. The third class is indicated by Case baab, which requires ŵ 2 Hz ,v̂ 2 Hw+z , v̂ 2 Hw , �(v̂; ŵ) 2 Hz . In this case, consider the fundamentaltriangle with vertices at z , w+ z and v+w+ z , as illustrated in Figure 7. Thethree angles�(z; v +w + z); �(z;w + z); �(w + z; v + w + z);are all less than 12� , hence the triangle cannot contain �1 in its interior. There-fore, the corresponding three points lie on the same sheet of L , and associativityholds. Similar arguments apply to Cases abba, babb, and bbba.The �nal, and easiest class is exempli�ed by Case abab. Here ẑ 2 Hw ,�(ŵ; ẑ) 2 Hv , v̂ 2 Hw , �(v̂; ŵ) 2 Hz . Thus v; z; v+w;w+z 2M0 , and hence w ,v +w+ z 2M1 . Thus every vertex of the fundamental parallelogram lies to theright of �1, so �1 is not contained in its interior, and hence associativity holds.The same argument applies to Cases abbb, bbaa, bbab, and bbbb. We have nowanalyzed every one of the sixteen di�erent possibilities, and hence associativityof our local Lie group is proved.
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w + z

v + w + zFigure 7. Fundamental triangle.To prove global non-associativity, it su�ces to produce one counter-example to the next simplest associative identity:�(û; �(v̂; �(ŵ; ẑ))) = �(�(�(û; v̂); ŵ); ẑ)): (9)This will demonstrate that L is not associative of order 4, and, hence, not globallyassociative. Let ! = exp 14�i be the primitive eighth root of unity. Letu = 23(! � 1) = �2�p23 � i p23 ;v = 23(�i� !) = �p23 � i 2�p23 ; w = 23(i � !) = �p23 + i 2�p23 ;z = 23(! � 1) = 2�p23 + i p23 :(10)Finally, let û, v̂ , ŵ , ẑ be the corresponding points in L0 which project tou; v;w; z . Note that, as illustrated in Figure 8, the points 0, u , u+v , u+v+w ,u+ v + w + z , v + w + z , w + z , and z form the vertices of a regular octagoncentered at the point �23 having radius 23 . In particular, this implies that thesingular point �1 lies inside the octagon, and hence any lift of the octagon doesnot form a closed curve in the covering space L . Therefore, if we start at 0, andgo to u + v + w + z = �43 along the two di�erent polygonal paths, we will endup at di�erent points back up on the covering space L , which implies that theassociativity condition (9) does not hold! We leave it to the reader to check thatboth four-fold products are well de�ned | in particular that the relevant anglesare all less than 12� . This produces the required example.The only remaining point is to show that L satis�es the connectivityconditions in De�nition 13, but this is fairly straightforward. First, L itself isclearly pathwise connected, as is V = L0 . The domain (7) is also pathwiseconnected. Indeed, consider a point (ẑ; ŵ) 2 U such that ŵ 2 Hz . Wecan connect (ẑ; ŵ) to (ẑ; 0) by a curve fẑg � S , where S � Hz is the liftof the straight line segment that connects w to 0. Further, since L is pathwiseconnected, we can then connect (ẑ; 0) to (0; 0) via a curve C � f0g � L � f0g .The alternative case ẑ 2 Hw is handled analogously, thus proving that U is
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zFigure 8. Non{associative octagon.pathwise connected. Finally, note that the open set U = fẑ 2 L0 j jzj < 34ggenerates L . Indeed, repeatedly multiplying the primitive eighth root elementsû , v̂ , ŵ , ẑ 2 U constructed above, cf. (10), allows us to circle the singular point�1 as many times as we like in order to reach any desired sheet of L . Once on agiven sheet, it is straightforward to continue to multiply by appropriate elementsof U to generate any group element lying in that sheet. Moreover, any opensubneighborhood e 2 eU � U � L will clearly generate U , thereby verifying thelast connectivity requirement. This at last completes the proof of the theorem.Finally, we remark that one can suitably shrink the domain of de�nitionof the product on L , enabling one to construct a local Lie group that is associativeto order n , but which is not globally associative. The precise de�nition of then th order domain, though, is rather tricky, owing to the many possible n-foldproducts that may be de�ned!The examples modeled on the covering space of M = R2 n f�1g arenot globally inversional, since the inverse was only de�ned for group elementsẑ 2 V = L0 . A modi�cation of this basic construction can, though, be usedto produce a globally inversional, but not globally associative local Lie group.We brie
y indicate how this can be accomplished. The key is that the groupdomain needs to be symmetric with respect to the origin, while still maintainingnon-associativity. Consider the twice punctured plane fM = R2 n f+1;�1g , andlet �:fM� ! fM denote the simply connected covering space of fM ; we canidentify fM� with the Riemann surface corresponding to the complex functionlog(z2 � 1). Fix a point e 2 ��1f0g as the identity. Let eL � fM� be a domainwhich contains e , which is four-fold symmetric under the analytic continuationof the coordinate axis re
ections z 7! �z , z 7! ��z , and whose projection overlapsitself on the outer real axes f(x; 0) j jxj > 1g just once. See Figure 9 for a sketchof the projection of such a domain. Clearly, by symmetry, we can arrange eL to
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Figure 9. Globally inversional non{associative local Lie group.be globally inversional by analytic continuation of the inversion map z 7! �zlifted to fM� . Thus, the inverse of an element ẑ that lies in the upper sheet of eLthat is to the right of +1 will end up in the lower sheet of eL that is to the leftof �1. It is also clear, that by suitably restricting the domain of de�nition ofthe product, which will be the lift of the usual vector addition as in our previousexample, one can endow eL with the structure of a globally inversional, abelian,local Lie group. Nevertheless, due to the overlap of the projection of eL backdown to fM , the resulting local Lie group is clearly not globally associative. Theprecise de�nition of the domain of de�nition of the product on eL so as to make itassociative to order, say, 3, but not to order 4, is left as a (challenging) exercisefor the reader.4. A General Characterization of Local Lie GroupsThe basic construction in the previous section can be readily generalized to applyto covering spaces of open subsets of arbitrary Lie groups. The main technicalcomplication is the determination of a suitably small domain of de�nition ofthe multiplication map so as to maintain local associativity. The existence ofsuch a domain is straightforward | one merely ensures that the corresponding\polygonal paths" do not encircle any of the components of the complement ofthe open subset. However, an explicit construction in particular examples canget complicated.We now investigate in what sense these are the most general examples.



40 OlverThe main result states that this is the case \up to covering". Here, though, ourde�nition of covering is more general than usual.De�nition 16. Let M and N be m-dimensional manifolds. A local di�eo-morphism �:M ! N which maps M onto N is called a generalized coveringmap. Thus, according to the Inverse Function Theorem, a map �:M ! N is ageneralized covering map if and only if �(M) = N and d�:TM jx ! TN j�(x) isan invertible linear map for each x 2M . Our use of the term \covering map" ismore inclusive than the usual terminology, since M does not necessarily cover Nuniformly; indeed the inverse image ��1(y) of a point y 2 N is a discrete subsetof M , but its cardinality may vary from point to point. For instance, accordingto our de�nition, the restriction of any generalized covering map to any opensubset fM � M such that �(fM ) = N remains a generalized covering map. Forexample, the map F (t) = (cos t; sin t) provides an ordinary covering map fromthe real line M = R to the circle N = S1 , which remains a generalized coveringmap when restricted to any open interval of length at least 2� . By abuse ofterminology, we will say M covers N if there is a generalized covering map fromM to N .If L and L are local Lie groups, we will say that L is a covering groupof L if there is a generalized covering map �:L ! L which is a local grouphomomorphism. A simple example is provided in Section 3, where the non-associative local Lie group L is realized as a covering group of the globallyassociative local Lie group M � R2. A more exotic example of a local Liegroup is found by starting with the local Lie group L described in Section 3,and choosing a point ê 6= ẑ0 2 L . Then the simply connected covering spaceL! L n fẑ0g is also a (non-uniform) local covering group of M .We next recalling some standard facts concerning frames and coframeson manifolds and (local) Lie groups.De�nition 17. Let M be a smooth m-dimensional manifold. A frame onM is an ordered set of vector �elds V = fv1; : : : ;vmg having the property thatthey form a basis for the tangent space TM jx at each point x 2 M . Dually,a coframe on M is an ordered set of one-forms � = f�1; : : : ; �mg which form abasis for the cotangent space T�M jx at each point x 2M .A manifold admits a (global) frame if and only if its tangent bundle istopologically trivial: TM ' M � Rm . The structure equations associated witha frame are obtained by expressing the Lie brackets in terms of the frame vector�elds themselves: [vi;vj ] = mXk=1Ckijvk; i; j = 1; : : : ;m: (11)The coe�cient functions Ckij are called the structure functions of the given frame.The frame is said to have rank 0 if the structure coe�cients Ckij are all constant.In this case, the Ckij form the structure constants of the Lie algebra g spannedby the frame vector �elds. We will show that we can endow M itself with the



Olver 41structure of a local Lie group such that the frame vector �elds form a basis forthe Lie algebra g of right-invarianty vector �elds thereon.Theorem 18. If L is a regular, locally associative, local Lie group, then itadmits a right invariant frame of rank 0. Conversely, if M is a manifold thatadmits a rank 0 frame, then M can be endowed with the structure of a regular,locally associative local Lie group having the given frame as right-invariant Liealgebra elements.Proof. Let L be the m-dimensional local Lie group in question. We �rstconstruct the Lie algebra g consisting of all right-invariant vector �elds on L bystandard methods, cf. [28]. In other words, given a tangent vector vje 2 TLje toL at the identity, we de�ne its right-invariant counterpart to be the vector �eldwith value vjx = d�x(vje) at any x 2 L , where �x denotes the standard rightmultiplication map, cf. (3). Associativity implies the right-invariance of v , sod�y(vjx) = vj�(x;y) for any (x; y) 2 U . The regularity hypothesis implies that gde�nes a global frame on L , i.e., we can choose a basis bv1; : : : ; bvm which spanthe tangent space TLjx at each point x 2 L , satisfy the standard Lie algebracommutation relations (11) for structure constants Ckij relative to the chosenbasis.Remark. If the group does not satisfy our regularity assumption, then theconstruction of the right-invariant frame leads to degeneracies at the \in�niteelements". For instance, in the irregular Example 7, the right-invariant vector�eld bv = (x� 1)2@x vanishes at the in�nite element x = 1.To prove the converse, let G denote the global Lie group whose Liealgebra has the given structure constants determined by the structure equations(11) of the rank 0 frame. According to the basic theorem on transformationgroups, [28; Theorem 88], [23; Theorem 1.57], the vector �elds vi form thein�nitesimal generators for a local action of G on M . In particular, we canchoose any point e 2 M to serve as the identity element for the local groupstructure on M , and the map g 7! g � e serves to de�ne a group isomorphismbetween a su�ciently small neighborhood of e 2 M with a neighborhood ofthe identity in G . In this way, we can identify the transformation x 7! g � xby a group element g 2 G su�ciently close to the identity with the productg � x = �(y; x) by the corresponding element y = g � e 2 M . Thus, by suitablyrestricting the domain of de�nition of the transformation group action, we endowM with the structure of a local Lie group. The construction of the associatedinverse map and veri�cation of the local group axioms is straightforward.Any manifold admitting a global frame V = fv1; : : : ;vmg also admits aglobal coframe provided by the dual one-forms � = f�1; : : : ; �mg , and conversely.These are constructed so that 
 �i ; vj � = �ij at each x 2 M , where �ij is theusual Kronecker symbol. The dual structure equations for the coframe ared�k = � X1�i<j�mCkij �i ^ �j ; (12)y One can equally well use left-invariant vector �elds if one prefers.



42 Olverand have the same (up to sign) structure functions Ckij . In particular, thedual coframe to a right-invariant frame on a local Lie group is known as theMaurer{Cartan coframe, and (12) are the fundamental Maurer{Cartan structureequations, with the Ckij the structure constants for the Lie algebra. Note thatTheorem 18 immediately implies that any manifold admitting a rank 0 coframecan be given the structure of a local Lie group.Theorem 19. If L is a regular, locally associative local Lie group, then itadmits a right invariant Maurer{Cartan coframe satisfying the rank 0 structureequations (12). Conversely, if M is a manifold with a coframe of rank 0, thenM can be endowed with the structure of a regular, locally associative local Liegroup having the given coframe as Maurer{Cartan coframe.Remark. The preceding considerations imply that any smooth, connected localLie group comes equipped with a Cartan connection �:TL! g with vanishingcurvature 
 = d� + [�;�] = 0. See [20], [30], for the theory of \almost Liegroups" in which one relaxes this condition by allowing manifolds with a Cartanconnection having small curvature. Under certain conditions, such manifolds arenecessarily local Lie groups.Finally, we state the basic in�nitesimal characterization of local Lie grouphomeomorphisms.Theorem 20. Suppose L and M are connected m-dimensional local Liegroups, and let � and � denote their respective right-invariant Maurer{Cartancoframes. If a map �:L!M satis�es ��(�) = � and �(e) = ~e , then � de�nesa local group homeomorphism from L onto its image, which forms an open localsubgroup of M .Proof. The pull-back conditions imply that the corresponding dual right-invariant vector �elds are mapped to each other by the push forward map:d�(vi) = wi , i = 1; : : : ;m . Therefore � is equivariant under the associated 
owsor one-parameter subgroup actions: �(exp(tv)y) = exp(tw)�(y) , where v =c1v1+ � � �+cmvm 2 g and t is su�ciently small. Therefore, the homeomorphismproperty �(�(x; y)) = e�(�(x);�(y)) (13)holds provided x = exp(tv) for v 2 g and t su�ciently small. Now, theexponential map maps an open neighborhood of 0 2 g onto a neighborhoodof e 2 L , and hence (13) holds whenever x 2 L is su�ciently close to theidentity. Since L is connected, we can use continuity of � to assert that (13)holds for all (x; y) 2 U . The corresponding assertion for the inversion is provedsimilarly, completing the proof.Our main result will completely characterize local Lie groups up to(generalized) covering. The proof relies on the Cartan equivalence method, [7],[10], applied to coframes of rank zero, which in turns rests on an application ofFrobenius' Theorem to construct the covering map via Cartan's technique of thegraph. See [24] for additional details.



Olver 43Theorem 21. Let L be a connected local Lie group. Then there exists a localcovering group L ! L which is also a local covering group L ! M of an opensubset M � G of a global Lie group G .Proof. Let L be a local group and let � = f�1; : : : ; �mg be its Maurer{Cartan coframe. The structure equations (12) serve to de�ne the structureconstants of an m-dimensional Lie algebra g . Let G denote the connected,simply connected, m-dimensional global Lie group having the same Lie algebrag . Let � = f�1; : : : ; �mg be the corresponding Maurer{Cartan coframe ofglobally right-invariant one-forms on G with respect to the same basis of g . TheMaurer{Cartan structure equations of � are the same as those of � , cf. (12).Thus, according to the Cartan equivalence method, [7], [10], [24], if x 2 Land g 2 G are any two elements, then there is a unique local equivalence map�:L! G , de�ned in a neighborhood of x , such that �(x) = g and � pulls-backthe Maurer{Cartan coframe on G to that on L , so ��(�) = � . In particular, ifwe take x = e to be the identity element of L , and g = e the identity elementof G , then Theorem 20 implies that � is a local group homeomorphism froma neighborhood of the identity in L to a neighborhood of e 2 G . The map� serves to globalize a neighborhood of the identity in L , thereby reproducingCartan's global version, [6], of Lie's Third Fundamental Theorem. (Of course,this is cheating, since we have assumed the existence of the appropriate globalLie group G in advance!)To see how � can itself be globalized, we need to understand its con-struction in more detail. The proof of the local equivalence result is based onCartan's technique of the graph. One determines the local equivalence map�:L ! G by constructing its graph �� = f(x;�(x)g , which is a r = dimGdimensional submanifold of the Cartesian product space L � G . The graph isrealized as an integral submanifold of a suitable di�erential system I , namelythe one generated by the di�erences #i = ��G�i � ��L�i , i = 1; : : : ;m , of thepull-backs of the two coframes under the standard projections �L:L � G ! Land �G:L � G ! G . The fact that the two coframes have identical constantstructure coe�cients implies that this di�erential system is in involution, andhence Frobenius' Theorem, cf. [24], [36], guarantees the existence of a uniquemaximal integral submanifold N , of dimension m , passing through any point(x; g) 2 L�G . The integral submanifold N coincides, locally, with the graph ofthe required equivalence map �. The fact that N satis�es the required transver-sality conditions at (x; g) is immediate, and so the Implicit Function Theoremguarantees that it de�nes a local di�eomorphism.In order to complete the proof, we need to show that the full maximalintegral submanifold covers all of L . Let N � L�G denote the maximal integralsubmanifold corresponding to the di�erential system described above passingthrough the point (e; e) 2 L � G . We know that, locally, N is the graph ofan equivalence map. Indeed, the restrictions of the two projections �L:N ! L ,�G:N ! G , determine local di�eomorphisms. Moreover, equivalence impliesthat the given coframe � on L and the Maurer{Cartan coframe � on G bothpull back to the same rank 0 coframe, � = ��L� = ��G� on N . According toTheorem 19, the existence of a rank zero coframe on N allows us to identify it asa local Lie group with the point (e; e) serving as the identity element. Moreover,
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g~Figure 10. Integral submanifolds.Theorem 20 implies that the two (generalized) covering maps will then be localgroup homomorphisms. In fact, since the one-forms in � form a subset of theMaurer{Cartan coframe on the local product group L�G , consisting of the one-forms ��L�; ��G� , the local group structure on N coincides with the restrictionof the Cartesian product local group structure on L�G , and so we can identifyN as an m-dimensional local Lie subgroup of L�G .I claim that the restricted projection �L:N ! L is, in fact, a generalizedcovering map, which requires us to prove that �L(N) = L . Assuming this, thetheorem follows directly, since N will then be the required covering group of L ,and also cover an open subset of G under �G , thereby ful�lling the conditionsof De�nition 16. To prove the claim, note that if N is any integral submanifoldof the di�erential system generated by # , then, because of the right-invarianceof the Maurer{Cartan forms, any right translate �h[N ] = f(x; g � h) j (x; g) 2 Ngby a group element h 2 G is also an integral submanifold. Suppose �L(N) 6= L ,and let x0 2 L n �L(N) be a point in the closure of �L(N) . According toFrobenius' Theorem, we can �nd a local equivalence �0:U ! G , where U isa neighborhood of x0 in L , mapping x0 to the identity element e = �0(x0) ;see Figure 10. Let N0 denote the graph of �0 , so that N0 is also an integralsubmanifold of our di�erential system passing through (x0; e) . Choose any pointx̂ 2 U \ �L(N) , so x̂ = �L(x̂; ĝ) for some point (x̂; ĝ) 2 N in the originalintegral submanifold. Let ~g = �0(x̂) , and de�ne h = ~g�1 � ĝ . Then, by theprevious remark, Rh[N0] is an integral submanifold of the di�erential system;moreover, the point (x̂; ĝ) = (x̂; ~g � h) is contained both in �h[N0] and in ouroriginal integral submanifold N . Therefore, by uniqueness and maximality ofN , the integral submanifold �h[N0] must be an open submanifold of N . Butthe point (x0; h) = �h(x0; e) lies in �h[N0] , and hence in N . This contradictsour original assumption that x0 was not in the projection �L(N) , and so proves



Olver 45the claim.Example 22. Consider the coframe�1 = cos'dr � r sin'd'; �2 = sin'dr + r cos'd'; (14)de�ned on the half plane L = f(r; ') j r > 0g . Clearly, in terms of polarcoordinates, this coframe is locally di�eomorphic to the Maurer{Cartan coframe�1 = dx , �2 = dy for the two-dimensional abelian Lie group R2. Indeed, Lcan be identi�ed with the simply connected covering space for the puncturedplane M = R2 n f(�1; 0)g , and so is isomorphic to our earlier example of a non-associative local Lie group. Consequently, this coframe is the Maurer{Cartancoframe for the local Lie group L and is therefore not globally equivalent to theMaurer{Cartan coframe on any open subset of the Lie group R2 .This example includes yet one additional interesting pathology. The dualframe vector �elds to (14) arev1 = cos' @@r � sin'r @@' ; v2 = sin' @@r + cos'r @@' : (15)They are mapped to the coordinate vector �elds @x; @y under the polar coordinatemap, and hence commute: [v1;v2] = 0: (16)Nevertheless, their 
ows do not commute! The reader can explicitly verify that,for any r0 > 0, if we set s = t = p2 r0 , thenexp(sv1) exp(tv2)�r0; 54�� = exp(sv1)�r0; 34�� = �r0; 14��;whereas exp(tv2) exp(sv1)�r0; 54�� = exp(tv2)�r0; 54�� = �r0; 54��:(This is easy to do by reverting to rectangular coordinates.) Thus we havean explicit, elementary counterexample to the commutativity theorem in [23;Theorem 1.34], which states that two vector �elds on a manifold M satisfy (16)if and only if their 
ows satisfyexp(sv1) exp(tv2)x0 = exp(tv2) exp(sv1)x0; (17)for all x0 2 M and all (s; t) 2 V where V denotes the subset of the s; t planewhere both sides of (17) are de�ned! This theorem, that commuting vector �eldsinduce commuting 
ows, is true locally. A correct version should state that (17)holds for all (s; t) lying in the connected component of V containing the origin.In the above example, for x0 = �r0; 54�� , the left hand side of (17) is de�nedfor all (s; t) 2 V1 = R2 n fs = 1p2r0; t � 1p2r0g . The right hand side of (17) isde�ned for all (s; t) 2 V2 = R2 n ft = 1p2r0; s � 1p2r0g . The set V = V1 \ V2 onwhich both sides of (17) are de�ned, then, consists of two connected components,V = V0 [ V1 . If (s; t) 2 V0 = fs < 1p2r0 or t < 1p2r0g , which is the componentcontaining the origin, the commutativity equation (17) holds. On the other hand,when (s; t) 2 V1 = fs > 1p2r0 and t > 1p2r0g , commutativity equation (17) doesnot hold.



46 OlverRemark. Using a version of the Hopf{Rinow Theorem, Gardner, [10; p. 72],shows that a rank zero coframe � = f�1; : : : ; �mg on a simply connected manifoldM which is metrically complete with respect to the Riemannian metric Pi(�i)2induced by the coframe is globally equivalent to a Maurer{Cartan coframe on aglobal Lie group. Thus, metric completeness is, in some subtle way, related toassociativity.Remark. The covering map �L:N ! L identi�es (in a neighborhood of eachpoint) the local group structure on N with some restriction of the local groupstructure on L . An open question is whether this too can be globalized: Can weconstruct a covering local group �:N ! L such that every well-de�ned product�(x; y) , and inverse �(x) has its counterpart in N . In other words, if eU and eVdenote the local group domains for L , can we ensure that (� � �) eU ! U and�(eV)! V are also covering maps? This appears to be more di�cult, in light ofthe global incompatibility of locally homeomorphic group structures on a givenlocal Lie group. 5. GlobalizationFinally, we prove a version of Mal'cev's Theorem, [19], that the condition ofglobal associativity is both necessary and su�cient for a local Lie group to becontained in a global Lie group. Here we adapt Mal'cev's method of proof,and generalize his result to connected (and hence inversional) local Lie groups.Mal'cev argument extremely brief, and is not entirely convincing at �rst sight,so we need to �ll in some of the missing details. Moreover, Mal'cev assumes thatthe group is globally inversional, so we need to include additional arguments tocover mere inversionality. The fundamental result relies on the basic De�nition6 of a globalizable local Lie group.Theorem 23. A connected local Lie group L is globalizable if and only if itis globally associative.Proof. The necessity of global associativity is clear. To prove its su�ciency,we must construct a global Lie group G containing the given connected local Liegroup L . Let W =W(L) = 1[n=1L�ndenote the set of words based on the set L , i.e., ordered n-tuples (x1; : : : ; xn) 2L�n for any n � 1. We de�ne an equivalence relation on W as follows: Ifxk; xk+1 are adjacent elements in an n-tuple X = (x1; : : : ; xn) 2 M such that(xk ; xk+1) 2 U � L � L , then X will be equivalent to the (n � 1)-tupleY = (x1; : : : ; xk�1; y; xk+2; : : : ; xn) 2 L�(n�1) obtained by replacing them bythe product y = �(xk; xk+1) 2 L . Vice versa, if an element xk = �(y1; y2) inX is written as a product of local group elements, then X will be equivalentto the (n+ 1)-tuple Z = (x1; : : : ; xk�1; y1; y2; xk+1; : : : ; xn) 2 L�(n+1) obtainedby replacing xk by y1 , y2 . The �rst type of equivalence relation will be called



Olver 47a contraction and the second an expansion. Thus two words X;Y 2 W areequivalent if and only if there is a �nite chain of basic equivalences | expansionsand contractions | starting with X and ending with Y . Finally, we de�neG = W= � to be the set of equivalence classes under the full equivalencerelation. The claim is that G can be endowed with the structure of a global,connected Lie group such that the map �:L ! G that identi�es each x 2 Lwith the corresponding 1-tuple �(x) = x 2 L�1 �W is an injective local grouphomomorphism.An associative product on W is given by juxtaposition of words. Thisproduct clearly respects the equivalence relation, and hence provides a globallyde�ned, globally associative product on G . The inverse of an m-tuple Y =(y1; : : : ; ym) 2 V�m � W consisting of invertible elements yi 2 V � L is givenby inverting the individual group elements and reversing the order, so Y �1 =(y�1m ; : : : ; y�11 ) . Clearly Y �Y �1 and Y �1 �Y are both equivalent to the identityelement in G . More generally, thanks to the regularity of L and Proposition14, given any (x1; : : : ; xn) 2 W , we can write each xi = yi1 � yi2 � : : : � yiki as aproduct of invertible elements yi� 2 V , whereby X is equivalent to the elementX = (x1; : : : ; xn) � Y = (y11; : : : ; y1k1 ; y21; : : : ; y2k2 ; : : : ; yn1; : : : ynkn):The inverse of X in G can then be identi�ed with the inverse of Y .The global associativity of L ensures that this construction is well-de�ned on G , making G into a group. At this point in his proof of [19;Theorem 1], Mal'cev merely says \: : : on peut d�emontrer : : : " that the globalassociativity assumption implies that the map �:L ! G is an injective localgroup homomorphism. A detailed argument can be constructed as follows: Thefact that � is a local group homomorphism is immediate from the de�nition ofthe product on G . The di�culty is in the equivalence procedure, which couldconceivably prevent the injectivity of � . This would mean that we might beable to �nd two di�erent local group elements x 6= z which admit a chain ofequivalences consisting of expansions and contractions. We must show thatthis cannot happen due to our global associativity hypothesis. Now, if thechain of equivalences starting at x and ending at z consists of a sequence of nexpansions, increasing the word length by 1 at each step, followed by a sequenceof n contractions ending at z , which we refer to as a simple equivalence chain,then global associativity is applicable and we may conclude that x = z . Thedesired conclusion is less clear if the chain of equivalences is not simple, mixingexpansions and contractions. However, this will reduce to the simple case if wecan show that all the intermediate contractions can be replaced by equivalentexpansions, so that the given chain of equivalences can be replaced by one ofsimple form.Consider a contraction that replaces an adjacent pair xk; xk+1 of ele-ments in a word X by their product y = �(xk ; xk+1) . If xk 2 V is an invertibleelement su�ciently close to the identity, then xk+1 = �(x�1k ; z) , and hence thesingleton y 2 L can be replaced by the equivalent triple (xk; x�1k ; y) 2 L�3 ,which we can also view as an expansion of the pair (xk ; xk+1) . More generally, us-ing the connectivity of L , we expand xk into an equivalent sequence xk1; : : : ; xknof invertible elements xkj 2 V such that y = �(xk1; �(xk1; : : : ; �(xkn; xk+1) : : :))



48 Olverand xk+1 = �(x�1kn ; �(x�1k;n�1; : : : ; �(x�1k1 ; y) : : :)) . We then replace y by the equiv-alent word (xk1; : : : ; xkn; x�1kn ; : : : ; x�1k1 ; y) , which can also be regarded as a se-quence of successive expansions of the original pair (xk ; xk+1) . Alternatively,we can replace y by the word (y; xk1; : : : ; xkn; x�1kn ; : : : ; x�1k1 ) , since, by globalassociativity,(y; x1; : : : ; xn; x�1n ; : : : ; x�11 ) � y � (x1; : : : ; xn; x�1n ; : : : ; x�11 ; x);for any y 2 L , and x1; : : : ; xn 2 V . Thus, we can always ensure that adjacentgroup elements in the original words can always be arranged to be adjacent inthe new expanded words, and thus we can continue to replace each contractionin the original sequence of equivalences by an equivalent expansion. Proceedingin this manner, we �nally arrive at an ultimate word that is composed of a largenumber of subwords of the form (y1; : : : ; yk ; y�1k ; : : : ; y�11 ) juxtaposed with the�nal singleton z at some position. We can now follow our sequence of expansionsby a sequence of elementary contractions, each one replacing a pair yjy�1j by eand then canceling out the e . Thus we have produced the desired simple chainof equivalences connecting x to z . This completes our demonstration that themap � is injective.Finally we demonstrate that G is a manifold and hence forms a globalLie group. The second countability axiom follows immediately from the fact thatW itself is second countable. We introduce local coordinates on G as follows:Given an n-tuple (x1; : : : ; xn) 2 L�n , we de�ne its k th coordinate neighborhoodto consist of all n-tuples of the form (x1; : : : ; xk�1; y; xk+1; : : : xn) , where y liesin a su�ciently small local coordinate neighborhood of xk 2 L . The smoothnessof the overlap maps relies on global associativity. For instance, the overlap mapbetween the k th and (k + 1) st coordinate neighborhoods determined by a �xedn-tuple arises by assuming that y is su�ciently close to xk , which, by regularity,implies that we can write y = �(ŷ; xk) for some ŷ close to e . Hence, by globalassociativity, we can identify the words(x1; : : : ; xk�1; y; xk+1; : : : xn) � (x1; : : : ; xk�1; ŷ; xk; xk+1; : : : xn)� (x1; : : : ; xk�2; z; xk; xk+1; : : : xn)where z = �(xk�1; ŷ) . This requires that (xk�1; ŷ) 2 U , which again holdsfor ŷ su�ciently close to e . The overlap map takes y to z , and is clearlysmooth. Iterating this construction produces the overlap maps for the di�erent(small) neighborhoods of a given n-tuple. The overlap maps between neighbor-hoods of two nearby elements comes from a similar construction: for example,if (y0; x2; : : : ; xn) � (z0; w2; : : : ; wn) are two equivalent words lying in a �rstcoordinate neighborhood of (x1; : : : ; xn) and (w1; : : : ; wn) respectively, then wecan write the nearby elements in the form(y; x2; : : : ; xn) � (ŷ; y0; x2; : : : ; xn) � (ŷ; z0; w2; : : : ; wn) � (z;w2; : : : ; wn);where y = �(ŷ; y0) and z = �(ŷ; z0) . Smoothness of the overlap map taking yto z is now clear. The smoothness of the product and inverse maps is provedsimilarly | the remaining details are left to the reader.



Olver 49Remark. The local group homeomorphism �:L! G constructed in the proofof Theorem 23 is de�ned on the entire multiplication and inversion domains |we do not need to introduce a restriction of the local group structure on L forthis to work.Theorem 23 has some interesting, non-trivial consequences, whose fullimport remains to be explored. For example, consider the rotation group SO(3),and let S = fR� j 0 � � < 2�g be a one-parameter subgroup consisting of therotations around an axis in R3. Let M � SO(3) be a small open neighborhoodof the circular subgroup S , which is thus topologically equivalent to a solidthree-dimensional torus. Let L ! M denote the simply connected coveringmanifold of M . The local group structure on M induces a local group structureon its covering space L . However, L cannot be globalized, since it would haveto be contained in the simply connected Lie group with Lie algebra so(3), butthis is the special unitary group SU(2), which is only a double cover of SO(3).Therefore, according to Theorem 23, L cannot be globally associative. In otherwords, there exists an sequence of small rotations (R1; : : : ; Rn) 2 U�n , whereU � M is a neighborhood of the identity, and two di�erent n-fold productswhich are well-de�ned in M , but whose associated polygonal paths (as in theexample in Section 3) de�ne di�erent homotopy classes in M , and hence are nolonger equal when lifted up to the covering local group L . It would be interestingto produce, and understand, explicit examples exhibiting such phenomena.Acknowledgments. It is a pleasure to thank Conrad Plaut for discussionson the globalizability problem, for alerting me to the Mal'cev paper, and forsharing his notes, [27]. I would like to thank Niky Kamran for inspiration as wellas useful remarks and suggestions. I want to thank James Devlin for pointing outthe missing hypothesis in [23; Theorem 1.34]; the counterexample appearing inExample 22 was inspired by an example he discovered. I am also indebted to KarlHofmann and two anonymous referees for critical comments on an earlier versionof this paper that led to many improvements and additional references. Thisresearch was supported in part by NSF Grants DMS 92{04192 and 95{00931.References[1] Abel, N.H. Untersuchung der Funktionen zweier unabh�angig ver�ander-licher Gr�o�en x und y , wie f(x; y) , welche die Eigenschaft haben, da�f(z; f(x; y)) eine symmetrische Funktion von z , x , und y ist, J. ReineAngew. Math. 1 (1826) 11{15.[2] Alekseevsky, D.V., and P. W. Michor, Di�erential geometry of g-manif-olds, Di�. Geom. Appl. 5 (1995), 371{403.[3] Bourbaki, N., \Groupes et Alg�ebres de Lie," Chapitres 2{3, Di�usionC.C.L.S., Paris, 1972.[4] |, \Lie groups and Lie algebras," Chapters 1{3, Springer-Verlag, NewYork etc., 1989.
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