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Lie bialgebras real Cohomology
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Abstract. Let g be a finite dimensional real Lie bialgebra. We introduce

an R -valued cohomology of g for which the space of all inequivalent Lie
bialgebra central extensions of g by R is isomorphic to that second coho-

mology group of g . Furthermore, we study the natural projection of this
group on the R -valued Lie algebra second cohomology group of g .

Introduction

Lie bialgebras ([1], [2], [4]) are modern objects which generalize Lie algebras. In
([3]), we have introduced the notion of central extensions of those new objects
that we have classified explicitly up to equivalence. The aim of this paper is
to give an intrinsic treatment of the result we have developped in the previous
work. More precisely, it is well known that the space of all inequivalent central
extensions of a Lie algebra by R is isomorphic to the real second cohomology
group of the given Lie algebra. We have asked ourselves: is it possible to
do the same for Lie bialgebras? The answer is yes, as we shall prove, and is
given as follows. Let g be a finite dimensional real Lie bialgebra and denote by
Extbig(g,R) the space of all inequivalent central extensions of g by R . For any
finite dimensional real Lie algebra a let ∧a∗ denote the standard differential
complex, R → a∗ → ∧2a∗ → ∧3a∗ → · · · → 0, defining the Lie algebra
cohomology of a with values in the trivial a -module R . Let D = g ./ g∗

be the double of the Lie bialgebra g (D = g⊕ g∗ as vector spaces) and consider
the natural projection ∧D→ ∧g . This projection intertwines the differentials of
those complexes so the kernel ker(∧D → ∧g) of this projection is a differential
subcomplex of ∧D . We define the k -th cohomology group Hk

big(g,R) of the
Lie bialgebra g with values in R as the k -th cohomology group of the complex
ker(∧D → ∧g). We prove that Extbig(g,R) is isomorphic to H2

big(g,R). If

H2
alg(g,R) denotes the real second cohomology group of the Lie algebra g then

we have a natural projection H2
big(g,R) → H2

alg(g,R) which, in general, is
neither injective nor surjective. All vector spaces considered here are real finite
dimensional.
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Preliminaries

A Lie bialgebra is a Lie algebra (g, [ , ]g) for which the dual vector space g∗ is a
Lie algebra (g∗, [ , ]g∗), and those Lie brackets satisfy the Drinfeld compatibility:

〈[ξ, η]g∗, [x, y]g〉 =− 〈[coadx ξ, η]g∗, y〉
− 〈[ξ, coadx η]g∗ , y〉+ 〈[coady ξ, η]g∗, x〉+ 〈[ξ, coady η]g∗ , x〉;

where coad denotes the coadjoint action of g on g∗ . For other equivalent
formulations of this compatibility we refer the reader to ([1]).

Let g1 and g2 be Lie bialgebras. A linear map u : g1 → g2 is a Lie
bialgebra morphism if u : (g1, [ , ]g1

) → (g2, [ , ]g2
) is a Lie algebra morphism,

and its transpose u∗ : (g∗2, [ , ]g∗2 )→ (g∗1, [ , ]g∗1 ) is also a Lie algebra morphism.
A Lie bialgebra isomorphism is a bijective morphism of Lie bialgebras.

The double D = g ./ g∗ of a Lie bialgebra g is the vector space
D = g⊕ g∗ endowed with the Lie bracket: [(x, ξ), (y, η)]D = ([x, y]g + coadξ y −
coadη x, [ξ, η]g∗+coadx η−coady ξ). It is to be understood that coadη x denotes
the coadjoint action of η ∈ g∗ on x ∈ g ∼= (g∗)∗ (because g is finite dimensional)
and that coadx η denotes the coadjoint action of x ∈ g on η ∈ g∗ .

Throughout the rest of this paper g shall denote a fixed but arbitrary
finite dimensional real Lie bialgebra.

Definition 1.1. A Lie bialgebra ĝ is called a central extension of g by R
if there exists an exact sequence 0 → R

i
−−→ĝ

π
−−→g → 0 in which i and π are

morphisms of Lie bialgebras such that i(R) is contained in the center of the Lie
algebra ĝ . Two central extensions ĝ1 and ĝ2 of g by R will be called equivalent
if there exists an isomorphism of Lie bialgebras ĝ1 and ĝ2 for which the following
diagram commutes:

ĝ1

i1↗ π1↘
0 → R ↓ ρ g → 0 .

↘i2 ↗π2

ĝ2

We denote by Extbig(g,R) the space of all inequivalent Lie bialgebra
central extensions of g by R . In ([3]) we have described explicitely this space
as follows. Let Z2

alg(g,R) denote the space of R -valued 2-cocycles of the Lie
algebra g and let Der(g∗) denote the space of all derivations of the Lie algebra
g∗ . We will say that γ ∈ Z2

alg(g,R) and f ∈ Der(g∗) are Drinfeld compatible if
the transpose of f , denoted by f∗ : g → g (N.B (g∗)∗ ∼= g because g is finite
dimensional), satisfies the following condition:

∀x, y ∈ g : f∗([x, y])− [f∗(x), y]− [x, f∗(y)] = coad
γ̃(y)

(x)− coad
γ̃(x)

(y) ;



Benayed 289

where γ̃ : g→ g∗ is defined by 〈γ̃(x), y〉 = γ(x, y), coad denoting the coadjoint
action of the Lie algebra g∗ on its dual Lie algebra g . This relation is exactly
the Drinfeld compatibilty of Lie brackets defined by γ and f on a Lie bialgebra
central extension of g (see [3]); and that fact justifies our terminology.

Theorem 1.2 ([3]). There is a 1-1 correspondence between Extbig(g,R) and
the quotient of {(γ, f) ∈ Z2

alg(g,R) × Der(g∗) | γ, f Drinfeld-compatible} by
{(δϕ, adϕ) | ϕ ∈ g∗} where δ denotes the coboundary operator in the R-valued
Lie algebra cohomology of g and where ad denotes the adjoint action of the Lie
algebra g∗ on itself.

Remark . The Drinfeld compatibility of Lie brackets in the Lie bialgebra g
is equivalent to the condition that for each ϕ ∈ g∗ , δϕ and adϕ are Drinfeld
compatible.

It is well known that the space of all inequivalent central extensions of a
Lie algebra by R is isomorphic to the real second cohomology group of the given
Lie algebra ([8]). In the next section we shall prove that Extbig(g,R) has the
same type of description in terms of a real second cohomology group.

2. Real Cohomology of g

Let (∧g,∆) be the standard differential complex,

R−−→g
∆1−−→∧2g

∆2−−→∧3g
∆3−−→ . . . −−→0,

which defines the cohomology of the Lie algebra g∗ with values in the trivial
module R . For each k ∈ N , ∆k = ∆ shall denote the coboundary operator for
this cohomology. Let D = g ./ g∗ be the double of the Lie bialgebra g and let
(∧D, δ̃) denote the differential complex defining the Lie algebra cohomology of

D∗ (∼= D). One can easily verify that the natural projection (∧D, δ̃)
π
−−→(∧g,∆)

intertwines the differentials of those complexes, i.e., that the following diagram
commutes:

R −−−−−−→ D
δ̃1−−−−−−→ ∧2D

δ̃2−−−−−−→ ∧3D
δ̃3−−−−−−→ . . .yπ0

yπ1

yπ2

yπ3

R −−−−−−→ g
∆1−−−−−−→ ∧2g

∆2−−−−−−→ ∧3g
∆3−−−−−−→ . . .

Hence, for each k ∈ N the δ̃k (= δ̃ )-range of the kernel Nk = kerπk is a subspace
of the kernel Nk+1 = kerπk+1 . So the complex N(g,R):

0−−−−−−→N1 = {0} ⊕ g∗
δ̃1−−−−−−→N2

δ̃2−−−−−−→N3

δ̃3−−−−−−→ . . .

defined as the kernel of the projection π : (∧D, δ̃) → (∧g,∆) is a differential

subcomplex of (∧D, δ̃). Let Zk
big(g,R) = ker(δ̃k|Nk) ⊂ Nk denote the subspace

of k -cocycles and let Bk
big(g,R) = im(δ̃k−1|Nk−1) ⊂ Nk denote the subspace of

k -coboundaries of this differential complex.
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Definition 2.1. The k -th cohomology group Hk
big(g,R) of the Lie bialgebra

g with values in R is the k -th cohomology group of the complex N(g,R); i.e.,
Hk

big(g,R) = Zk
big(g,R)/Bk

big(g,R).

Lemma 2.2.

1) Z2
big(g,R) ∼= {(γ, f) ∈ Z2

alg(g,R)× Der(g∗) | γ, f Drinfeld-compatible} .

2) B2
big(g,R) ∼= {(δϕ, adϕ) | ϕ ∈ g∗} .

Proof. Let ω be in ∧2D ; N.B: D ∼= D∗ . So ω defines an element γ of
∧2g∗ by γ(x, y) = ω((x, 0), (y, 0)), x , y ∈ g , and an endomorphism f of g∗ by
〈f(η), x〉 = ω((x, 0), (0, η)), x ∈ g , η ∈ g∗ . If ω ∈ N2 := kerπ2 , we then have
∀(x, ξ), (y, η) ∈ D

ω((x, ξ), (y, η)) = γ(x, y) + 〈f(η), x〉 − 〈f(ξ), y〉.

The map N2 → ∧2g∗ ⊕ End(g∗) which associates (γ, f) to ω is a vector space
isomorphism. It is not difficult to prove that the condition that ω ∈ Z2

big(g,R) ⊂
N2 is equivalent to the following condition that: γ ∈ Z2

alg(g,R), that f ∈
Der(g∗), and that γ and f are Drinfeld-compatible. This establishes assertion
1).

An element θ of N1 is of the form θ = (0, ϕ) with ϕ ∈ g∗ . An easy
computation shows that ∀(x, ξ), (y, η) ∈ D

(δ̃θ)((x, ξ), (y, η)) = (δϕ)(x, y) + 〈[ϕ, η], x〉 − 〈[ϕ, ξ], y〉.

Hence B2
big(g,R) = im(δ̃|N1) ⊂ N2 is isomorphic to {(δϕ, adϕ) | ϕ ∈ g∗} .

As a consequence of this lemma and Theorem 1.2 we obtain the following
result.

Theorem 2.3. Extbig(g,R) is isomorphic to H2
big(g,R) .

Every Lie bialgebra ĝ central extension of g by R is in particular a
Lie algebra central extension of the Lie algebra g by R , and equivalent Lie
bialgebra central extensions of g by R are also equivalent Lie algebra central
extensions of the Lie algebra g by R . Let Extalg(g,R) be the space of all
inequivalent Lie algebra central extensions of the Lie algebra g by R . Then we
have a natural projection πbig : Extbig(g,R) → Extalg(g,R). It follows from
the previous theorem and the well known fact that Extalg(g,R) is isomorphic to
the R -valued Lie algebra second cohomology group H2

alg(g,R) of g (see [8]) this

projection is given in cohomological terms by: πbig : H2
big(g,R) → H2

alg(g,R);
πbig([[(γ, f)]]) = [[γ]] ; where double brackets denote the equivalence classes in
H2

big(g,R) and H2
alg(g,R) respectively.

Proposition 2.4. The kernel of πbig is the quotient of {f ∈ Der(g∗) | f∗ ∈
Der(g)} by {adϕ;ϕ ∈ g∗ | ad∗ϕ ∈ Der(g)} .

Proof. Let [[(γ, f)]] ∈ H2
big(g,R) be in the kernel of πbig , i.e., suppose that:

[[γ]] = [[0]] . Then there exists ψ ∈ g∗ such that γ = δψ , so [[(γ, f)]] =
[[(0, f−adψ)]] . It is obvious that f̃ = f−adψ is a derivation of g∗ . The Drinfeld
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compatibility of f̃ with the null cocycle is just the condition that f̃∗ ∈ Der(g).
We also have [[(γ, f)]] = [[(0, f̃−adϕ)]] for all ϕ ∈ g∗ . The Drinfeld compatibility

of the null cocycle with f̃ − adϕ is equivalent to ad∗ϕ ∈ Der(g). This establishes
the proposition.

Remark . If δϕ = 0; ϕ ∈ g∗ , then the Drinfeld compatibility of δϕ with adϕ
implies that ad∗ϕ is a derivation of g .

We now give a few examples of cases where πbig is either not injective
or is not surjective.

Example 2.5. Let us consider g = sl(2,R) with its standard Lie bialgebra
structure given in terms of the canonical basis {H,X+, X−} of g and its dual
basis {H∗, X∗−, X∗+} . An easy computation shows that {adϕ;ϕ ∈ g∗ | ad∗ϕ ∈
Der(g)} = {0} and that the kernel of πbig is the subspace of endomorphisms
of g∗ given w.r.t. the ordered basis (H∗, X∗+, X

∗
−) by the matrices of the form:


0 0 0
0 a 0
0 0 −a


 , with a ∈ R . We conclude that πbig is not injective in the case

of sl(2,R).

Example 2.6. Endow g = R2 with a Lie bialgebra structure as follows: Con-
sider the abelian Lie algebra structure on g and define a bracket on g∗ = R2 by
setting [e1, e2] = e2 where (e1, e2) denotes the canonical ordered basis of R2 .
Consider the canonical symplectic 2-form γ of R2 ; it is a 2-cocycle because g is
an abelian Lie algebra. The Drinfeld-compatibility of γ and a derivation f of
g∗ reduces to the requirement that ∀x, y ∈ R2 : coad

γ̃(y)
(x) − coad

γ̃(x)
(y) = 0,

which, however, is not satified; so [[γ]] has no preimage under πbig and thus πbig

is not surjective in this case.

3. Comparison with other works.

For reasons distinct from ours, Drinfeld ([5]) has introduced a cohomological
obstruction for Lie bialgebras. It is the cohomology of the complex kernel of
the natural projection ∧D → ∧g ⊕ ∧g∗ . Using arguments similar to those in
the proof of Theorem 2.3 one can easily see that the second group of Drinfeld’s
cohomology is given by {f ∈ Der(g∗)|f∗ ∈ Der(g)} . This space is clearly not
isomorphic to Extbig(g,R), so that cohomology does not answer our question.

After this work, C. Roger and P. Lecomte ([6]) introduced Lie bialgebra
cohomology with values in a module. The module category is the double-
module category and the complex defining this cohomology is the kernel of the
natural projection ∧D→ g∗ . Its relation to our cohomology is that it gives the
cohomology of the bialgebra g∗ rather than of g itself. By analogy to Theorem
2.3, the second group of this cohomology is isomorphic to Extbig(g∗,R). The
notion of central extensions of Lie bialgebras is not self-dual. Hence, their last
cohomology does not answer our question. Roger and Lecomte modified their
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cohomology in ([7]) by change of the Lie bialgebra module category. In the case
of trivial D -modules (our case), they get Drinfeld’s cohomology .
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