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Abstract. Let G/K be a Riemannian symmetric space of the noncom-
pact type. For τ ∈ K̂ , let Eτ be the homogeneous vector bundle over G/K
associated with τ , and let C∞0 (G, τ, τ) be the related convolution algebra
of radial systems of sections of Eτ . Assuming C∞0 (G, τ, τ) commutative, we
use the theory of spherical functions of type τ on G to define a spheri-
cal transform for F ∈ C∞0 (G, τ, τ) . The corresponding inversion formula is
obtained by using the Plancherel formula on G . The example of real hyper-
bolic spaces HN (R) is discussed. The Plancherel measure is written down
explicitly in this case, and the vector bundles of Dirac spinors, symmetric
traceless tensors, and p-forms on HN (R) are considered in detail.

1. Introduction

Let G be a connected noncompact semisimple Lie group with finite center, K a
maximal compact subgroup, and G/K the corresponding Riemannian symmetric
space of the noncompact type. Scalar harmonic analysis on G/K is by now well
understood (see, e.g., Helgason’s books [12, 13]). In this paper we investigate the
case of homogeneous vector bundles over G/K .

For a given irreducible unitary representation τ of K , we can let the
induced bundle L2(G, τ) sit in L2(G) in a natural way. Indeed the left regular
representation of G in L2(G) is unitarily equivalent to the direct sum over K̂ of
the induced representations πτ = indGK(τ), each πτ occurring dτ times (dτ the
dimension of τ ). The direct sum

∑dτ
1 L2(G, τ) may be identified with the subspace

L2(G) ∗ dτ χ̄τ of L2(G) (χτ is the character of τ ), see [19] Lemma 5.1.

By the generalized Frobenius Reciprocity principle, if we have the Plancherel
formula for G we also have the direct integral decomposition of any induced rep-
resentation πτ (K being compact) [18]. The Plancherel formula for f ∈ L2(G)
will produce a Plancherel formula for f ∈ L2(G, τ).

Compared to the scalar case (when τ is the trivial representation of K ), sev-
eral new features arise in the case of bundles. For example the discrete series of G
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(when they exist), and the generalized principal series representations (induced
from nonminimal cuspidal parabolic subgroups of G) will enter the Plancherel
formula for a generic vector bundle over G/K .

In this paper we use the theory of spherical functions of type τ on G,
as developed by Godement, Harish Chandra and Warner [11, 28], to discuss the
analysis of radial systems of sections of a homogeneous vector bundle Eτ over
G/K .

Radial systems of sections of Eτ and the related convolution algebra
C∞0 (G, τ, τ) are defined in Section 2. This algebra may be identified with a certain
subalgebra of C∞0 (G), denoted I0,τ (G). More precisely, I0,τ (G) consists of those
f ∈ C∞0 (G) which are K -central and are invariant under convolution with dτ χ̄τ .
The algebras C∞0 (G, τ, τ) and I0,τ (G) play the same role, for vector bundles, as the

convolution algebra C#
0 (G) in the scalar case. (This is the algebra of compactly

supported smooth functions on G which are biinvariant under K .)

In Section 3 we first define spherical functions of type τ on G, and discuss
their functional and differential properties in the commutative case, namely when
the convolution algebra C∞0 (G, τ, τ) is commutative (for the given τ ). The algebra
D(G, τ) of invariant differential operators on Eτ is then also commutative [8]. The
analysis of radial sections in this case is as close as possible to scalar harmonic
analysis on Riemannian symmetric spaces G/K , or on the homogeneous spaces
G/K with (G,K) a Gelfand pair.

Then we define (in the commutative case) a spherical transform for radial
systems of sections of Eτ , and derive an inversion formula from the (abstract)
Plancherel formula on G. In this part of Section 3, we do not use the structure
theory of semisimple Lie groups, and keep the notations as general as possible. In
fact the results obtained here apply (in the commutative case) to any pair (G,K)
of a locally compact unimodular Lie group G and a compact subgroup K , provided
that (i) K is sufficiently large in G so that every irreducible unitary representation
U of G is K -finite; (ii) there is a well defined theory of global characters on G,
i.e., for every U ∈ Ĝ the operator U(f) =

∫
G f(x)U(x)dx is of trace class for all

f ∈ C∞0 (G), and the mapping ΘU : f → TrU(f) is a distribution on G. For
example if G admits a uniformly large compact subgroup K (see the definition in
[28] vol.I p. 305), then the conditions (i) and (ii) are satisfied. This includes all
reductive pairs and all motion groups [28].

Another example is given by a pair (K,M) of a compact Lie group K and
a closed subgroup M ⊂ K . It is clear that for each σ ∈ M̂ we can formulate a
theory of spherical functions of type σ on K , and define a spherical transform for
radial sections of the bundle Eσ over K/M , even if (K,M) is not a symmetric
pair. This theory will be analogous (in the commutative case) to that developed
in Section 3.

At the end of Section 3 we consider the semisimple case in more detail. The
spherical transform and the inversion formula on C∞0 (G, τ, τ) are written down
explicitly in this case, using Harish Chandra’s Plancherel formula and Subquotient
Theorem.

An important example of commutative algebras I0,τ (G) is provided by the
pairs (G,K) = (SO0(N, 1), SO(N)) or (G,K) = (SU(N, 1), S(U(N) × U(1))),
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i.e., G/K is either a real or a complex hyperbolic space. In section 4 we discuss
the example of real hyperbolic spaces HN(R). We make explicit the Plancherel
measure and the inversion formula for the double cover Spin(N, 1) of SO0(N, 1).
This allows us to discuss also the spinor bundles over HN(R). The homogeneous
vector bundles of Dirac spinors, symmetric traceless tensors, and p-forms over
HN(R) are considered in detail. The spherical transform reduces to the Jacobi
transform in this case. The approach using Jacobi functions analysis agrees with
the representation theoretic approach presented here.
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2. Radial systems of sections

Let G be a connected noncompact semisimple Lie group with finite center, K ⊂ G
a maximal compact subgroup, and G/K the corresponding Riemannian symmetric
space of the noncompact type.

Let τ be an irreducible unitary representation of K on Vτ , and let Eτ be
the homogeneous vector bundle over G/K defined by τ . It is well known (see, e.g.,
[26] sect. 5.3) that a cross section of Eτ may be identified with a vector-valued
function f : G→ Vτ which is right-K -covariant of type τ , i.e.,

f(gk) = τ(k−1)f(g), ∀g ∈ G, ∀k ∈ K. (1)

We denote by C∞0 (G, τ) the space of compactly supported smooth functions
that are right-K -covariant of type τ , and by L2(G, τ) the Hilbert space of square
integrable such functions, with scalar product

〈f1, f2〉 =
∫

G
〈f1(x), f2(x)〉dx. (2)

By a radial system of sections we mean a map F : G→ End(Vτ ) such that

F (k1gk2) = τ(k−1
2 )F (g)τ(k−1

1 ), ∀g ∈ G, ∀k1, k2 ∈ K. (3)

For any v ∈ Vτ , the vector valued function f(g) = F (g)v satisfies (1) and
defines a radial section of Eτ . [We follow here Badertscher and Reimann [1], who
studied vector fields over the real hyperbolic spaces.]

The radial systems of sections generalize the notion of K -biinvariant func-
tions on G. They are called radial because, due to the Cartan decomposition
G = KAK , they are determined by their restriction to the vector subgroup A.
We denote by C∞0 (G, τ, τ) and by L2(G, τ, τ) the obviously defined spaces of radial
systems of sections, with scalar product

〈F1, F2〉 =
∫

G
Tr [F1(x)F2(x)∗]dx,
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where ∗ denotes adjoint. For F1, F2 ∈ C∞0 (G, τ, τ), define the convolution by

(F1 ∗ F2)(x) =
∫

G
F1(y−1x)F2(y)dy.

This definition is arranged so that F1 ∗ F2 ∈ C∞0 (G, τ, τ):

(F1 ∗ F2)(k1xk2) =
∫

G
F1(y−1k1xk2)F2(y)dy

= τ(k−1
2 )

∫

G
F1(y−1k1x)F2(y)dy

= τ(k−1
2 )

∫

G
F1(z−1x)F2(k1z)dz

= τ(k−1
2 )

∫

G
F1(z−1x)F2(z)dz τ(k−1

1 )

= τ(k−1
2 )(F1 ∗ F2)(x)τ(k−1

1 ).

In general on C∞0 (G) (the space of compactly supported smooth functions
on G), the convolution is defined by the usual rule

(f1 ∗ f2)(x) =
∫

G
f1(xy−1)f2(y)dy =

∫

G
f1(z)f2(z−1x)dz.

The space C∞0 (G, τ, τ) may be identified with a certain subalgebra of
C∞0 (G), which we now define. Let I0,τ (G) denote the set of those f ∈ C∞0 (G)
which satisfy

f(kxk−1) = f(x), ∀x ∈ G, ∀k ∈ K
(i.e., f is K -central), and

dτ χ̄τ ∗ f = f(= f ∗ dτ χ̄τ ), (4)

where dτ and χτ are the dimension and the character of τ (a bar denotes complex
conjugation, and the convolutions are over K ).

Then I0,τ (G) is a subalgebra of C∞0 (G) and it is (anti)-isomorphic to
C∞0 (G, τ, τ). Indeed given F ∈ C∞0 (G, τ, τ) define

fF (x) ≡ dτTrF (x). (5)

It follows from (3) that fF is K -central and moreover it satisfies (4). Indeed

(fF ∗ dτ χ̄τ )(x) = dτ

∫

K
fF (xk)χτ (k)dk

= d2
τ

∫

K
TrF (xk)χτ (k)dk

= d2
τTr

[∫

K
τ(k−1)χτ (k)dk F (x)

]

= dτ TrF (x) = fF (x),

where we have used the Schur orthogonality relations for K with the normalization∫
K dk = 1. Thus fF ∈ I0,τ (G). Viceversa, given f ∈ I0,τ (G) put

Ff (x) ≡
∫

K
τ(k)f(kx)dk. (6)
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Then

Ff (k1xk2) =
∫

K
τ(k)f(kk1xk2)dk =

∫

K
τ(k)f(kxk2)dk τ(k−1

1 )

=
∫

K
τ(k)f(k2kx)dk τ(k−1

1 ) = τ(k−1
2 )

∫

K
τ(k)f(kx)dk τ(k−1

1 )

= τ(k−1
2 )Ff(x)τ(k−1

1 ),

i.e., Ff is in C∞0 (G, τ, τ). We have the following result (see [28] vol.II, p.3,
Example 1):

Proposition 2.1. The map f → Ff is a linear bijection of I0,τ (G) onto
C∞0 (G, τ, τ). Its inverse is the map F → fF . These maps satisfy

Ff1∗f2 = Ff2 ∗ Ff1 , (7)

fF1∗F2 = fF2 ∗ fF1 . (8)

As a corollary of this proposition we see that the convolution algebra
C∞0 (G, τ, τ) is commutative if and only if the convolution algebra I0,τ (G) is com-
mutative.

Now let Ĝ (K̂ ) denote the set of equivalence classes of irreducible unitary
representations of G (K ). In what follows, we shall identify a class [U ] ∈ Ĝ
([τ ] ∈ K̂ ) with a representative U (τ ) in that class, and we shall write (somewhat
incorrectly) U ∈ Ĝ (τ ∈ K̂ ). Let m(τ, U) denote the multiplicity of τ in U |K .
The following result, which characterizes the commutative case, is well known (for
the proof see [11] p.522 the Corollary to Th.8, or [28] vol.II p.9 Prop. 6.1.1.6):

Proposition 2.2. The following conditions are equivalent:

1) I0,τ (G) is commutative;

2) m(τ, U) ≤ 1 ∀U ∈ Ĝ.

For a symmetric pair (G,K), it is known that m(τ, U) ≤ dτ , ∀U, ∀τ [11].
Therefore the two conditions above are satisfied when τ is the trivial representation
of K (i.e., in the scalar case, see [12]). It is natural to begin the investigation of
vector bundles from the commutative case. Of course for a given G, I0,τ (G) may

or may not be commutative depending on τ ∈ K̂ . An example of commutative
algebras I0,τ (G) may be given as follows. We say that the compact subgroup K is
multiplicity free in G if each irreducible unitary representation of K is contained
in each irreducible unitary representation of G at most once, i.e., m(τ, U) ≤ 1,
∀τ ∈ K̂ , ∀U ∈ Ĝ. In this case, the conditions of Prop. 2.2 are satisfied for each
τ ∈ K̂ . The following result is classical.

Theorem 2.3. Let the symmetric pair (G,K) be either (SO0(n, 1), SO(n)) or
(SU(n, 1), S(U(n)× U(1))). Then K is multiplicity free in G.

A simple proof of this result may be found in [16], where it is proved that
(G × K, diag(K)) is a Gelfand pair. The result then follows by noting that the
multiplicity of τ in U is the same as the multiplicity of the trivial representation
of diag(K) in U ⊗ τ̌ ( τ̌ the contragredient representation of τ ).
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3. The spherical transform in the commutative case

We keep the notations of Section 2. Thus we fix a Riemannian symmetric pair
(G,K), and an irreducible unitary representation (τ, Vτ ) of K . In this section we
assume that the conditions of Proposition 2.2 are satisfied for the given τ , so that
the convolution algebra C∞0 (G, τ, τ) is commutative.

We denote by Ĝ(τ) the set of those U in Ĝ which contain τ upon restriction
to K . For U ∈ Ĝ(τ) let HU be the Hilbert space where U acts, and let Pτ be
the projector of HU onto Hτ , the subspace of vectors which transform under K
according to τ (see, e.g., [11]):

Pτ = dτ

∫

K
U(k)χτ (k

−1)dk. (9)

Since m(τ, U) = 1, we can identify Hτ with Vτ . Define the (operator valued)
spherical function ΦU

τ on G by

ΦU
τ (g) ≡ PτU(g)Pτ , g ∈ G. (10)

For each g ∈ G, ΦU
τ (g) may be regarded as an element of End(Vτ ) and satisfies

ΦU
τ (g)∗ = ΦU

τ (g−1), and

ΦU
τ (k1gk2) = τ(k1)ΦU

τ (g)τ(k2), ∀g ∈ G, ∀k1, k2 ∈ K. (11)

We choose an orthonormal basis {vA}A=1···∞ of HU adapted to the decom-
position of U |K into different K -types, U |K =

∑
δ∈K̂ δ . We can always assume

that for a = 1, . . . , dτ the vectors {va} span Hτ ' Vτ .

The functions ΦU
τ generalize to vector bundles the notion of positive definite

spherical functions. It is easy to see that the traces

φUτ (x) = Tr [PτU(x)Pτ ] = Tr ΦU
τ (x)

(known as spherical trace functions of type τ , see [28] vol.II), are positive definite
functions on G in the usual sense. The functions ΦU

τ and φUτ are related as follows.

Lemma 3.1. Let the Haar measure on K be normalized by
∫
K dk = 1. Then

∀x ∈ G
∫

K
ΦU
τ (kxk−1)dk =

1

dτ
φUτ (x)1, (12)

dτ

∫

K
φUτ (xk−1)τ(k)dk = ΦU

τ (x), (13)

where 1 in (12) denotes the identity operator in Vτ .

Proof. Let ΦU
τ,K(x) denote the left-hand side of (12). Then ΦU

τ,K(x) is in
EndK(Vτ ), ∀x ∈ G (this follows from (11)). Since τ is irreducible, ΦU

τ,K(x) =
ϕ(x)1, where ϕ is a function on G. Taking the trace gives dτϕ(x) = Tr ΦU

τ,K(x) =
Tr ΦU

τ (x) = φUτ (x). This proves (12). Eq. (13), rewritten as

dτ

∫

K
Tr

[
ΦU
τ (x)τ(k−1)

]
τ(k)dk = ΦU

τ (x),

follows from the Schur orthogonality relations.
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Taking the trace of Eq. (13) gives the well known relation φUτ ∗ dτχτ = φUτ ,
see [11].

For f ∈ C∞0 (G) and U ∈ Ĝ(τ), let U(f) denote the operator

U(f) =
∫

G
f(x)U(x)dx.

Then, as is well known, U(f)Pτ = U(f ∗ dτ χ̄τ ), PτU(f) = U(dτ χ̄τ ∗ f), and

PτU(f)Pτ = U(dτ χ̄τ ∗ f ∗ dτ χ̄τ ).

In particular for f ∈ I0,τ (G) we have the following result.

Proposition 3.2. Let f ∈ I0,τ (G) and U ∈ Ĝ(τ). Then

PτU(f)Pτ = U(f),

U(f)U(k) = U(k)U(f), k ∈ K.

Let Uτ (f) denote the restriction of U(f) to Hτ . Then the set of operators Uτ (f),
f ∈ I0,τ (G), is the centralizer of the representation k → τ(k) of K on Hτ .

Proof. See [28] vol.I p.307, and Prop. 4.5.1.7 p.310.

This proposition and (12) imply that for f ∈ I0,τ (G)

Uτ (f) =
∫

G
f(x)ΦU

τ (x)dx =
∫

G

∫

K
f(kxk−1)ΦU

τ (x)dkdx

=
∫

G

∫

K
f(y)ΦU

τ (k−1yk)dkdy =
1

dτ
1
∫

G
f(x)φUτ (x)dx,

and
ΘU(f) ≡ TrU(f) = TrUτ (f) =

∫

G
f(x)φUτ (x)dx. (14)

Since
U(f1 ∗ f2) = U(f1)U(f2),

we see that the map f → f̂(U) ∈ C, where

f̂(U) ≡ 1

dτ

∫

G
f(x)φUτ (x)dx, (15)

is a continuous homomorphism of the convolution algebra I0,τ (G) into C,

̂(f1 ∗ f2)(U) = f̂1(U)f̂2(U), ∀f1, f2 ∈ I0,τ (G). (16)

The map f̂ : Ĝ(τ)→ C, given in (15), is called the spherical Fourier transform of
f ∈ I0,τ (G).

For F ∈ C∞0 (G, τ, τ), consider the operator T =
∫
G ΦU

τ (x)F (x)dx. It
is easy to see that T ∈ EndK(Vτ). Since τ is irreducible, T = c1, where
c = 1

dτ

∫
G Tr [ΦU

τ (x)F (x)]dx.
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Definition 3.3. The spherical Fourier transform of F ∈ C∞0 (G, τ, τ) is the
function F̂ : Ĝ(τ)→ C defined by

F̂ (U) ≡ 1

dτ

∫

G
Tr [ΦU

τ (x)F (x)]dx, U ∈ Ĝ(τ). (17)

When τ is the trivial representation of K , the function F̂ , defined on the
set of equivalence classes of irreducible unitary spherical representations of G, or
equivalently, on the set of positive definite zonal spherical functions on G, reduces
to the usual spherical Fourier transform of F , see [28] vol.II p.337.

Lemma 3.4. In the notations of Proposition 2.1 we have for all U ∈ Ĝ(τ)

F̂ (U) = f̂F (U), f̂(U) = F̂f(U). (18)

Proof. Using (13) we have

F̂ (U) =
1

dτ

∫

G
Tr [ΦU

τ (x)F (x)]dx

=
∫

G

∫

K
φUτ (xk−1)Tr [τ(k)F (x)]dkdx

=
∫

K

∫

G
φUτ (xk−1)Tr [F (xk−1)]dxdk

=
∫

G
φUτ (x)Tr [F (x)]dx

=
1

dτ

∫

G
φUτ (x)fF (x)dx = f̂F (U).

Reading the argument backwards proves the second equality in (18).

Putting together eqs. (8), (16) and (18), we see that the map F → F̂ (U)
is a continuous homomorphism of C∞0 (G, τ, τ) into C,

̂(F1 ∗ F2)(U) = F̂1(U)F̂2(U), ∀F1, F2 ∈ C∞0 (G, τ, τ).

This leads to the following definition of spherical function of type τ and spherical
transform in the commutative case.

Definition 3.5. Assume C∞0 (G, τ, τ) commutative. A function Φ : G →
End(Vτ ) is called a spherical function of type τ on G if it satisfies (11) and if
the map

F → F̂ (Φ) =
1

dτ

∫

G
Tr [Φ(x)F (x)]dx (19)

is a homomorphism of C∞0 (G, τ, τ) into C. The map F̂ , defined on the set of
spherical functions of type τ by (19), is called the spherical Gelfand transform
of F (spherical transform, for short). For U ∈ Ĝ(τ) we write F̂ (ΦU

τ ) = F̂ (U)
(consistently with (17)).
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Let Φ be a spherical function of type τ on G, and let φ(x) = Tr Φ(x). It
is clear that Φ and φ are related as ΦU

τ and φUτ in (12)-(13) (same proof as in
Lemma 3.1). Notice that φ is K -central and satisfies φ ∗ dτχτ = φ. Moreover,
defining the spherical transform of f ∈ I0,τ (G) by

f̂(φ) =
1

dτ

∫

G
f(x)φ(x)dx, (20)

we have

F̂ (Φ) = f̂F (φ), f̂(φ) = F̂f (Φ) (21)

(same proof as in Lemma 3.4). Therefore the map f → f̂(φ) is a homomorphism
of I0,τ (G) into C. We could define a spherical function of type τ to be a scalar
valued function φ on G satisfying the three conditions (i) φ is K -central; (ii)
φ ∗ dτχτ = φ; (iii) the map f → f̂(φ) is a homomorphism of I0,τ (G) into C (see
[28] vol.II p.14). This definition would then be equivalent to Definition 3.5. Indeed
given φ satisfying (i)-(iii) above, the function Φ(x) given by the left hand side of
(13) (with φUτ → φ) satisfies the conditions of Definition 3.5.

The connection between spherical functions of type τ on G and represen-
tations of G is as follows. Let U be a topologically completely irreducible (TCI)
Banach representation of G (see [28] vol.I p.228 for the definition of TCI). Sup-
pose that τ occurs in U |K with multiplicity one, and define ΦU

τ (g) by means of
eq. (10). Then ΦU

τ is a spherical function of type τ on G. Conversely, if Φ is a
spherical function of type τ on G, there exists a TCI Banach representation U of
G such that Φ = ΦU

τ . [See [28] vol.II p.15.] We say that a spherical function Φ of
type τ is of positive type if the scalar valued function φ(x) = Tr Φ(x) is positive
definite on G. Then the spherical functions of type τ of positive type are precisely
the functions ΦU

τ with U ∈ Ĝ(τ) (see [28] vol.II p.15, the remark).

As in the scalar case, spherical functions of type τ on G are characterized
by certain functional equations.

Theorem 3.6. Let Φ be a spherical function of type τ on G, and let φ(x) =
Tr Φ(x). Then ∀x, y ∈ G

dτ

∫

K
φ(xkyk−1)dk = φ(x)φ(y), (22)

dτ

∫

K
Φ(xkyk−1)dk = Φ(x)φ(y), (23)

dτ

∫

K
Φ(xky)χτ (k

−1)dk = Φ(x)Φ(y). (24)

Conversely, let Φ be a nonzero continuous function on G with values in End(Vτ )
which satisfies (11) and either (23) or (24). Then Φ is a spherical function of type
τ on G.
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Proof. Eq. (22) is the functional equation for the spherical trace functions of
height one, see [11]. The proof given here is similar to [10] Proposition I.3 p.319.

For a function f ∈ C∞0 (G) put

fK(x) =
∫

K
f(kxk−1)dk,

and f τ = dτ χ̄τ ∗ f ∗ dτ χ̄τ , i.e., explicitly

f τ (x) = d2
τ

∫

K×K
f(k1xk2)χτ (k1)χτ (k2)dk1dk2.

It is easy to see that (fK)τ = (f τ)K . Put f# = (f τ )K . Then the map f → f# is
a projection of C∞0 (G) onto I0,τ (G).

Let Φ be a spherical function of type τ on G, and let φ(x) = Tr Φ(x).
The map f → f̂(φ) (cf. (20)) is a homomorphism of I0,τ (G) into C. Put
φ(f) ≡ ∫G f(x)φ(x)dx. Let f1, f2 be in C∞0 (G). Then

0 =
1

dτ
φ(f#

1 ∗ f#
2 )− 1

d2
τ

φ(f#
1 )φ(f#

2 )

=
1

dτ

∫

G
(f#

1 ∗ f#
2 )(z)φ(z)dz − 1

d2
τ

∫

G
f#

1 (x)φ(x)dx
∫

G
f#

2 (y)φ(y)dy

=
1

dτ

∫

G×G
f#

1 (zy−1)f#
2 (y)φ(z)dydz − 1

d2
τ

∫

G×G
f#

1 (x)f#
2 (y)φ(x)φ(y)dxdy

=
1

d2
τ

∫

G×G
[dτφ(xy)− φ(x)φ(y)] f#

1 (x)f#
2 (y)dxdy.

Using the definition of f# and the fact that φ(x) is K -central and satisfies
φ ∗ dτχτ = φ, it is easy to show that the latter expression equals

1

d2
τ

∫

G×G

[
dτ

∫

K
φ(xkyk−1)dk − φ(x)φ(y)

]
f1(x)f2(y)dxdy.

This proves (22), since f1, f2 are arbitrary in C∞0 (G). To prove (23) we use (13),
to write

dτ

∫

K
Φ(xkyk−1)dk = d2

τ

∫

K×K
φ(xkyk−1k−1

1 )τ(k1)dk1dk

= d2
τ

∫

K×K
φ(xk−1

1 k2yk
−1
2 )τ(k1)dk1dk2

= dτ

∫

K
φ(xk−1

1 )φ(y)τ(k1)dk1 = Φ(x)φ(y).

Finally to prove (24) we write

dτ

∫

K
Φ(xky)χτ (k

−1)dk = d2
τ

∫

K
Φ(xky)

[∫

K
τ(k1k

−1k−1
1 )dk1

]
dk

= d2
τ

∫

K×K
Φ(xkyk1k

−1)τ(k−1
1 )dk1dk

= d2
τ

∫

K

[∫

K
Φ(xkyk1k

−1)dk
]
τ(k−1

1 )dk1

= dτ

∫

K
Φ(x)φ(yk1)τ(k−1

1 )dk1 = Φ(x)Φ(y),
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as claimed.

Conversely, suppose that Φ : G → End(Vτ ) satisfies (11) and (23). Then
φ(x) ≡ Tr Φ(x) satisfies (22). Clearly Φ and φ are related as ΦU

τ and φUτ in (12)-
(13) (same proof as in Lemma 3.1). For F ∈ C∞0 (G, τ, τ) and f ∈ I0,τ (G), define

F̂ (Φ) and f̂(φ) by (19) and (20). Then (21) holds (same proof as in Lemma 3.4).
Now φ is K -central, and φ ∗ dτχτ = φ. Let f1, f2 ∈ I0,τ (G). Then

̂(f1 ∗ f2)(φ) =
1

dτ

∫

G

∫

G
f1(xy−1)f2(y)φ(x)dydx

=
1

dτ

∫

G

∫

G
f1(x)f2(y)φ(xy)dxdy

=
1

dτ

∫

G

∫

G

∫

K
f1(x)f2(kyk−1)φ(xy)dkdxdy

=
1

dτ

∫

G

∫

G
f1(x)f2(y)

[∫

K
φ(xkyk−1)dk

]
dxdy

=
1

d2
τ

∫

G

∫

G
f1(x)f2(y)φ(x)φ(y)dxdy = f̂1(φ)f̂2(φ).

The relation ̂(F1 ∗ F2)(Φ) = F̂1(Φ)F̂2(Φ) ∀F1, F2 ∈ C∞0 (G, τ, τ), follows immedi-
ately from (21) and (8). Thus Φ is a spherical function of type τ on G.

Finally let Φ : G → End(Vτ ) satisfy (11) and (24). Then Φ satisfies (23).
Indeed

dτ

∫

K
Φ(xkyk−1)dk = d2

τ

∫

K
Φ(xkyk−1)

[∫

K
τ(k1)χτ (k

−1
1 )dk1

]
dk

= d2
τ

∫

K×K
Φ(xkyk−1k1)χτ (k

−1
1 )dk1dk

= d2
τ

∫

K

[∫

K
Φ(xk1k2yk

−1
2 )χτ (k

−1
1 )dk1

]
dk2

= dτ

∫

K
Φ(x)Φ(k2yk

−1
2 )dk2 = Φ(x)φ(y).

This completes the proof of the theorem.

Theorem 3.7. Let Φ be a nonzero spherical function of type τ on G, and let
φ(x) = Tr Φ(x). Then Φ(e) = 1, and ∀x ∈ G

∫

G
Φ(xy)F (y)dy = Φ(x)F̂ (Φ), ∀F ∈ C∞0 (G, τ, τ), (25)

∫

G
φ(xy)f(y)dy = φ(x)f̂(φ), ∀f ∈ I0,τ (G). (26)

Conversely, let Φ be a nonzero continuous function on G with values in End(Vτ )
satisfying (11) and Φ(e) = 1. Suppose that for any F ∈ C∞0 (G, τ, τ) there exists a
complex number F̂ (Φ) such that (25) holds. Then F̂ (Φ) = 1

dτ

∫
G Tr [Φ(x)F (x)]dx,

and Φ is a spherical function of type τ on G.
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Proof. Let Φ be a spherical function of type τ on G, not identically zero.
Letting g = e and k1 = k = k−1

2 in Φ(k1gk2) = τ(k1)Φ(g)τ(k2), gives Φ(e)τ(k) =
τ(k)Φ(e) ∀k ∈ K . Then Φ(e) = c1. Moreover Φ(k) = Φ(ke) = τ(k)Φ(e) =
c τ(k). Letting x = y = e in (24) gives c2 = c. The function φ(x) = Tr Φ(x) can
not vanish identically, because dτ

∫
K φ(xk−1)τ(k)dk = Φ(x). Let x0 ∈ G be such

that φ(x0) 6= 0. Letting x = x0 and y = e in (22) gives φ(e) = dτ , whence c = 1.

Now using Proposition 2.1, (23) and (21) we have
∫

G
Φ(xy)F (y)dy =

∫

G

∫

K
Φ(xy)τ(k)fF (ky)dkdy

=
∫

K

∫

G
Φ(xk−1y)τ(k)fF (y)dydk

=
∫

G

[∫

K
Φ(xk−1yk)dk

]
fF (y)dy

=
1

dτ
Φ(x)

∫

G
φ(y)fF (y)dy

= Φ(x)f̂F (φ) = Φ(x)F̂ (Φ),

which is (25). Eq. (26) can be proved in a similar way, using the K -centrality of
f and (22).

Conversely, let Φ : G→ End(Vτ ) satisfy (11), Φ(e) = 1, and (25), for some
F̂ (Φ) ∈ C. Setting x = e in (25) gives F̂ (Φ)1 =

∫
G Φ(y)F (y)dy . Taking the trace

of this equation gives F̂ (Φ) = 1
dτ

∫
G Tr [Φ(x)F (x)]dx.

Given F1, F2 ∈ C∞0 (G, τ, τ), it is easy to see that

̂(F1 ∗ F2)(Φ) =
1

dτ
Tr

∫

G

∫

G
Φ(xy)F1(y)F2(x)dxdy.

Then (25) implies ̂(F1 ∗ F2)(Φ) = F̂1(Φ)F̂2(Φ), i.e., Φ is a spherical function of
type τ on G.

From the differential point of view, the spherical functions of type τ are
the radial joint eigenfunctions of D(G, τ), the algebra of G-invariant differential
operators mapping sections of Eτ to sections of Eτ . [See [20] for a Lie-algebraic
description of D(G, τ).] By methods similar to those of [25], one can show that
D(G, τ) is commutative if and only if C∞0 (G, τ, τ) is commutative (see [8]). Thus
D(G, τ) is commutative in our case.

Let C∞(G, τ) (resp. C∞(G, τ, τ)) be the space of C∞ maps from G to Vτ
(resp. End(Vτ )) satisfying (1) (resp. (3)). D(G, τ) acts naturally on C∞(G, τ),
in view of the identification of C∞(G, τ) with Γ(Eτ ), the space of C∞ cross
sections of Eτ . For F ∈ C∞(G, τ, τ) and v ∈ Vτ , the function f(g) = F (g)v is in
C∞(G, τ). Therefore we can let D(G, τ) act on C∞(G, τ, τ) by

(DF )(·)v ≡ D(F (·)v), ∀D ∈ D(G, τ), ∀F ∈ C∞(G, τ, τ), ∀v ∈ Vτ .

Clearly DF ∈ C∞(G, τ, τ). Let η be the map on G defined by sending g to g−1 .
Let Φ be a spherical function of type τ on G. Then Φ ◦ η ∈ C∞(G, τ, τ). We
shall now prove that Φ ◦ η is an eigenfunction of each D ∈ D(G, τ), using the
functional equation (24).



Camporesi 41

Theorem 3.8. Let Φ : G → End(Vτ ) be a spherical function of type τ on G.
Let η : g → g−1 , and let Φ̃ = Φ ◦ η ∈ C∞(G, τ, τ). Then for each D ∈ D(G, τ)
there exists a complex number µΦ(D) such that

DΦ̃ = µΦ(D)Φ̃. (27)

Moreover (DΦ̃)(e) = µΦ(D)1, and the map D → µΦ(D) is a homomorphism
of D(G, τ) into C. Conversely, let T ∈ C∞(G, τ, τ), and suppose there is a
homomorphism, D → µT (D), of D(G, τ) into C such that

DT = µT (D)T, ∀D ∈ D(G, τ),

with DT (e) = µT (D)1. Then there is a spherical function Φ of type τ on G such
that T = Φ ◦ η .

Proof. Let Φ be a spherical function of type τ on G. Using (24), it is easy to
derive the following functional equation for Φ̃:

dτ

∫

K
Φ̃(xky)χτ (k)dk = Φ̃(y)Φ̃(x), x, y ∈ G. (28)

Acting with D ∈ D(G, τ) on the y variable in (28), using the fact that D is
left-invariant, letting y = e, and observing that DΦ̃ ∈ C∞(G, τ, τ), we obtain

[DΦ̃](e)Φ̃(x) = dτ

∫

K
χτ (k)[DΦ̃](xk)dk

= dτ

∫

K
χτ (k)τ(k−1)dk [DΦ̃](x) = [DΦ̃](x). (29)

Now notice that if T ∈ C∞(G, τ, τ), then T (e) ∈ EndK(Vτ ), so that T (e) = c1,
with c = 1

dτ
TrT (e) ∈ C. Applying this to T = DΦ̃ ∈ C∞(G, τ, τ), gives

DΦ̃(e) = µΦ(D)1,

with µΦ(D) = 1
dτ

Tr [DΦ̃(e)] ∈ C. Using this in (29) proves (27).

Finally, we have

µΦ(D1D2) =
1

dτ
Tr [(D1D2Φ̃)(e)]

=
1

dτ
Tr [µΦ(D2)(D1Φ̃)(e)]

=
1

dτ
Tr [µΦ(D2)µΦ(D1)1]

= µΦ(D1)µΦ(D2).

The proof of the converse is analogous to [28] Theorem 6.1.2.3. One proves
first that T is analytic, using the fact that D(G, τ) has an elliptic element. Then
using Taylor’s formula, one proves that T satisfies the functional equation (28).
The result follows then from Theorem 3.6.

We shall now use the isomorphism between C∞0 (G, τ, τ) and I0,τ (G) to
derive an inversion formula on C∞0 (G, τ, τ) from the Plancherel (inversion) formula
on the group G.
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Theorem 3.9. The spherical transform (19) is inverted by

F (g) =
1

dτ

∫

Ĝ(τ)
ΦU
τ (g−1)F̂ (U)dµ(U), F ∈ C∞0 (G, τ, τ), (30)

where dµ(U) is the Plancherel measure on Ĝ (suitably normalized).

Proof. Let U ∈ Ĝ, and let ΘU denote the global character of U . Consider the
Fourier component ΘU,τ of ΘU , defined by the rule

ΘU,τ (f) ≡ ΘU(f ∗ dτ χ̄τ ), f ∈ C∞0 (G),

the convolution being over K . As proved in [28] vol.II p.18 (the remark), the
distribution ΘU,τ coincides with the spherical trace function φUτ , i.e., for f ∈
C∞0 (G),

ΘU,τ (f) =
∫

G
φUτ (x)f(x)dx. (31)

Clearly if U is not in Ĝ(τ), then

ΘU,τ (f) = 0.

Let F ∈ C∞0 (G, τ, τ), and consider the function fF ◦Lg , where fF ∈ I0,τ (G)
is defined in (5), and Lg denotes left-translation on G, Lg(x) = gx. This function
satisfies

(fF ◦ Lg) ∗ dτ χ̄τ = fF ◦ Lg,

as follows immediately from the definition of I0,τ (G). Therefore

ΘU(fF ◦ Lg) = ΘU((fF ◦ Lg) ∗ dτ χ̄τ ) = ΘU,τ (fF ◦ Lg),

and if U 6∈ Ĝ(τ)

ΘU(fF ◦ Lg) = ΘU,τ (fF ◦ Lg) = 0.

We now use these relations and (31) in the Plancherel (inversion) formula
for fF ∈ I0,τ (G):

fF (g) =
∫

Ĝ
ΘU(fF ◦ Lg)dµ(U)

=
∫

Ĝ(τ)
ΘU,τ(fF ◦ Lg)dµ(U)

=
∫

Ĝ(τ)

∫

G
φUτ (x)fF (gx)dxdµ(U)

=
∫

Ĝ(τ)

∫

G
φUτ (g−1y)fF (y)dydµ(U)

=
∫

Ĝ(τ)
φUτ (g−1)f̂F (U)dµ(U) =

∫

Ĝ(τ)
φUτ (g−1)F̂ (U)dµ(U),
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where we have used (26) and Lemma 3.4. To pass from fF to F we apply the
map f → Ff (cf. (6)), and observe that FfF = F . Then

F (g) =
∫

K
τ(k)fF (kg)dk

=
∫

K

∫

Ĝ(τ)
τ(k)φUτ (g−1k−1)F̂ (U)dµ(U)dk

=
∫

Ĝ(τ)

(∫

K
φUτ (g−1k−1)τ(k)dk

)
F̂ (U)dµ(U)

=
1

dτ

∫

Ĝ(τ)
ΦU
τ (g−1)F̂ (U)dµ(U),

which is the inversion formula (30).

The inversion formula for the spherical transform f̂ of f ∈ I0,τ (G) (cf. (20))
is

f(g) =
∫

Ĝ(τ)
φUτ (g−1)f̂(U)dµ(U), f ∈ I0,τ (G).

The Plancherel theorem for the spherical transform follows now from The-
orem 3.9 by well known standard arguments.

Corollary 3.10. The spherical Fourier transform F → F̂ , defined in (17),
extends to an isometry of the Hilbert space L2(G, τ, τ) onto the Hilbert space
L2(Ĝ(τ), dµ(U)).

Remark 3.11. The map F → F̂ given in (19) is the Gelfand transform on
the commutative convolution algebra C∞0 (G, τ, τ). We see from (30) that the
Gelfand measure in the inversion formula on C∞0 (G, τ, τ) may be identified with the
Plancherel measure on Ĝ, restricted to those representations of G which contain
τ .

We now derive an “inversion formula” for f ∈ C∞0 (G, τ), i.e., for arbitrary
(smooth compactly supported) sections of Eτ (not necessarily radial). We can
proceed in two ways. We can either imitate the argument in the proof of The-
orem 3.9, by observing that if f satisfies (1) then f ∗ dτ χ̄τ = f , and similarly
(f ◦ Lg) ∗ dτ χ̄τ = f ◦ Lg. Then we can apply the Plancherel formula to each
component fa of f(g) =

∑dτ
a=1 fa(g)va and obtain (in index-free notation)

f(g) =
∫

Ĝ(τ)

∫

G
φUτ (g−1x)f(x)dxdµ(U)

=
∫

Ĝ(τ)

∫

G

∫

K
φUτ (g−1x)τ(k)f(xk)dkdxdµ(U)

=
∫

Ĝ(τ)

∫

G

∫

K
φUτ (g−1yk−1)τ(k)f(y)dkdydµ(U)

=
1

dτ

∫

Ĝ(τ)

∫

G
ΦU
τ (g−1y)f(y)dydµ(U). (32)
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Alternatively, we can use (30). Observe that any f ∈ C∞0 (G, τ) can be
written as

f(g) = F (g)v, g ∈ G,
where v is an arbitrary (fixed) unit vector in Vτ , and F (g) ∈ End(Vτ ) is defined
by

F (g)w ≡ f(g)〈w,v〉, w ∈ Vτ .
Notice that F satisfies

F (gk) = τ(k−1)F (g), ∀g ∈ G, ∀k ∈ K,

and ∀O ∈ End(Vτ ),
Tr [OF (g)] = 〈Of(g),v〉. (33)

Put
Fg(x) ≡

∫

K
F (gkx)τ(k)dk. (34)

It is easy to see that Fg ∈ C∞0 (G, τ, τ). Hence, we can expand it according to (30),

Fg(x) =
1

dτ

∫

Ĝ(τ)
ΦU
τ (x−1)F̂g(U)dµ(U). (35)

The spherical Fourier transform of Fg is given by

dτ F̂g(U) =
∫

G
Tr

[
ΦU
τ (y)Fg(y)

]
dy

=
∫

G
Tr

[
ΦU
τ (y)

∫

K
F (gky)τ(k)dk

]
dy

= Tr
∫

K

∫

G
ΦU
τ (k−1g−1x)F (x)τ(k)dxdk

=
∫

G
Tr

[
ΦU
τ (g−1x)F (x)

]
dx =

∫

G
〈ΦU

τ (g−1x)f(x),v〉dx, (36)

where we have used (33). Now set x = e in (34) and take the trace to get

TrFg(e) = Tr
∫

K
F (gk)τ(k)dk

= Tr
∫

K
τ(k−1)F (g)τ(k)dk

= TrF (g) = 〈f(g),v〉, (37)

where we have used (33) with O = 1. Setting x = e in (35) and taking the trace
gives

TrFg(e) =
∫

Ĝ(τ)
F̂g(U)dµ(U).

Using here (36) for F̂g(U) and equating to (37), we obtain, since v is arbitrary,

f(g) =
1

dτ

∫

Ĝ(τ)

∫

G
ΦU
τ (g−1x)f(x)dxdµ(U), (38)

in agreement with (32).
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Notice that for a radial section f [i.e., f(g) = F (g)v , with v ∈ Vτ , and
F ∈ C∞0 (G, τ, τ)], eq. (38) reduces to (30) upon using (25).

We define the convolution of ΦU
τ and f by

(ΦU
τ ∗ f)(g) =

∫

G
ΦU
τ (g−1x)f(x)dx, f ∈ C∞0 (G, τ), g ∈ G,

so that eq. (38) becomes

f(g) =
1

dτ

∫

Ĝ(τ)
(ΦU

τ ∗ f)(g)dµ(U).

The space ΦU
τ ∗ C∞0 (G, τ) can be given the positive definite inner product

〈ΦU
τ ∗f1,Φ

U
τ ∗f2〉 =

1

dτ

∫

G×G
〈ΦU

τ (g−1x)f1(x), f2(g)〉dx dg

=
1

dτ

∫

G×G
〈f1(x),ΦU

τ (x−1g)f2(g)〉dx dg.

Denoting its completion by L2
U (G, τ), we have the direct integral decompositions

L2(G, τ) =
∫ ⊕

Ĝ(τ)
L2
U (G, τ)dµ(U),

‖f‖2 =
∫

Ĝ(τ)
‖ΦU

τ ∗f‖2dµ(U), ∀f ∈ C∞0 (G, τ), (39)

where L2(G, τ) is the completion of C∞0 (G, τ) with respect to the scalar product
(2). From the representation theoretic point of view, this result gives the direct
integral decomposition over Ĝ of the induced representation indGK(τ), according
to

indGK(τ) =
∫ ⊕

Ĝ(τ)
m(τ, U)Udµ(U) (40)

(see [21] Lemma 1, or [18] p.58). This result may be regarded as a generalization
to the noncompact case of the classical Frobenius Reciprocity Theorem. That is,
the multiplicity with which U occurs in indGK(τ) coincides with the multiplicity of
τ in U |K . Of course the notion of multiplicity in a direct integral requires a little
care. For U in the discrete series, dµ(U) is discrete and (40) takes the same form
as in the classical (compact) case, see [18] p.58.

There are two important differences between the compact and the noncom-
pact case: 1) in the noncompact case the Plancherel measure may have both a
discrete and a continuous part, rather than only discrete; 2) in the noncompact
case a representation in Ĝ may contain τ and still not appear in the decomposi-
tion of indGK(τ) (if it is not tempered). In fact the support of dµ(U) is, in general,
a proper subset of Ĝ. For example the so called complementary series of SL(2,R)
have zero Plancherel measure.

Remark 3.12. In this section we have fixed τ ∈ K̂ so that m(τ, U) = 1,
∀U ∈ Ĝ(τ). However for τ generic in K̂ , the multiplicity ξU ≡ m(τ, U) will
exceed 1. (It is known that m(τ, U) ≤ dτ , giving an estimate independent of U ,
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see [11].) In this more general case, the results of this section will be modified as
follows: 1) the algebras I0,τ (G) and C∞0 (G, τ, τ) will no longer be commutative; 2)
the spherical functions ΨU

τ (g) = PτU(g)Pτ will take values in End(Vτ ⊗ CξU ); 3)
the spherical transform F̂ (U) will no longer be scalar valued, but will take values in
End(CξU ). However the inversion formula on C∞0 (G, τ, τ) can still be derived from
the Plancherel formula on C∞0 (G), and is similar to (30). The noncommutative
case will be discussed in another paper.

Remark 3.13. The direct integral decomposition (39) does not involve any
Fourier transform concept for general f ∈ C∞0 (G, τ). [The spherical transform
applies only to radial sections.] However in the scalar case, Helgason has defined
a Fourier transform for general functions f ∈ C∞0 (G/K), see [13]. The Helga-
son Fourier transform on Riemannian symmetric spaces G/K has recently been
generalized to homogeneous vector bundles, see [7].

We have not used, so far, the structure theory of semisimple Lie groups
(Cartan or Iwasawa decomposition). In fact, the theory of spherical functions of
type τ can be formulated for any pair (G,K) of a locally compact unimodular Lie
group G and a compact subgroup K ⊂ G, provided that every U ∈ Ĝ is K -finite
(see [11] section 3). As mentioned in the introduction, if K is uniformly large in
G (see [28] vol.I p. 305), then the results obtained up to this point apply (for
I0,τ (G) commutative).

We now consider the semisimple case in more detail. It is well known
(see, e.g., [15, 27, 28]) that for a noncompact semisimple Lie group with finite
center, the irreducible unitary representations that appear in the Plancherel for-
mula (the so-called tempered spectrum of G) are the (generalized) principal series
(constructed from a complete set of cuspidal parabolic proper subgroups by the
method of induced representation), and the discrete series, which exist if and only
if G has a compact Cartan subgroup, i.e., if and only if rankG = rankK . The
Plancherel measure has been obtained by Harish-Chandra. Using Harish Chan-
dra’s Plancherel Theorem and Subquotient Theorem, we shall write down in a more
precise way the spherical transform and the inversion formula on C∞0 (G, τ, τ) in
the commutative case.

Let G = KAN be an Iwasawa decomposition of G, and write

x = k(x) exp[H(x)]n(x), ∀x ∈ G,
where H(x) ∈ a (the Lie algebra of A), k(x) ∈ K and n(x) ∈ N . Let M be the
centralizer of A in K , and let P = MAN be the corresponding minimal parabolic
subgroup of G. Given σ ∈ M̂ and a linear function λ : a → C, let Uσλ denote
the representation indGP (σ ⊗ eiλ ⊗ 1) in the minimal principal series of G with
parameters σ and λ. Uσλ is unitary if and only if λ is real valued.

The Subquotient Theorem of Harish Chandra (see, e.g., [28] Theorem
5.5.1.5) implies that each U ∈ Ĝ (more generally every TCI Banach representation
of G) is infinitesimally equivalent to a subquotient representation of a nonunitary
principal series Uσλ , for suitable σ ∈ M̂ and λ ∈ a∗C (the complexification of a∗ ).

In the commutative case we have, for the given τ , m(τ, Uσλ) ≤ 1 ∀σ ∈ M̂ ,
∀λ ∈ a∗C . By Frobenius Reciprocity, the multiplicity m(σ, τ) of σ in τ |M is
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also ≤ 1 ∀σ ∈ M̂ . Then the Subquotient Theorem implies that every (nonzero)
spherical function of type τ on G can be written as Φσλ

τ ≡ PτU
σλPτ , for suitable

σ ⊂ τ |M , and λ ∈ a∗C . Let φσλτ (x) = Tr Φσλ
τ (x) be the corresponding spherical

trace function of type τ . By [28] Corollary 6.2.2.3 one has

φσλτ (x) = dτ

∫

K
(χτ ∗ χσ)(k(k−1xk)) e(iλ−ρ)(H(xk))dk, (41)

where ρ ∈ a∗ is half the sum of the positive restricted roots, χσ is the character
of σ , and the convolution is over M . One can easily calculate Φσλ

τ (x) using (41),
(13), and the Schur orthogonality relations. The result is the following integral
representation for Φσλ

τ :

Φσλ
τ (x) =

dτ
dσ

∫

K
τ (k(xk))Pστ(k−1) e(iλ−ρ)(H(xk))dk, (42)

where
Pσ = dσ

∫

M
τ(m−1)χσ(m)dm

is the projector of Vτ onto Vσ ⊂ Vτ (the subspace of vectors of Vτ which transform
under M according to σ ), and dσ is the dimension of σ .

The spherical transform of F ∈ C∞0 (G, τ, τ) can then be defined as the set
of functions F̂σ : a∗C → C (where σ ⊂ τ |M ), given by

F̂σ(λ) =
1

dτ

∫

G
Tr [Φσλ

τ (x)F (x)]dx, λ ∈ a∗C. (43)

The inversion formula (30) can be written more explicitly as follows. Let
P ′ be a cuspidal parabolic subgroup of G such that P ′ ⊇ P and A′ ⊆ A, where
P ′ = M ′A′N ′ is a Langlands decomposition of P ′ . Given σ′ in the discrete series
of M ′ and ν ′ ∈ a′∗ (the real dual of the Lie algebra of A′ ), let Uσ′ν′ denote the
representation indGP ′(σ

′⊗eiν′⊗1) in the unitary principal P ′ -series with parameters

σ′ and ν ′ . If τ ⊂ Uσ′ν′ |K , put as usual ΦUσ
′ν′

τ (x) = PτU
σ′ν′(x)Pτ , and

F̂ (Uσ′ν′) =
1

dτ

∫

G
Tr [ΦUσ

′ν′

τ (x)F (x)]dx, F ∈ C∞0 (G, τ, τ).

(For Uσ′ν′ irreducible, this is the spherical Fourier transform (17) with U(= U σ′ν′)
in the tempered spectrum of G). By the Subquotient Theorem we can identify
Uσ′ν′ with a subquotient of a nonunitary (minimal) principal series U σ̃′λ , for
suitable σ̃′ ∈ M̂ and λ ∈ a∗C .

More precisely, let K ′ = K
⋂
M ′ be maximal compact in M ′ , and let

M ′ = K ′A1N1 be an Iwasawa decomposition of M ′ such that A = A′A1 and
N = N ′N1 . We choose parameters σ̃′ ∈ M̂ and µ1 ∈ (a1)∗C (a1 the Lie algebra
of A1 ) by the Subquotient Theorem, so that σ′ is infinitesimally equivalent to a
subquotient of the nonunitary (minimal) principal series of M ′ given by

ωσ̃′µ1 = indM
′

MA1N1
(σ̃′ ⊗ eµ1 ⊗ 1). (44)

Then the (generalized) principal series Uσ′ν′ is infinitesimally equivalent to a
subquotient of the nonunitary (minimal) principal series of G

U σ̃′,ν′−iµ1 = indGMAN(σ̃′ ⊗ eiν′+µ1 ⊗ 1). (45)
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This follows by a double induction formula, as in [15] pp. 171, 240.

Then the parameter λ above equals ν ′−iµ1 , and ΦUσ
′ν′

τ (x), for τ ⊂ Uσ′ν′|K ,
is given by

ΦUσ
′ν′

τ (x) = Φσ̃′,ν′−iµ1
τ (x) =

dτ
dσ̃′

∫

K
τ(k(xk))Pσ̃′τ(k−1)e(iν′+µ1−ρ)(H(xk))dk

(cf. (42)). Thus the spherical Fourier transform F̂ (Uσ′ν′) of F ∈ C∞0 (G, τ, τ)
relative to Uσ′ν′ equals F̂σ̃′(ν

′−iµ1), given by (43).

Finally, let dµ(Uσ′ν′) = pσ′(ν
′)dν ′ be the Plancherel measure associated

with Uσ′ν′ , where dν ′ is a properly normalized Euclidean measure on a′∗ . Then, for
a suitable normalization of the relevant Haar measures, and for suitable constants
cP ′ > 0, we have the following inversion formula for the spherical transform (43)
of F ∈ C∞0 (G, τ, τ):

F (x) =
1

dτ

∑

P ′
cP ′

∑

σ′

∫

a′∗
Φσ̃′ ,ν′−iµ1
τ (x−1)F̂σ̃′(ν

′−iµ1)pσ′(ν
′)dν ′. (46)

Here the sum
∑
P ′ is over all cuspidal parabolic subgroups P ′ of G such that

P ′ ⊇ P and A′ ⊆ A, and the sum
∑
σ′ is over all discrete series σ′ of M ′ such

that Uσ′ν′ |K ⊃ τ . [These are in finite number only.] This result follows from (30)
and from Harish Chandra’s Plancherel Theorem for semisimple Lie groups (see,
e.g., [27] Theorem 13.4.1, or [15] Theorem 13.11). If rankG = rankK , then G
itself is cuspidal parabolic, and the contribution of P ′ = G in (46) is the discrete
series contribution. In this case the parameter ν ′ is trivial, and the integral over
a′∗ drops out. For P ′ = P (the minimal parabolic subgroup), the parameter µ1 is
trivial. The corresponding contribution in (46) is

Fminimal(x) =
1

dτ
cP
∑

σ

∫

a∗
Φσλ
τ (x−1)F̂σ(λ)pσ(λ)dλ,

where the sum is over all M -types contained in τ |M .

Now due to the Cartan decomposition G = KAK , the spherical functions
Φσλ
τ are determined by their restriction to A. Notice that Φσλ

τ (a) ∈ EndM(Vτ ),
∀a ∈ A. Write τ |M =

∑n
j=1 σj , with σj ∈ M̂ . Then σi 6∼ σj for i 6= j , and σ is

just one of the σj , say σ = σk . We have a direct sum decomposition Vτ =
∑
j Vj ,

where each Vj may be identified with the representation space of σj . Let Pj be
the orthogonal projection of Vτ onto Vj . Schur’s Lemma implies that

Φσkλ
τ (a) =

∑

j

φkλτj (a)1j, ∀a ∈ A

(direct sum of linear operators), where 1j is the identity in Vj . The scalar functions
φkλτj (a) = 1

dj
Tr [PjΦ

σkλ
τ (a)Pj] (dj ≡ dσj ) admit the integral representation (by (42))

φκλτj (a) =
dτ
djdκ

∫

K
Tr [Pjτ (k(ak))Pκτ(k−1)Pj] e

(iλ−ρ)(H(ak))dk.

In a similar way, each F ∈ C∞0 (G, τ, τ) is determined by restriction to A.
Since F (a) ∈ EndM(Vτ ), ∀a ∈ A, then F (a) =

∑
j Fj(a)1j , where Fj(a) are scalar
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functions on A. Let us write the integral formula for the Cartan decomposition
as (see, e.g., [15] Prop.5.28 p.141):

∫

G
f(g)dg =

∫

K×A+×K
f(k1ak2)δ(a)dk1dadk2, (47)

where A+ = exp a+ (a+ the positive Weyl chamber in a), and

δ(a) ≡
∏

+

(sinhα(log a))mα, (48)

where the product is over the positive restricted roots of the symmetric space
(mα is the multiplicity of the root α). The Haar measure on K is normalized by∫
K dk = 1.

The spherical transform (43) can then be written as

F̂k(λ) ≡ F̂σk(λ) =
1

dτ

∫

A+
Tr [Φσkλ

τ (a)F (a)]δ(a)da

=
1

dτ

∑

j

dj

∫

A+
φkλτj (a)Fj(a)δ(a)da. (49)

Thus the spherical transform can be described as follows in the commutative
case. Let n be the number of M -types contained in τ |M . Then each F ∈
C∞0 (G, τ, τ) is determined by n scalar functions Fj(a) on A (j = 1, . . . , n). The

spherical transform associates to this set of functions the n scalar functions F̂k(λ)
on a∗C (k = 1, . . . , n) given by (49).

If G/K has rank one the functions φkλτj (a) can be calculated explicitly in
terms of Jacobi functions (using the radial part of the Casimir operator of G).
Examples of this will be seen in the next section.

4. The case of real hyperbolic spaces

In this section we apply the above considerations to G = Spin(N, 1) and K =
Spin(N), the double covers of the Lorentz and orthogonal groups SO0(N, 1) and
SO(N), respectively. (For N > 2 these are also the universal covering groups.)
In this way, we can include in our discussion the spinor bundles over the real
hyperbolic spaces HN(R) ' G/K . Using Theorem 2.3, one can prove that
Spin(N) is multiplicity free in Spin(N, 1), so that the algebras C∞0 (G, τ, τ) are
commutative ∀τ ∈ K̂ .

For N odd all Cartan subgroups of G are conjugate, and there are no
discrete series. For N even there are two conjugacy classes of Cartan subgroups,
one for a compact Cartan subgroup contained in K , the other for a noncompact
Cartan subgroup with one generator in G/K . In this case there are discrete series.
If the irreducible representation τ of Spin(N) is contained in some discrete series,
then the vector bundle Eτ has square-integrable eigensections of the Laplacian,
corresponding to the discrete spectrum. (An example of this will be seen later.)
Otherwise the L2 -spectrum of the Laplacian on Eτ is purely continuous (e.g., for
τ the trivial representation).
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The Plancherel measure for the Lorentz group has been given by Hirai [14].
We shall now summarize his results, and write down the Plancherel (inversion)
formula for the double cover Spin(N, 1). As specific examples we shall consider
the homogeneous vector bundles of Dirac spinors, differential forms, and symmetric
traceless tensor fields over HN(R).

Case 1. N = 2k + 2 (k = 1, 2, . . .): The unitary principal series represen-
tations are denoted Uσλ , where λ is a real number, and σ = (n1, n2, . . . , nk) is a
row of numbers that are either all integers or all half-odd-integers and satisfy

0 ≤ n1 ≤ n2 ≤ · · · ≤ nk.

In the standard Cartan-Weyl labeling scheme, σ is the highest weight of an
irreducible representation of M = Spin(N−1) (see [2] Th.2 p.221). In fact, U σλ is
nothing but the representation indGP (σ⊗eiλ⊗1) unitarily induced from a minimal
parabolic subgroup P = MAN , where G = KAN is an Iwasawa decomposition of
G. Thus σ ∈ M̂ , and it is well known that M (the centralizer of A in K ) can be
identified with Spin(N−1) in this case. We define lj = nj+j− 1

2
(j = 1, 2, . . . , k ),

and denote the global character of Uσλ by Θσλ .

There are two sets of representations in the discrete series denoted U σn0
+

and Uσn0
− , where σ = (nj) is as above, n0 ∈ Z (resp. Z+ 1

2
) ⇐⇒ nj ∈ Z (resp.

Z+ 1
2
), and

1

2
< n0 ≤ n1 ≤ n2 ≤ · · · ≤ nk.

(For n0 = 1
2

we have the two “limits of discrete series”, which are irreducible
unitary representations, but are not square-integrable.) Define lj (j = 0, . . . , k ) as
above, and denote the sum of the characters of Uσn0

+ and Uσn0
− by Θσn0 . Then the

inversion formula on C∞0 (Spin(N, 1)) takes the following form (we have corrected
the continuous part by a factor of 2; this makes the formula consistent with ref.
[22]):

c f(e) =
∑

0<l1<···<lk

∫ ∞

0
iP (−iλ, l1, . . . , lk) g(λ) Θσλ(f) dλ

+
∑

0<l0<l1<···<lk
P (l0, l1, . . . , lk) Θσn0(f), (50)

where c > 0 is a normalization constant (to be determined later),

g(λ) =

{
tanh(πλ), lj half-odd-integers,
coth(πλ), lj integers,

and P is the following polynomial, corresponding to the product over the positive
roots of the Spin(N, 1) Lie algebra:

P (x1, x2, . . . , xk+1) = x1x2 · · ·xk+1

∏

1≤s<r≤k+1

(x2
r − x2

s).

The case of N = 2 (k = 0) corresponds to G = SL(2,R) ' Spin(2, 1). In this
case, the continuous part is the sum of two terms, one with g(λ) = tanh(πλ), and
the other with g(λ) = coth(πλ), see [15] p. 42.



Camporesi 51

For σ fixed, the continuous part of the Plancherel measure dµ(U σλ) =
pσ(λ)dλ has the following λ-dependence:

pσ(λ) ∝ λ(λ2 + l21)(λ2 + l22) · · · (λ2 + l2k) g(λ),

and the proportionality constant depends on lj .

Case 2. N = 2k + 1 (k = 1, 2, . . .): The principal series representations
are denoted Uσλ , with λ ∈ R and σ = (n1, n2, . . . , nk), where the numbers nj are
either all integers or all half-odd-integers and satisfy

|n1| ≤ n2 ≤ · · · ≤ nk.

The number n1 can be negative, and again σ defines a representation of Spin(N−
1) (see [2] Th.2 p.221). Let lj = nj + j − 1 (j = 1, 2, . . . , k ). Then the inversion
formula on C∞0 (Spin(N, 1)) reads

c f(e) =
∑

|l1|<l2<···<lk

∫ ∞

0
P (iλ, l1, . . . , lk) Θσλ(f) dλ, (51)

where c > 0 is a normalization constant, and P is the polynomial corresponding
to the product over the positive roots of the Spin(N, 1) Lie algebra:

P (x1, x2, . . . , xk+1) =
∏

1≤s<r≤k+1

(x2
r − x2

s).

For σ fixed, the Plancherel density is just a polynomial in λ2 :

pσ(λ) ∝ (λ2 + l21)(λ2 + l22) · · · (λ2 + l2k).

Now let τ be an irreducible representation (irrep) of Spin(N), and let Eτ

be the corresponding homogeneous vector bundle over HN(R). In order to find
the Plancherel measure for the cross sections of Eτ , we simply have to identify
the irreducible unitary representations in the Plancherel formula on Spin(N, 1)
which contain τ upon restriction to Spin(N). Thus we need the branching rule
for Spin(N, 1) ⊃ Spin(N) for principal and discrete series (see, e.g., [24]). Again
we distinguish the cases with N odd and N even.

Let N = 2k + 2, and let τ be the irrep of Spin(N) labelled by
(f1, f2, . . . , fk+1), where fj are either all integers or all half-odd-integers satisfying
(see [2] p.221)

|f1| ≤ f2 ≤ · · · ≤ fk+1,

and f1 can be negative. Then the principal series representation Uσλ (σ = {nj})
contains τ if and only if 1) nj ∈ Z (resp. Z+ 1

2
) ⇐⇒ fj ∈ Z (resp. Z+ 1

2
), and 2)

|f1| ≤ n1 ≤ f2 ≤ n2 ≤ · · · ≤ fk ≤ nk ≤ fk+1. (52)

Using the branching rule for Spin(N) ⊃ Spin(N − 1), it is easy to see that
(52) is equivalent to the condition that τ contain the irrep σ of Spin(N − 1) (see
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[2] Th.2 p.228). Therefore Uσλ|K contains τ if and only if τ |M contains σ , i.e., in
symbols

τ |Spin(N−1) = ⊕nj=1σj ⇐⇒ Uσjλ|Spin(N) ⊃ τ, ∀j = 1, . . . , n. (53)

(Of course this follows by Frobenius Reciprocity, since Uσλ|K = indKM(σ).)

A geometric interpretation of (53) may be given as follows. According to
the so-called polar coordinates decomposition [12], a (noncompact) Riemannian
symmetric space G/K is diffeomorphic to A+×K/M (up to a zero-measure set),
where A+ is a fundamental domain of the Weyl group in A. The coset space
K/M is diffeomorphic to the orbits of K in G/K . When a field on G/K (i.e.,
a cross section of Eτ , τ ∈ K̂ ) is restricted to the K -orbits, we obtain a set of
fields on K/M . These fields are cross sections of homogeneous vector bundles Eσj

over K/M , defined by irreps σj of M , with σj ⊂ τ |M . In our case the above
decomposition reads HN(R) ' R+ × SN−1 , and the representations σj are all
different. For example if τ is the defining vector representation of SO(N) in RN ,
then Eτ is the tangent bundle over HN(R). When we restrict a vector in HN(R)
to SN−1 , we get a vector and a scalar, i.e., τ |M = σ1 ⊕ σ2 , where σ1 is the trivial
representation of SO(N), and σ2 is the vector one.

Now according to (53), the principal series that contain τ and enter in
the decomposition of the induced representation indGK(τ) (i.e., in the right hand
side of (40)), are precisely the Uσjλ . In the previous example we have that the
principal series contributing to the harmonic analysis of vector fields over HN(R)
are Uσ1λ and Uσ2λ . It is possible to show that the vector valued functions on
G given by fσ1λ(g) = PτU

σ1λ(g−1)v (v any vector of HU ) correspond to pure
gradients, whereas the functions fσ2λ(g) = PτU

σ2λ(g−1)v correspond to divergence-
free vectors (see [1] Prop. 4.1 and 4.2).

Concerning the discrete series, we have the following branching rule. A
representation in the discrete series Uσn0

± contains τ = (f1, . . . , fk+1) if and only
if, in addition to (52), the following condition is satisfied (as before nj ∈ Z (or
Z+ 1

2
) ⇐⇒ fj ∈ Z (or Z+ 1

2
)):

1

2
< n0 ≤ f1 ≤ n1, for Uσn0

+ , (54)

1

2
< n0 ≤ −f1 ≤ n1, for Uσn0

− . (55)

Thus f1 must be nonzero (positive for Uσn0
+ , and negative for Uσn0

− ). [See, e.g.,
ref. [24] Th.5 p.36, and Th.2 p.28, Case 2; in our notation |ν| + 1

2
= n0 , and

Λ(ω)m = f1 .]

Let N = 2k + 1. The branching rule for Uσλ|K ⊃ τ = (f1, . . . , fk) is

|n1| ≤ f1 ≤ n2 ≤ f2 ≤ . . . ≤ nk ≤ fk. (56)

This is equivalent to τ |M ⊃ σ , and (53) is again true (see [2] Th.2 p.228).
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Example 4.1. Let τ be the trivial representation of Spin(N). Then Eτ is the
trivial bundle, whose sections are the scalar functions on HN(R). In this case the
spherical transform reduces to the Jacobi transform [17].

Since G has real rank one, a+ ' R+ , and each a ∈ A can be written as
at = exp(tH), where H is the element of a such that β(H) = 1 (β the positive
restricted root). In this normalization δ(at) = [sinh(t)]N−1 in (48). Moreover
C∞0 (G, τ, τ) and I0,τ (G) both coincide with C#

0 (G), the set of compactly supported
smooth functions on G which are biinvariant under K . The spherical transform
(49) reduces to

f̂(λ) =
∫ ∞

0
f(at)φλ(at)(sinh t)N−1dt, f ∈ C#

0 (G), (57)

and we have the inversion formula [17]

f(at) =
2N−2

π

∫ ∞

0
f̂(λ)φλ(at)|C(λ)|−2dλ. (58)

Here φλ(at) = F (iλ + ρ,−iλ + ρ, N
2
,− sinh2 t

2
) are the spherical functions (ρ ≡

(N − 1)/2, F is the hypergeometric function), and C(λ) is the Harish-Chandra
function

C(λ) =
2N−2Γ(N/2)√

π

Γ(iλ)

Γ(iλ + ρ)
. (59)

It is easy to see that (50) and (51) agree with (58) at t = 0. Indeed for any
N , the highest weight of τ is (fj) = (0, 0, . . . , 0). Thus there is no discrete series
containing τ (a well known result, see [15] p.455). Since τ |M is just the trivial
representation of Spin(N − 1), we have σ = (nj) = (0, 0, . . . , 0) ∀N . Thus the

only representations in Ĝ which contain τ and have nonzero Plancherel measure
are the spherical principal series Uσλ . The only term that survives in (50) and (51)
(for f K -biinvariant) is the term with (lj) = (1

2
, 3

2
, . . . , k− 1

2
) for N = 2k+2, and

(lj) = (0, 1, . . . , k−1) for N = 2k+1. Using the given values of lj in (50) and (51)
we verify that the Plancherel measure as a function of λ is indeed proportional
to |C(λ)|−2 . Moreover Θσλ(f) = f̂(λ) for f K -biinvariant [use (47) in (14), and
compare with (57)]. By writing dµ(Uσλ) = p0(λ)dλ, with scalar Plancherel density

p0(λ) = 2N−2

π
|C(λ)|−2 , we can match eqs. (50) and (51) with eq. (58), to obtain

the value of the normalization constant c of Hirai (which is independent of τ !).
The result is

c = k!
k∏

s=1

(2s)!, N = 2k + 2,

c = 2k(Γ(k +
1

2
))2

k−1∏

s=1

(2s)!, N = 2k + 1.

Example 4.2. Consider Dirac spinors on HN(R). The spinor bundle Eτ is
defined by

τ = τ+ ⊕ τ− = (
1

2
,
1

2
, . . . ,

1

2
)⊕ (−1

2
,
1

2
, . . . ,

1

2
), N even,
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τ = (
1

2
,

1

2
, . . .

1

2
), N odd,

i.e., τ is the fundamental spinor representation of Spin(N), for N odd, and it is
the direct sum of the two fundamental spinor representations of Spin(N), for N
even (see [2] p.222-224). Notice that for N even the bundle is reducible.

Using the above values of (fj) in (54)-(55), we see that no discrete series
contain τ . Using these values in (52) and (56), we find that τ is contained in the
principal series Uσλ with

σ = (
1

2
,

1

2
, . . . ,

1

2
), N even,

σ = σ+, σ−, σ± = (±1

2
,

1

2
, . . . ,

1

2
), N odd.

By Frobenius Reciprocity, this is simply the statement that for N even one has
τ±|Spin(N−1) = σ , whereas for N odd τ |Spin(N−1) = σ+ ⊕ σ− .

Thus for f ∈ I0,τ (G) only the terms corresponding to the above principal
series survive in (50) and (51). The Plancherel measure so obtained agrees with
the analytic calculation performed in [3]. Let σ denote either σ+ or σ− in the
case of N odd. Then we find, for any N , dµ(Uσλ) = pσ(λ)dλ, with the spinor
Plancherel density

pσ(λ) =
2N−2

π
dσ|Cσ(λ)|−2,

where dσ = 2[N/2]−1 is the dimension of σ , and

Cσ(λ) =
2N−2Γ(N/2)√

π

Γ(iλ+ 1
2
)

Γ(iλ+ N
2

)
.

The spinor spherical functions for the principal series [i.e., Φλ
+ = Pτ+U

σλPτ+ and
Φλ
− = Pτ−U

σλPτ− (for N even), and Φλ± = PτU
σ±λPτ (for N odd)] have been

calculated in [6]. As in the scalar case, the spinor Harish-Chandra function Cσ(λ)
is determined by the asymptotic form at infinity of the (normalized) spherical trace
functions φλ , given by (see [3, 6])

φλ(at) = cosh
t

2
F (iλ+

N

2
,−iλ +

N

2
,
N

2
,− sinh2 t

2
).

Example 4.3. Let τ be the representation of Spin(N) defined by the highest
weight (fj) = (0, . . . , 0, s), where s is a nonnegative integer. Then Eτ is the
bundle of totally symmetric traceless tensor fields of rank s over HN(R) (see [2]
Th.6 p.301). Again no discrete series contain τ . From (52) and (56) we find that
τ is contained in s+1 different principal series representations, namely in U σrλ ,
where σr = (0, . . . , 0, r), and r = 0, . . . , s. The representations Uσsλ correspond
to the symmetric traceless and transverse (i.e., divergence-free) (STT) tensor fields
of rank s (see [4]).

The Plancherel measure for STT tensor fields has been calculated analyti-
cally in [4], and the two methods give the same result. From (50) and (51) we find
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dµ(Uσsλ) = ps(λ)dλ, with density ps(λ) = 2N−2

π
ds|Cs(λ)|−2 , where

ds =
(2s+N − 3)(s+N − 4)!

s!(N − 3)!

is the dimension of σs , and

Cs(λ) =
2N−2Γ(N/2)√

π

Γ(iλ)

(iλ+s+ρ−1)Γ(iλ+ρ−1)
. (60)

For s = 0 this reduces to the scalar result (59). The spherical functions Φσrλ
s =

PτU
σrλPτ (r = 0, . . . , s) can be obtained from the results of ref. [4].

Example 4.4. We now consider the example of p-forms (i.e., totally antisym-
metric tensor fields of rank p) over HN(R) (see also [5]).

Let N = 2k + 2. The bundle of p-forms on HN(R) is defined by the
following irreps τ of Spin(N) (see [2] Th.5 p.299):

p = 0, 2k + 2 : τ = (0, . . . , 0);

p = 1, 2k + 1 : τ = (0, . . . , 0, 1);

p = 2, 2k : τ = (0, . . . , 0, 1, 1);
...

p = k, k + 2 : τ = (0, 1, . . . , 1)

p = k + 1 : τ = (1, . . . , 1)⊕ (−1, 1, . . . , 1) ≡ τ+ ⊕ τ−.

The bundles of p-forms and (N − p)-forms correspond to the same τ as a conse-
quence of duality. Notice that for p = k + 1 = N/2 the bundle is reducible.

From (54)-(55) we see that the only p-forms contained in the discrete series
are for p = k + 1, namely τ+ ⊂ Uσn0

+ |K , and τ− ⊂ Uσn0
− |K , where (σ, n0) =

(1, . . . , 1). This identifies in group theoretic terms the square-integrable harmonic
k -forms on H2k which may be found by a delicate spectral analysis of the Hodge-
de Rham operator ∆ (see [9, 5]). Thus for N even and p = N/2 (and only in that
case), ∆ has discrete spectrum. The discrete part of the Plancherel measure (i.e.,
1
c
P (l0, . . . , lk) in eq. (50)) is essentially the formal degree of the discrete series (see

ref. [28] vol.II p. 407). In our case lj = j + 1
2

, and a simple calculation gives

P (
1

2
,
3

2
, . . . , k +

1

2
) =

(2k + 2)!

(k + 1)!22k+2

k∏

s=1

(2s)!

Concerning the principal series we obtain [using (52)] the following list of
irreps σ = (nj) of M = Spin(N − 1) such that Uσλ|K ⊃ τ :

p = 0, 2k + 2 : σ = (0, . . . , 0);

p = 1, 2k + 1 : σ =

{
(0, . . . , 0),
(0, . . . , 0, 1);
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p = 2, 2k : σ =

{
(0, . . . , 0, 1),
(0, . . . , 0, 1, 1);

...

p = k, k + 2 : σ =

{
(0, 1, . . . , 1),
(1, 1, . . . , 1);

p = k + 1 : σ = (1, 1, . . . , 1) for both τ±.

For p = 0, 2k + 2 and p = k + 1 we have a “singlet”, for the other values
of p we get a “doublet”. It is possible to show that for p = 1, . . . , k and for
σ equal to the second member of each doublet, the vector valued functions on
G given by fσλ(g) = PτU

σλ(g−1)v (v ∈ HU ) correspond to coexact p-forms.
When σ equals the first member of the doublet we get exact p-forms instead. For
p = k + 2, . . . , 2k + 1, the role of the two members of a doublet is reversed, i.e.,
the first corresponds to coexact forms, and the second to exact ones.

Let N = 2k + 1. The discussion proceeds as before. For p = 0, 1, . . . , k ,
the irreps of Spin(N) defining p-forms are given by fj = 0 (j = 1, . . . , |k − p|),
and fj = 1 (j = |k− p|+ 1, . . . , k ). For p = k+ 1, . . . , 2k+ 1, τ is the same as for
(N−p)-forms. All bundles are now irreducible. Applying (56) for p = 0, . . . , k−1
(and the corresponding (N − p)-forms), we get the same list of σ ’s we had before.
For p = k, k + 1 we obtain a “triplet”, namely σ = (ε, 1, . . . , 1), where ε = 0,±1.

Again for p = 1, . . . , k−1 the second member of each “doublet” corresponds
to coexact p-forms, while the first member of each doublet corresponds to exact
p-forms. For p = k + 2, . . . , 2k the role of the members of each doublet gets
reversed. For p = k the terms of the triplet with ε = ±1 (ε = 0) correspond to
coexact (exact) k -forms, while for p = k + 1 it is the opposite.

The continuous part of the Plancherel measure may be written in unified
form for any N , as follows. For p = 0, 1, . . . , [N−1

2
], let σp be the irrep of

Spin(N − 1) with highest weight

σp = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
p−times

). (61)

Then the continuous part of the Plancherel measure for coexact p-forms is given
by dµ(Uσpλ) = µCEp (λ)dλ, with density

µCEp (λ) =
2N−2

π
dp|CCE

p (λ)|−2,

where dp is the dimension of σp [i.e., dp =
(
N−1
p

)
for p 6= N−1

2
, and dp = 1

2

(
N−1
p

)

for p = N−1
2

], and

CCE
p (λ) =

2N−2Γ(N/2)√
π

(iλ+ρ−p) Γ(iλ)

Γ(iλ+ρ+1)
. (62)

For p = 0 we reobtain (59). For p = 1 (i.e., for divergence-free vector fields), (62)
gives the same result as (60) for s = 1.



Camporesi 57

In all cases we verify the equality of the Plancherel measures for exact p-
forms and for coexact (p−1)-forms, and of those for coexact p-forms and coexact
(N−p−1)-forms:

µEp (λ) = µCEp−1(λ), µCEp (λ) = µCEN−p−1(λ).

[This follows also by duality.] In particular, for N even and p = N/2, exact
p-forms and coexact p-forms have the same Plancherel measure.

The spherical functions for p-forms can be deduced from the results of
ref. [5], where the eigenfunctions (spherical or not) of the Hodge-de Rham Lapla-
cian have been calculated by working in geodesic polar coordinates. The spherical
functions have also been calculated by Pedon [23]. We give here their expression
for p 6= (N − 1)/2.

First let p 6= N
2
, N−1

2
. Let τp be the irrep of K = Spin(N) with highest

weight vector given by the right hand side of (61). Then τp|M = σp−1 ⊕ σp . This
induces a direct sum decomposition Vτp = Vσp−1 ⊕ Vσp . Define the τp -spherical
functions

Φσpλ
p (g) = PτpU

σpλ(g)Pτp,

Φσp−1λ
p (g) = PτpU

σp−1λ(g)Pτp.

As M centralizes A in K , we get from Schur’s lemma

Φσpλ
p (at) = γλp(t)1p−1 ⊕ δλp(t)1p,

Φσp−1λ
p (at) = αλp(t)1p−1 ⊕ βλp(t)1p,

where 1p−1 and 1p denote the identity operators in Vσp−1 and Vσp , respectively.
Using the radial part of the Casimir operator one obtains a system of differential
equations for the scalar functions γλp, δλp (or αλp, βλp). The solution is as follows:

γλp(t) = βλp(t) = F (iλ+
N + 1

2
,−iλ +

N + 1

2
, 1 +

N

2
,− sinh2 t

2
),

δλp(t) = αλ,N−p(t) =
1

N − psinh t
dγλp
dt

+ cosh t γλp(t),

where F is the hypergeometric function. Notice that γλp and βλp are independent
of p.

Now let p = N/2 (thus N is even). In this case the bundle of p-forms over
HN(R) is reducible, namely we have τ = τ+⊕ τ− and Eτ = Eτ+ ⊕Eτ− , where τ+

and τ− are the representations of Spin(N) with highest weights

τ± = (±1, 1, 1, . . . , 1),

and dimensions

dτ+ = dτ− =
1

2

(
N
N/2

)
.

We have the branching rule

τ+|M = τ−|M = σ = (1, . . . , 1).
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Consider the spherical functions

Φλ
+(g) = Pτ+U

σλ(g)Pτ+,

Φλ
−(g) = Pτ−U

σλ(g)Pτ−.

Schur’s Lemma gives

Φλ
±(at) = fλ±(t)1±,

where fλ± are scalar functions. Using the radial part of the Casimir operator one
finds

fλ+(t) = fλ−(t) = cosh2(
t

2
)F (iλ+

N + 1

2
,−iλ+

N + 1

2
,
N

2
,− sinh2 t

2
). (63)

The spherical functions for the discrete series are Φ+(g) = Pτ+U
σn0
+ (g)Pτ+

and Φ−(g) = Pτ−U
σn0
− (g)Pτ− , where (σ, n0) = (1, . . . , 1). From Schur’s Lemma

Φ±(at) = f±(t)1± . The scalar functions f±(t) can be obtained from fλ±(t) in (63)
by analytic continuation in λ, by letting λ = i/2 (or −i/2).

Indeed let us recall that the Casimir operator of G induces minus the
Hodge-de Rham Laplacian, ΩG = −∆. For general p, the eigenvalues of ∆
acting on the coclosed p-forms fσpλ(g) = PτpU

σpλ(g−1)v (v ∈ HU ) are given
by ωλp = λ2 + (ρ − p)2 , where ρ = (N − 1)/2 [5, 9]. Now for p = N/2, it is
well known that the square-integrable p-forms corresponding to the discrete series
are harmonic. [Moreover they are both closed and coclosed, in agreement with a
general theorem of Andreotti and Vesentini, see [5].]

By the Subquotient Theorem, the discrete series Uσn0
+ is infinitesimally

equivalent with a subquotient representation of a nonunitary principal series U σλ ,
for suitable λ ∈ C. [A similar statement holds for Uσn0

− .] The condition ωλ,N/2 = 0
gives λ = ±i/2. Using this value in (63), we find

f+(t) = f−(t) = cosh2(t/2)F (
N

2
+ 1,

N

2
,
N

2
,− sinh2 t

2
) = (cosh

t

2
)−N .

The case of p = (N − 1)/2 (N odd) is slightly more complicated, and will
not be given here.
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