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Abstract. We aim to show, using the example of a Riemannian sym-
metric pair (G,K) = (SL2(R), SO(2)) , how contraction ideas may be applied
to functional calculi constructed on coadjoint orbits of Lie groups. We con-
struct such calculi on principal series orbits and generic orbits of the Cartan
motion group V o K , and show how the two are related. Since the cal-
culi are adapted to the representations traditionally attached to the orbits,
we recover at the Lie algebra level the contraction results of Dooley and
Rice [5].

1. Introduction

Let G be a real semisimple Lie group with finite centre and K a closed subgroup
making (G,K) a Riemannian symmetric pair ([8] p. 209). We have the Cartan
decomposition g = k + V where V is an Ad(K)–invariant subspace and k is the
Lie algebra of K . The Cartan motion group associated with the pair (G,K) is
the semidirect product V oK formed with respect to the adjoint action of K on
V .

The motion group is related to G by a family of contraction mappings
πλ : V oK → G defined by

πλ(v, k) = expG(λv) · k,

for v ∈ V and k ∈ K , and indexed by λ ∈ R+ . These maps were introduced
by Dooley and Rice in [5] and are approximate group homomorphisms. In [5] the
unitary irreducible representations of V o K are obtained as limits of sequences
of principal series representations of G composed with contraction mappings.

The derivatives dπλ : V + k → g have in a sense been around for longer,
albeit in a less desirable form. The idea of obtaining a new Lie algebra by
deformation of the structure constants first appears in Inonu and Wigner [9]. It is
clear however that Dooley’s contraction mappings

dπλ (v, A) = λv + A
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for v ∈ V ,A ∈ k and λ ∈ R+ represent a more coordinate free approach.

The present work is stimulated by the above considerations and a recent
PhD thesis by Benjamin Cahen of the University of Metz [3]. Cahen has shown that
on certain coadjoint orbits of G we may construct a symbol calculus (a mapping
from a class of functions or distributions on the orbit to operators in a Hilbert
space) which is adapted to the orbit in the following sense : Let O be some such
orbit and dσ : g→H the representation of g associated with O by the traditional
orbit methods [10]. For each X ∈ g, define the function X̃ on O by

X̃(ξ) = 〈ξ,X〉

for ξ ∈ O ⊂ g∗ . Then the symbol X̃ is assigned to an operator A
X̃

acting on H ,
and

A
X̃

=
1

i
dσ(X)

holds on a dense subspace of H .

Cahen’s procedure is analogous to that of Arnal and Cortet [1] and Wild-
berger [17], establishing first suitable parametrisations of the coadjoint orbits of a
nilpotent (connected simply connected) group and using the same parametrisations
given by Duflo in [6]. If O is a principal series orbit then we have a diffeomorphism

Ψ : N × n×OM → Õ

where N is a nilpotent Lie group with Lie algebra n , OM is a coadjoint orbit of a
compact subgroup M ⊂ K and Õ is an open dense subset of O . A combination
of the Berezin calculus (Berezin [2], Rawnsley [12]) on OM and a generalisation
of the Weyl calculus (Weyl [16], Voros [14]) on N × n yields the desired calculus
on O .

Cahen also provides a construction for a similarly adapted calculus on
V o K –orbits which has prompted us to ask whether this second calculus may
be obtained as a limit is some sense of the calculus on G–orbits. This paper is
an attempt to answer this question, in the special case (G,K) = (SL2(R), SO(2)).
Here the analysis is simplified by degeneracy of the orbits OM mentioned in the
previous paragraph. Operators in the Berezin calculus on OM become complex
numbers, and symbols in the calculus on O are precisely the symbols on the
calculus on N × n in Cahen [3] Paragraph 7.2, Chapter 1.

In Section 3 we find explicit realisations of the principal series representa-
tions of G in L2(R) and L2(T), where T is the torus with underlying set (−π, π].
In Sections 4 and 5 we define calculi adapted to these realisations. The first is
Cahen’s construction, defined by the Bruhat decomposition and referred to here
as the Ψ–calculus. It maps symbols on a given orbit to operators in C∞c (R). The
second, which we call the Υ–calculus, uses instead the Iwasawa decomposition.
It maps the same symbols to operators in C∞(T) and is defined on each orbit O
using a diffeomorphism Υ : T × R → O . The Υ–calculus is better suited to our
purposes.

In Section 7 we find irreducible unitary representations of the motion group
V oK indexed in the same way as the principal series representations of G. We
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then establish the Γ–calculus using, for a given coadjoint orbit O , a diffeomor-
phism Γ : T × R → O. It is a slight modification of Cahen [3], and is adapted to
the representations of V oK .

Section 9 summarises the results of Dooley and Rice [5] in the case (G,K) =
(SL2(R), SO(2)). The representations of G are “contracted” onto the representa-
tions of V oK , thus introducing the point of this paper. We aim to contract the
Υ–calculus on G–orbits onto the Γ–calculus on V oK –orbits.

We demonstrate two methods of doing this. The first scheme runs as follows.
Suppose f is a symbol on a V oK –orbit Cψ passing through ψ ∈ g∗ and let AΓ

f

denote its corresponding operator under the Γ–calculus, acting on C∞(T). We
take a family of G–orbits Oψ/λ passing through ψ/λ and a family of symbols
fλ on Oψ/λ related to f in a simple way. The operators AΥ

fλ
corresponding to

the symbols fλ then also act on C∞(T) and converge (in a sense defined later)
to the original operator AΓ

f . As the calculi are adapted, one recovers at the Lie
algebra level the aforementioned results of Dooley and Rice [5] pertaining to the
pair (G,K).

The second method is more direct. For a symbol f on a V oK –orbit with
operator AΓ

f we define f̃ = f ◦ Γ ◦Υ−1 . Then f̃ is a symbol on a G–orbit O and
if AΥ

f̃
denotes the corresponding operator under the Υ–calculus we have AΓ

f = AΥ
f̃

on C∞(T). Thus the Υ–calculus contracts nicely onto the Γ–calculus and we have
a contractive relationship between the Lie group G and its motion group V oK
not involving limits. Interestingly there is an immediate converse. If f̃ is a symbol
on a G–orbit O then f = f̃ ◦Υ◦Γ−1 is a symbol on a V oK –orbit and AΥ

f̃
= AΓ

f .

2. SL2(R) and its motion group M̃(2)

Hereafter G = SL2(R) is the matrix Lie group consisting of two by two real
matrices with determinant unity. Its Lie algebra g = sl2(R) consists of traceless
two by two real matrices. Fix a basis

e1 =
(

1/2 0
0 −1/2

)
, e2 =

(
0 1/2

1/2 0

)
, e3 =

(
0 1/2
−1/2 0

)

for g = sl2(R). Letting β denote the Killing form we take {êi = β(ei, ·)}, i =
1, .., 3, as a basis for g∗ . All subspaces of g and their duals may thus be identified
with subspaces of R3 .

We have the Cartan decomposition g = k + V where k = sp {e3} and
V = sp {e1, e2} are the eigenspaces of Θ(X) = −XT . The restriction of the adjoint
representation

Ad(g)X = gXg−1, g ∈ G, X ∈ g

to K = exp(k) preserves both k and V , allowing us to define the semi-direct

product M̃(2) = V o K which is the Cartan motion group associated with the
pair (G,K). That is, we equip V oK with the group multiplication

(v, k) · (v′, k′) = (kv′ + v, kk′)
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for v, v′ ∈ V and k, k′ ∈ K . The Lie algebra m̃(2) of M̃(2) shares the same
underlying vector space V + k as g, but has Lie bracket

[(ω,A), (ω′, A′)]
m̃(2)

=
(
[A, ω′]g − [A′, ω]g , 0

)

for ω, ω′ ∈ V and A,A′ ∈ k. The Lie subalgebra a = sp {e1} is maximal abelian
in V ⊂ g. Let A = exp(a), a+ = {a e1 : a ∈ R+}, and A+ = exp(a+). Let M
be the centraliser of A in K , and m its Lie algebra. Put Z = K/M . Define
also n = sp {e2 + e3}, n = sp {e2 − e3}, N = exp(n) and N = exp(n). Take
bases for n and n which are orthonormal with respect to the inner product
(X, Y ) = β ((X,Θ(Y )) - namely {(e2 + e3)/2} and {(e2 − e3)/2}. This fixes
parametrisations by R of n and n, and also, in a manner consistent with the
exponential map, N and N .

As G = SL2(R) we find M = {±1} and m = {0}. Letting T and 2T denote
the tori with respective underlying sets (−π, π] and (−2π, 2π] we parametrise K
by

θ ∈ 2T 7→
(

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
∈ K.

Similarly parametrise Z ∼= T. The parametrisations of n,n , N and N given above
are

b ∈ R 7→
(

0 b/2
0 0

)
∈ n,

y ∈ R 7→
(

0 0
y/2 0

)
∈ n,

b ∈ R 7→
(

1 b/2
0 1

)
∈ N,

y ∈ R 7→
(

1 0
y/2 1

)
∈ N.

We shall be making use of both the Iwasawa decomposition of G and a corollary of
the Bruhat lemma found in Wallach [15]. For any g ∈ G we have unique elements
kI(g) ∈ K , aI(g) ∈ A+ and nI(g) ∈ N such that g = kI(g)aI(g)nI(g). Similarly

if J =
(

0 1
−1 0

)
and g ∈ G\ {±J} then there are unique elements nB(g) ∈ N ,

mB(g) ∈M , aB(g) ∈ A+ and nB(g) ∈ N such that g = nB(g)mB(g)aB(g)nB(g).

We mention in passing that M̃(2) is the twofold cover of M(2) = V o Z ,
the Euclidean motion group in two dimensions, the covering being given by the
epimorphism (v, k) 7→ (v, kM).

3. Principal Series Representations

To certain coadjoint orbits of SL2(R) may associate a pair of unitary irreducible
representations. We find realisations of these representations in L2(R) and L2(T),
and explicit formulas for the operators which intertwine them.

The Killing form on G is

β

(
3∑

i=1

xiei,
3∑

i=1

yiei

)
= 2(x1y1 + x2y2 − x3y3).
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It is preserved by the adjoint action, and thus intertwines the adjoint and coadjoint
representations since if ξ = β(Y, ·) ∈ g∗ then

〈Ad∗(g)ξ,X〉 =
〈
ξ,Ad(g−1)X

〉

= β
(
Y,Ad(g−1)X

)

= β (Ad(g)Y,X) .

Therefore the coadjoint orbits are precisely the images of the adjoint orbits under
the duality ei 7→ êi . Fix ψ = Rê1 ∈ a+∗ for some R > 0. The coadjoint orbit
passing through ψ is a hyperboloid of revolution about the ê3 axis intersecting
the ê1ê2 –plane in a circle radius R :

Oψ =

{
ξ =

3∑

i=1

ξiêi ∈ g∗ : ξ2
1 + ξ2

2 − ξ2
3 = R2

}
.

Fix a unitary irreducible representation η of M . There are only two such repre-
sentations, indexed by η′ ∈ {0, 1} such that η(−1) = −1η

′
. Let µ ∈ a∗ be half the

sum of the positive roots; namely ê1/4. Define log : A+ → a by exp (log(a)) = a
for all a in A+ . The pair (ψ, η) gives us a unitary irreducible representation of
MAN :

η ⊗ eγ ⊗ 1(g) = η (mI(g)) e〈µ+iψ,logaI(g)〉

where we consider γ = µ + iψ an element of the complexification of a∗ . We
take some liberties with notation, writing the second factor above for example as
eγ (aI(g)). Inducing up to the whole group yields a unitary irreducible represen-
tation of G :

σγ,η = IndGMAN η ⊗ eγ ⊗ 1.

More precisely, let

H =
{
f ∈ C∞(G) : f(gg0) = η ⊗ eγ ⊗ 1(g−1

0 )f(g) ∀g0 ∈MAN, g ∈ G
}
.

Discard those f in H whose restrictions to K are not square integrable with
respect to Haar measure on K . Complete with respect to the semi-norm

||f || := ||f|K ||L2(K)

to obtain a Hilbert space HG
γ,η . Then the operation of left translation,

σγ,η(g)f(g0) = f(g−1g0),

on HG
γ,η provides a unitary irreducible representation. The representations thus

formed comprise the principal series. For f ∈ HG
γ,η , g = k ∈ K and

g0 = an ∈ AN we have

f(kan) = f(gg0)

= η ⊗ eγ ⊗ 1(n−1a−1)f(k)

= η ⊗ eγ ⊗ 1
(
a−1(an−1a−1)

)
f(k)

= eγ(a−1)f(k)
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since an−1a−1 is in N . Thus elements of HG
γ,η are determined by their restrictions

to K , and there is a bijection from HG
γ,η to a subspace HK of square integrable

functions on f : K → C satisfying

f(km) = η(m−1)f(k) ∀k ∈ K,m ∈M.

Clearly elements of HK are in one to one correspondence with a collection HZ of
functions on T ∼= Z square integrable with respect to Lebesgue measure. Indeed,
transfering the action of G over to HZ and completing yields a unitary represen-
tation of G in HZ

γ,η = L2(T).

By a similar process replacing K with N , or by directly relating R and T,
we obtain a representation of G in a Hilbert space HN

γ,η = L2(R). We now exhibit
both realisations.

For f ∈ L2(T), F ∈ L2(R), y ∈ R ∼= N , θ ∈ T ∼= Z , g =
(
a b
c d

)
∈ G

and γ̃ = (1/4 + iR) we calculate

σZγ,η(g)f(θ) =
[
(d cos(θ/2) + b sin(θ/2))2 + (c cos(θ/2) + a sin(θ/2))2

]−2γ̃

×signum(d cos(θ/2) + b sin(θ/2))η
′

×f
(

2 tan−1

(
c cos(θ/2) + a sin(θ/2)

d cos(θ/2) + b sin(θ/2)

))

σNγ,η(g)F (y) = (d− by/2)−4γ̃signum(d− by/2)η
′
F

(
2
ay/2− c
d− by/2

)
.

Next we calculate the representations of g derived from the representations
of G above. For X =

∑3
i=1 xiei ∈ g we have

dσZγ,η(X)f(θ) = 2γ̃ (x1 cos θ − x2 sin θ) f(θ)

+ (x2 cos θ + x1 sin θ − x3) f ′(θ) (3.1)

dσNγ,η(X)F (y) = 2γ̃ (x1 + x2y/2 + x3y/2)F (y)

+
(
x2(y2/4− 1) + x3(y2/4 + 1) + yx1

)
F ′(y) (3.2)

where primes indicate differentiation with respect to θ and y respectively.

Proposition 3.1. The representations of G and g on L2(T) and L2(R) are
intertwined by I : D → C∞c (R) where D is a dense subspace of C∞(T) and

I(f)(y) =
(
4 + y2

)−2γ̃
f
(
−2 tan−1(y/2)

)
,

for all f ∈ D .

Proof. We may take D = {f ∈ C∞(T) : π /∈ suppf}. Now I has inverse

I−1(F )(θ) =
(
4 + tan2 θ/2

)2γ̃
F (−2 tan(θ/2))
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for F ∈ C∞c (R). Since I−1(C∞c (R)) ⊂ D , I(D) = C∞c (R). Thus D and I(D)
are dense subspaces of L2(T) and L2(R). As we are primarily interested in
representations of g, we check directly that I respects the g actions on these
dense subspaces using the following convenient definitions. The remainder of the
proof is left to the reader. Let

p(y) = −2 tan−1(y/2)

κ0(θ) = 2γ̃ (x1 cos θ − x2 sin θ)

κ1(θ) = x2 cos θ + x1 sin θ − x3

τ0(y) = 2γ̃ (x1 + x2y/2 + x3y/2)

τ1(y) = x2(y2/4− 1) + x3(y2/4 + 1) + yx1

ϕ(y) =
(
4 + y2

)−2γ̃

and for f ∈ C∞c (R), y ∈ R put θ = p(y), F = I(f). Writing X · f for σZγ,η(X)f ,

X · F for σNγ,η(X)F and t = tan(θ/2) we have

(X · I(f)) (y) = τ0(y)F (y) + τ1(y)F ′(y)

= τ0(y)ϕ(y)f ◦ p(y) + τ1(y) [ϕ′(y)f ◦ p(y) + ϕ(y)p′(y)f ′ ◦ p(y)]

= ϕ(y)τ0 ◦ p−1(θ) + ϕ(y)τ1 ◦ p−1(θ)f(θ)

+τ1 ◦ p−1(θ)f ′(θ)p′ ◦ p−1(θ)

= 2γ̃ϕ(y)
{[
τ0(−2t) +

t

1 + t2
τ1(−2t)

]
f(θ)

+
[ −1

1 + t2
τ1(−2t)

]
f ′(θ)

}

= 2γ̃ϕ(y)
{[
x1 − x2t− x3t+

t

1 + t2

(
x2(t2 − 1) + x3(t2 + 1)

−2tx1)] f(θ)− 1

1 + t2

[
x2(t2 − 1) + x3(t2 + 1)− 2tx1

]
f ′(θ)

}

= 2γ̃ϕ(y)

{[
x1

1− t2
1 + t2

− x2
−2t

1 + t2

]
f(θ)

−
[
x1

2t

1 + t2
+ x2

1− t2
1 + t2

− x3

]
f ′(θ)

}

= 2γ̃ϕ(y) {[x1 cos θ − x2 sin θ] f(θ)

− [x1 sin θ + x2 cos θ − x3] f ′(θ)}
= ϕ(y) {κ0(θ)f(θ) + κ1(θ)f ′(θ)}
= ϕ(y) (X · f) (p(y))

= I (X · f) (y), (3.3)

showing that I respects the g actions on (dense subspaces of) L2(R) and L2(T).

Next we give two examples of symbol calculi on the coadjoint orbits of G,
both adapted to the orbits in the sense given in the introduction. The first is a
special case of the construction given in Cahen [3] for real semisimple Lie groups
with finite centre. We aim to compare this with a second calculus constructed
using the Iwasawa decomposition and better suited to contractions.
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4. The Ψ–Calculus on G–Orbits

The prescription for a symbol calculus on the adjoint orbits of SL2(R) given in [3]
amounts to a transferral of the classical Weyl correspondence on R2 ([16], [11],
[14], [7]) to the orbit Oψ by the parametrisation

Ψ(y, z) = (R + yz/2)ê1 + (−z/2 +Ry/2 + zy2/8)ê2 + (−z/2− Ry/2− zy2/8)ê3

which is a diffeomorphism from R2 to Õψ = Oψ\ {−Rê1}. For this reason we shall
refer to it as the Ψ–calculus. We now describe this calculus, essentially following
Voros [14].

We say that f : Õψ → C is polynomial in z , or simply polynomial, if
f ◦Ψ(y, z) is a polynomial in z whose coefficients are smooth functions of y . For
such an f we define a differential operator on C∞c (R) by the formula

(
AΨ
f φ
)

(y) =
1

2π

∫

R×R
e−itzf ◦Ψ (y + t/2, z)φ(y + t) dt dz,

for φ ∈ C∞c (R). This is precisely Formula 5.1 of Cahen [3] in the special case G =
SL2(R) with the identifications of Section 2. It is the correspondence introduced by
Weyl in [16] applied to f ◦Ψ. To see how the definition works, let f ◦Ψ = u(y)za

for some a ∈ N, u ∈ C∞(R). For φ ∈ C∞c (R) define ϑy(t) = u(y + t/2)φ(y + t).
Integrating by parts and applying the Fourier inversion theorem we have

(
AΨ
f φ
)

(y) =
1

2π

∫

R×R
e−itzu(y + t/2)zaφ(y + t) dtdz

=
1

2π

∫

R×R
e−itzzaϑy(t) dtdz

=
1

2π

∫

R×R

(
−i d
dt

)a
ϑy(t) e

−itz dtdz

=

[(
−i d
dt

)a
ϑy

]

t=0

=

[(
−i d
dt

)a
(u(y + t/2)φ(y + t))

]

t=0

=
a∑

k=0

ck
dk

dyk
φ(y)

where

ck = (−i)a
(
a
k

)
2(k−a) d

(a−k)

dy(a−k)
u(y).

This permits an easy calculation of AΨ
f for polynomial f . As demanded by [3],

the calculus is adapted to the representation (3.2). If X =
∑3
i=1 xiei ∈ g and X̃

defined by X̃(ξ) = ξ(X) for ξ ∈ g∗ we have

X̃ ◦Ψ(y, z) = g(y) + h(y)z

where g(y) = 2R(x1 +x3y/2+x2y/2) and h(y) = x2(y2/4−1)+x3(y2/4+1)+x1y .
Denoting derivatives with respect to y by primes we therefore have

(
iAΨ

X̃
φ
)

(y) = i
{
g(y)φ(y)− i

2
h′(y)φ(y)− 1

i
h(y)φ′(y)

}
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= 2 (1/4 + iR) (x1 + x2y/2 + x3y/2)φ(y)

+
(
x1y + x2(y2/4− 1) + x3(y2/4 + 1)

)
φ′(y)

= τ0(y)φ(y) + τ1(y)φ′(y)

= (X · φ) (y).

for all φ ∈ C∞c (R). That is,

AΨ
X̃

=
1

i
dσNγ,η(X) (4.4)

on C∞c (R).

5. The Υ–Calculus on G–Orbits

Define Υ : T× R→ Oψ by

Υ(θ, z) =
(
R cos θ − z

2
sin θ

)
ê1 −

(
R sin θ +

z

2
cos θ

)
ê2 −

(
z

2

)
ê3. (5.5)

This map is a slight modification of Ψ, where we take Oψ = Ad(KAN)ψ in place
of Õψ = Ad(NMAN)ψ . It is a diffeomorphism from T× R to Oψ .

Say f : Oψ → C is polynomial in z if f ◦Υ(θ, z) is a polynomial in z whose
coefficients are smooth functions of θ . For f supported in Õψ this agrees with
the definition of the previous section since

f ◦Υ(θ, z) = f ◦Ψ ◦Ψ−1 ◦Υ(θ, z)

= f ◦Ψ
(
−2 tan(θ/2), R sin θ +

z

2
(cos θ + 1)

)

and

f ◦Ψ(y, z) = f ◦Υ ◦Υ−1 ◦Ψ(y, z)

= f ◦Υ
(
−2 tan−1(y/2),

(
1 + y2/4

)
z +Ry

)

so f ◦ Ψ is polynomial in z with smooth coefficients in y if and only if f ◦ Υ is
polynomial in z with smooth coefficients in θ . For such an f define an operator
AΥ
f acting on φ ∈ C∞(T) by

(
AΥ
f φ
)

(θ) =
1

2π

∫

T×R
eitzf ◦Υ (θ + t/2, z)φ(θ + t) dt dz. (5.6)

If f ◦Υ(θ, z) = v(θ)za for some v ∈ C∞(T) and a ∈ N then by similar manipula-
tions to those of Section 4. we obtain

(
AΥ
f φ
)

(θ) =
a∑

k=0

c̃k
dk

dθk
φ(θ)

where

c̃k = (i)a
(
a
k

)
2(k−a) d

(a−k)

dθ(a−k)
v(θ).
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This calculus is also adapted to the orbit Oψ . With X̃ as before

X̃ ◦Υ(θ, z) = g̃(θ) + h̃(θ)z

with g̃(θ) = 2R(x1 cos θ − x2 sin θ) and h̃(θ) = −x1 sin θ − x2 cos θ + x3. Thus,
denoting derivatives with respect to θ by primes,

(
iAΥ

X̃
φ
)

(θ) = i
{
g̃(y)φ(y) +

i

2
h̃′(θ)φ(θ) + ih̃(θ)φ′(θ)

}

=

(
i
2R

2γ′
κ0(θ) +

1

2

1

2γ′
κ0(θ)

)
φ(θ) + κ1(θ)φ′(θ)

= κ0(θ)φ(θ) + κ1(θ)φ′(θ)

= (X · φ) (θ).

That is,

AΥ
X̃

=
1

i
dσZγ,η(X). (5.7)

on C∞(T), showing that the Υ–calculus is adapted to the representation (3.1).

6. Non-equivalence of the Calculi

The operators of the Ψ-calculus act on C∞c (R), whereas the operators of the
Υ-calculus act on C∞(T). It is natural to ask whether, for every fixed symbol
f on Oψ , the operators AΨ

f and AΥ
f are intertwined by the maps I and I−1 of

Section 3. The two calculi would then be equivalent.

We conclude this section by showing that this is not the case. If A and B
are operators on C∞c (R) and C∞(T) respectively we say that A is equivalent to
B and write A ∼ B if A = I ◦B ◦ I−1 . Equations (4.4), (5.7) and (3.3) show that

AΨ
X̃
∼ AΥ

X̃

for all X ∈ g. No such equivalence holds for arbitrary symbols however. Let
f = ê3 . As a special case of the above equation we have AΨ

f ∼ AΥ
f , and it is easily

seen that AΥ
f2 = AΥ

f ◦ AΥ
f . Suppose AΨ

f2 ∼ AΥ
f2 . This immediately gives

(
AΨ
f2 − AΨ

f ◦ AΨ
f

)
φ(y) =

(
I ◦ AΥ

f2 ◦ I−1 − I ◦ AΥ
f ◦ I−1 ◦ I ◦ AΥ

f ◦ I−1
)
φ(y)

= I ◦
(
AΥ
f2 − AΥ

f ◦ AΥ
f

)
◦ I−1φ(y)

= 0.

which (we omit the calculation) is false for any φ in C∞c (R) not identically zero
at any point y 6= 0. We conclude that AΨ

f2 is not equivalent to AΥ
f2 .

7. Representations of the Motion Group

To certain coadjoint orbits of M̃(2) we associate a pair of unitary irreducible
representations. This collection of representations is parametrised in the same
way as the principal series representations of SL2(R). They are limits, in a precise
sense, of these representations.
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The coadjoint representation of M̃(2) is neatly expressed as

(v, k) · (p, f) = (k · p, k · f + v ∧ k · p)

for v ∈ V ,k ∈ K , p ∈ V ∗ and f ∈ k∗ . Here k · f = Ad∗K(k)f , k · p = AdG(k)p
and v ∧ p ∈ k∗ is defined by

〈v ∧ p, A〉 = 〈p, A · v〉

for A ∈ k and A · v = [A, v]g . The wedge product for SL2(R) is

(v1e1 + v2e2) ∧ (p1ê1 + p2ê2) = (p1v2 − p2v1) ê3.

and the coadjoint orbits of M are cylinders centred along the ê3 axis. As in
Section 3. we fix an orbit Cψ passing through an element ψ = Rê1 ∈ a+∗ and a
unitary irreducible representation η of M . Just as was the case for the principal
series representations of SL2(R), the pair (ψ, η) determines an irreducible unitary

representation of M̃(2). We begin with the unitary irreducible representation
eiψ ⊗ η of V oM and induce up to a representation

ρψ,η = IndVoKV×M eiψ ⊗ η

of the whole group M̃(2). For details see Dooley [5].

In a manner analogous to Section 3. we realise the representation in the
Hilbert space HZ

γ,η = L2(T). Again, details are found in [5]. The realisation on
L2(T) is given by

(
ρZψ,η(v0, θ0)φ

)
(θ) = e2iR(v1 cos θ+v2 sin θ)φ (θ − θ0)

for φ ∈ L2(T), θ, θ0 ∈ T and v0 = v1e1 + v2e2 ∈ V . Its derivative is

dρZψ(ω,A)φ(θ) = 2iR (ω1 cos θ − ω2 sin θ)φ(θ)−Aφ′(θ) (7.8)

for ω = ω1e1 + ω2e2 ∈ V , A = Ae3 ∈ k, θ ∈ Z and φ ∈ L2(T).

8. The Γ–Calculus on V oK Orbits

Define the diffeomorphism Γ : T× R→ Cψ by

Γ(θ, z) = (R cos θ) ê1 − (R sin θ) ê2 − (z/2) ê3. (8.9)

Say f : Cψ → C is polynomial in z if f ◦Γ is a polynomial in z whose coefficients
are smooth functions of θ . For such an f define an operator AΓ

f on C∞(T) by

AΓ
fφ(θ) =

1

2π

∫

T×R
eitzf ◦ Γ(θ + t/2, z)φ(θ + t) dz dt. (8.10)

This is almost equivalent to Cahen’s procedure. The first difference is a factor of
R in our parametrisation in the ê3 direction, which is compensated for by elimi-
nation of a factor of R in the exponent itz . The second difference is that we have
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replaced f ◦ Γ(θ, z) with f ◦ Γ(θ + t/2, z) in the integration.

We proceed in a similar fashion to Section 5. Suppose f(θ, z) = w(θ)za for
some w ∈ C∞(T), a ∈ N. For φ ∈ C∞(T) define ϑθ : R× R→ C by
ϑθ(t, z) = w(θ+ t/2)φ(θ+ t/2)χ(−π,π](t) where χ(−π,π] is a characteristic function.
We have

AΓ
fφ(θ) =

1

2π

∫

R×T
eitzzaw(θ + t/2)φ(θ + t/2) dt dz

=
1

2π

∫

R×R
eitzzaϑθ(t) dt dz

=
1

2π

∫

R×R

(
i
d

dt

)a
ϑθ(t) e

itz dt dz

=

[(
i
d

dt

)a
ϑθ

]

t=0

=

[(
i
d

dt

)a
(w(θ + t/2)φ(θ + t))

]

t=0

=
a∑

k=0

˜̃ck
dk

dθk
φ(θ)

where

˜̃ck = (i)a
(
a
k

)
2(k−a) d

(a−k)

dθ(a−k)
w(θ).

In particular, if f = X̃ where X = (ω,A) = (ω1e1 + ω2e2,Ae3) ∈ V + k then

X̃ ◦ Γ (θ, z) = 2R (ω1 cos θ − ω2 sin θ) +Az

and we calculate

iAΓ
X̃
φ(θ) = 2iR (ω1 cos θ − ω2 sin θ)φ(θ)−Aφ′(θ).

That is,

AΓ
X̃

=
1

i
dρZψ(X), (8.11)

on C∞(T) showing that the calculus is adapted to the representation (7.8).

9. Contraction of G to V oK

In Section 1 we mentioned the contraction maps of Dooley defined by

πλ(v, k) = expG(λv) · k
dπλ(ω,A) = λω + A

for v ∈ V ,k ∈ K , ω ∈ V , A ∈ k and λ ∈ R+ . Here we briefly illustrate how these
may be used to contract the Lie algebra structure and representations of SL2(R)

to those of its motion group M̃(2). These results are special cases of theorems in
Dooley and Rice [5].
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Proposition 9.1. For all X, Y ∈ m̃(2) ,

lim
λ→0

dπ−1
λ [dπλ(X), dπλ(Y )]g = [X, Y ]

m̃(2)

Proposition 9.2. For all φ ∈ C∞(T),

sup
θ∈T

∣∣∣dσZψ/λ,η ◦ dπλ(ω,A)φ(θ)− dρZψ(ω,A)φ(θ)
∣∣∣→ 0

as λ → 0 for all (ω,A) ∈ m̃(2) . Moreover the limit is obtained uniformly on

compact subsets of m̃(2) .

Proposition 9.3. For all φ ∈ C∞(T)

sup
θ∈T

∣∣∣σZψ/λ,η ◦ dπλ(v, θ′)φ(θ)− ρZψ(v, θ′)φ(θ)
∣∣∣→ 0

as λ→ 0 uniformly on compact subsets of M̃(2) .

Proof. These properties are routinely verified. We check only the second claim,
which will be of greatest interest to us. Suppose φ ∈ C∞(T). If ω = ω1e1 +ω2e2 ∈
V and A = Ae3 ∈ k then

dσZψ/λ,η (dπλ(ω,A))φ(θ) = dσZψ/λ,η (λω,A)φ(θ)

= 2 (1/4 + iR/λ) (λω1 cos θ − λω2 sin θ)φ(θ)

+ (λω2 cos θ + λω1 sin θ −A)φ′(θ)

= 2iR (ω1 cos θ − ω2 sin θ)φ(θ)−Aφ′(θ) +O(λ)

= dρZψ(ω,A)φ(θ) +O(λ)

where

O(λ) = λ
{

1

2
(ω1 cos θ − ω2 sin θ)φ(θ) + (ω1 sin θ + ω2 cos θ)φ′(θ)

}
.

Therefore

∣∣∣dσZψ/λ,η ◦ dπλ(ω,A)φ(θ)− ρZψ(ω,A)φ(θ)
∣∣∣ ≤ λ|ω| (|φ(θ)|+ |φ′(θ)|)

for all φ ∈ C∞(T),θ ∈ T. Property 2 follows.

10. Contraction of the Υ–Calculus

Fix a V o K –orbit Cψ passing through ψ ∈ a+∗ and suppose f : Cψ → C is
polynomial in z of degree d. That is,

f ◦ Γ(θ, z) =
d∑

a=0

ua(θ)z
a
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say, where each ua ∈ C∞(T). For λ > 0 the G–orbit Oψ/λ passing through ψ/λ
is parametrised by

Υλ(θ, z) =
(
R

λ
cos θ − z

2
sin θ

)
ê1 −

(
z

2
sin θ +

R

λ
cos θ

)
ê2 −

(
z

2

)
ê3.

Suppose also that F =
{
fλ : Oψ/λ → C

}
λ∈R+

is a family of polynomials in z of

degree equal to the degree of f :

fλ ◦Υλ(θ, z) =
d∑

a=0

vλa (θ)za

for vλa ∈ C∞(T). If (vλa − ua) and all its derivatives of degree less than or equal
to d tend uniformly to zero on T as λ tends to zero then we say that the family
F approximates f .

Proposition 10.1. Let f be a polynomial symbol on a V o K –orbit Cψ and
suppose F = {fλ}λ∈R is an approximating family of polynomial symbols on G–
orbits Oψ/λ as above. Let AΓ

f (respectively AΥ
fλ

) denote the operator on C∞(T)
corresponding to f (respectively fλ ) under the Γ–calculus on Cψ (respectively Υ–
calculus on Oψ/λ ). Then for all φ ∈ C∞(T)

sup
θ∈T

∣∣∣AΥ
fλ
φ(θ)− AΓ

fφ(θ)
∣∣∣→ 0

as λ→ 0.

Proof. With the same notation as above and recalling the results of sections
5. and 7. we have

AΥ
fλ
φ(θ)− AΓ

fφ(θ) =
d∑

a=0

d∑

k=0

(i)a
(
a
k

)
2(k−a)

(
d

dθ

)(a−k)

(vλa − ua)(θ)
(
d

dθ

)k
(φ)(θ)

for φ ∈ C∞(T),θ ∈ T. As all derivatives of φ appearing above are uniformly
bounded in T and all derivatives of (vλa − ua) tend uniformly to zero in T, each
term tends uniformly to zero on T.

Corollary 10.2. For all φ ∈ C∞(T) and (ω,A) ∈ m̃(2)

sup
θ∈T

∣∣∣dσZψ/λ,η ◦ dπλ(ω,A)φ(θ)− dρZψ(ω,A)φ(θ)
∣∣∣→ 0

as λ→ 0.

Proof. For X = ω1e1 + ω2e2 +Ae3 ∈ m̃(2),λ ∈ R+ let f = X̃ and define the

family F = d
{
fλ = ˜πλ(X)

}
λ∈R+

. Then

fλ ◦Υλ(θ, z) = d ˜πλ(X) ◦Υλ(θ, z)

= β
(
λω1e1 + λω1e2 +Ae3,

(
R

λ
cos θ − z

2
sin θ

)
e1 −

(
R

λ
sin θ +

z

2
cos θ

)
e2 −

(
z

2

)
e3

)

= 2(Rω1 cos θ − Rω2 sin θ) + (A− λω1 sin θ − λω2 cos θ)z,
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whereas

f ◦ Γ(θ, z) = X̃ ◦ Γ(θ, z)

= 2(Rω1 cos θ − Rω2 sin θ) +Az.
so F approximates f . By Proposition 1,

sup
θ∈T

∣∣∣AΥ
fλ
φ(θ)− AΓ

fφ(θ)
∣∣∣→ 0

as λ → 0 for all φ ∈ C∞(T). Since AΥ
fλ

= AΥ
˜πλ(X)

= −i dσZγ,η ◦ dπλ(X) and

AΓ
f = AΓ

X̃
= −i dρZψ(X) the result follows.

We have thus essentially recovered Proposition 9.2. Uniform convergence

on compact subsets on m̃(2) can be demonstrated by a slight generalisation of
Proposition 1, which we leave to the reader.

The form of the above proposition above was chosen purely to illustrate
how the contraction results of Dooley and Rice [5] at the Lie algebra level follow
from the contraction of adapted calculi. We have however, a more direct approach.

Proposition 10.3. Let f be a function on Cψ , polynomial in z . Let f̃ =

f ◦ Γ ◦Υ−1 . Then f̃ is a function of Oψ , polynomial in z and

AΓ
f = AΥ

f̃

on C∞(T). Conversely, if f̃ is a function on Oψ , polynomial in z and f =

f̃ ◦Υ ◦ Γ−1 then f is a function on Cψ polynomial in z and

AΥ

f̃
= AΓ

f .

Proof. As f̃ ◦ Υ = f ◦ Γ, f̃ is polynomial in z if and only if f is polynomial
in z . The equality of operators follows immediately from the defining equations
(5.6) and (8.10).

11. Non-polynomial Symbols

In Section 5 we said that f : Oψ → C was polynomial in z if f ◦Υ was polynomial
in z . In the same manner [3] we define Lp functions, rapidly decreasing functions
and distributions on Oψ . Of interest to us here will be the Hilbert spaces L2(Oψ)
consisting of those functions f on Oψ for which f ◦ Υ ∈ L2(T × R). The aim of
this section is to extend the Υ calculus to these functions. We first recall a few
facts from [13].

The family L2(H) of (compact) operators A on a Hilbert space H satisfying
TrA∗A <∞ is a Hilbert space with respect to the inner product

(A,B) = Tr(A∗B).

Such operators are called Hilbert-Schmidt. In the case H = L2(M, dµ) for 〈M, µ〉
a measure space the Hilbert-Schmidt operators are precisely those with kernels
KA in L2(M×M, dµ⊗ dµ), the map A 7→ KA being a Hilbert space isometry
from L2(L2(M, dµ)) to L2(M×M, dµ⊗ dµ) [13].
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Lemma 11.1. Equation (5.6) of Section 5 defines a map from L2(Oψ) to
L2(L2(T)). Further,

‖AΥ
f ‖L2(L2(T)) ≤ ‖f‖L2(Oψ)

holds for all f ∈ L2(Oψ).

Proof. (Similar to [3], [14] and [11]). Define the partial Fourier transform
F2 : L2(T× R)→ L2(T× R) by

F2(f)(θ, z) =
1

2π

∫

R
f(θ, z)e−ixzdz.

Then F2 is an isometry. Define also U : L2(T× R)→ L2(T× T) by

U(f)(θ, θ′) = f ((θ + θ′)/2, θ − θ′) .

As is easily checked, ‖U(f)‖L2(T×T) ≤ ‖f‖L2(T×R) . Finally let K = U ◦ F2 . Then
for f ∈ L2(Oψ) we have

‖K(f ◦Υ)‖L2(T×T) ≤ ‖F2(f ◦Υ)‖L2(T×R) = ‖f ◦Υ‖L2(T×R) =: ‖f‖L2(Oψ).

So K(f ◦Υ) is in L2(T×T) and is thus the kernel of a Hilbert-Schmidt operator
on L2(T). Denoting this operator by Ãf we then have

‖Ãf‖L2(L2(T)) = ‖K(f ◦Υ)‖L2(T×T) ≤ ‖f‖L2(Oψ),

so if we can show that Ãf = AΥ
f we are done. Using Fubini’s theorem and the

substitution t = θ′ − θ we have

Ãfφ(θ) =
∫

T
K(f ◦Υ)(θ, θ′)φ(θ′) dθ′

=
∫

T

1

2π

∫

R
f ◦Υ ((θ + θ′)/2, z) e−iz(θ−θ

′) dz φ(θ′) dθ′

=
1

2π

∫

T×R
f ◦Υ(θ + t/2)φ(θ + t)eizt dtdz

= AΥ
f φ(θ)

for all φ ∈ C∞(T), θ ∈ T.

We may similarly extend the Ψ–calculus (see [3], [11] or [14]) and the Γ–calculus
to functions in L2(Oψ) and L2(Cψ) respectively. Taking this as done, we continue
in the same vein as Section 10.

Proposition 11.2. Suppose f ∈ L2(Cψ) and F =
{
fλ : Oψ/λ → C

}
λ∈C

such

that fλ ∈ L2(Oψ/λ). We say that F approximates f in L2 sense if

‖fλ ◦Υλ − f ◦ Γ‖L2(T×R) → 0

as λ→ 0. In this case AΥ
fλ

tends to AΓ
f in Hilbert-Schmidt norm.
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Proof. By Lemma 11.1 the operators AΥ
fλ

tend in Hilbert-Schmidt norm to the
operator AΥ

f◦Γ◦Υ−1 . By inspection of the defining equations (5.6) and (8.10), this

operator is precisely AΓ
f .

Proposition 11.3. If f ∈ L2(Cψ) then f̃ := f ◦ Γ ◦Υ−1 is in L2(Oψ) and

AΓ
f = AΥ

f̃
.

Conversely if f̃ ∈ L2(Oψ) then f = f̃ ◦Υ ◦ Γ−1 ∈ L2(Cψ) and

AΥ

f̃
= AΓ

f .

Proof. As f̃◦Υ = f◦Γ, f̃ is an element of L2(Oψ) if and only if f is an element
of L2(Cψ). Equality of operators follows directly from the defining equations (5.6)
and (8.10).

12. Concluding Remarks

The authors expect the results of this paper to apply to all pairs (G,K) discussed
in the introduction. For G a general semisimple Lie group with finite centre the
subgroup M is of course no longer discrete (we recall that M was the centraliser
of A in K , where K ,A and N provide an Iwasawa decomposition). Whilst
this introduces a fair amount of work in construction of the adapted calculi, it
should not complicate the contraction process at all, since M may be treated in
an identical fashion in both cases (as in Cahen [3]).

References

[1] Arnal, D. and Cortet, J. C., Représentations des Groupes Exponentiels,
J. Functional Anal. 92 (1990), 103–135.

[2] Berezin, F. A., General Concept of Quantisation, Commun. Math. Phys.
40 (1975), 153–174.

[3] Cahen, B., Star Représentations Induites, PhD Thesis, University of Metz,
1992.

[4] Dooley, A. H. and J. W. Rice, Contractions of rotation groups and their
representations, Math. Proc. Camb. Phil. Soc. 94 (1983), 509–517.

[5] Dooley, A. H. and J. W. Rice , On Contractions of Semisimple Lie Groups,
Trans. Amer. Math. Soc. 289 (1985), 185–202.

[6] Duflo, M., Fundamental series representations of a Lie group, Funct. Anal.
and Appl. 4 (1970) 38–42.

[7] Folland, G. B., “Harmonic Analysis in Phase Space,” Princeton University,
1989.

[8] Helgason, S., “Differential Geometry, Lie Groups and Symmetric
Spaces,” Academic Press, 1978.
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