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Ternary Quartics and 3-dimensional Commutative Algebras
Pavel Katsylo and Dmitry Mikhailov*

Communicated by E. B. Vinberg

Abstract. We find a connection between 3-dimensional commutative
algebras with trivial trace and plane quartics and their bitangents.

1. Introduction

In this paper a structure of a commutative algebra on C? is called a 3-dimensional
algebra. Let A be the set of 3-dimensional algebras. Consider A as a linear space.
Let Ay C A be the linear subspace of algebras with trivial trace. By definition,
n € A if the contraction of the structure tensor of 7 is equal to zero.

By PV we denote the projectivization of a vector space V. For v € V| v #
0 we denote by ¥ the corresponding point of the projective space PV .

Let n € Ag be an algebra with trivial trace. Recall that an element a € C3
is called an idempotent if a # 0, a? = a. We say that an element @ € PC? = P?
is a generalized idempotent if a? = \a, where A € C. Every idempotent defines
a generalized idempotent. Every generalized idempotent @ € P2 such that a? # 0
defines uniquely an idempotent @’ € C? such that @ = a’. Define the subscheme
X (n) C P? of the generalized idempotents by the following equation:

a’*Na=0. (0.1)
Consider the open SLj-invariant subset
Ay ={ne€ Ay | dimX(n) =0} C A,.

Lemma 1.1. o s nonempty

Consider 1 € Ay. The algebra 7 defines the quadratic mapping

C?— C3 a—d
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This quadratic mapping defines the section 77 of the vector bundle Tp2(1) (see [3],
Ch. 1). The scheme of zeros of the section 77 is X (n). We have

deg X (1) = &(Tpa(1)) = 7,

for n € Ay (see [3], Ch. 1).

Consider the open SLj-invariant subset

Ay ={ne Ay | X(n)={a1,...,a7}, a? #0, 1 <i <7,
every 3 points of X(n) do not lie on a line,
every 6 points of X(n) do not lie on a quadric} C Aj,.

Lemma 1.2. 0 1s nonempty.

Consider the rational SL3-morphism
p: PAg— (P, i X(n).

We use the standard notation (P2)(™ for the 7-th symmetric degree of P2.

Proposition 1.3. @ 1s a birational isomorphism.

In other words, a 3-dimensional algebra in general position with a trivial
trace is uniquely (up to a scalar factor) defined by its generalized idempotents.
Fix n € Aj. Let ay,...,ar be the idempotents of the algebra 7. Let

m=m(n):Z=2Z(n) — P*

be the blowing up of X (n) in P?. It is well known that Z is a Del Pezzo surface
of degree 2. We use some facts on the Del Pezzo surfaces, see [2], Ch. 5, section 4
for details. Let

B=pB(1n):Z— P*=PC”

be the canonical double covering with a nonsingular quartic Y = Y (n) C P?* as
the branch locus.

The SLj-module S%A, contains with multiplicity one a submodule isomor-
phic to S*C3. Therefore, there exists a unique (up to a scalar factor) nontrivial
quadratic SL3-mapping

e: Ay — SiC3.

Lemma 1.4. £(n) #0.

Consider the quaternary form &(n) on the space C3*. This quaternary form defines
a quartic Y' = Y’(n) C P?*. Consider the 28 linear forms a, ..., ar, (a;—a;)?, 1<
i < j <7 on the space C*. These linear forms define 28 lines Ay,..., A7, A;; €
P

Theorem 1.5. 1. 'Y is isomorphic to Y'.
2. The 28 bitangents to Y' are Ay,..., A7, A

The authors thank B.Broer for a useful discussion.

gy 1<i<j<T.
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2. Proofs

Let ey, es,e3 be the standard basis in C?, and 1, 22, 3 the dual basis in C?*.
The group SLj acts canonically in the space S*C3*® S*C?**, a,b > 0. For a,b > 1
consider the linear SL3-mapping

0 0
A = . ga 3 b 3% a—1M3 b—1 3*.
gaei®axiSC®SC — ST C°® S"C

It is well known that the representation of the group SLjs in the space
V(a,b) = ker ¢ is irreducible (see [1], part 111, section 13). Assume that V'(a,0) =
SeC3, V(0,b) = SPC3*,

A structure of a commutative algebra on C? is a symmetric bilinear map-
ping

C3 x C* — C3.
The set of such symmetric bilinear mappings is C* ® S2C3*. Therefore, the linear
space A of 3-dimensional algebras is C* @ S2C3*. The contraction of structure
tensors of algebras is the mapping
A:CP e S2°CH* — C*.

Therefore, the linear space Ay of 3-dimensional algebras with trivial trace is
V(1,2).

JFrom the Littelwood-Richardson rule we get the following SLj3-module
decomposition

V(1,2)eC*eC*~C*@2V(0,2) ®2V(2,1) @2V (1,3) © V(3,2)

(see [1], App. A). Thus there exists a unique (up to a scalar factor) nontrivial
trilinear SL3-mapping

p:V(1,2) x C* x C* — C?.
Let us give the explicit form of u:
N(eil QT Ty, Ciys eis) = A2(‘61'1 €ip iz @ Sleij).

The algebraic structure corresponding to n € V(1,2) is the bilinear symmetric

mapping
p(n, ) C¥x C* — C°.

Example 2.1.  Consider the algebra

1
nO:Z(el®x§+eg®xf+eg®:c§).

The multiplication table of 7y is as following:
61*62262*63263*61:0, 6%262, 63263, 63261.

It can be easily checked that the subscheme X(ny) C P? of the generalized
idempotents of nq is

X(’I]()) = {961 + 0262 + 0463 | 0 € M7},
where p; ={0 € C | 6" =1}.
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We have 1y € Aj. It follows that Aj is nonempty. It can easily be checked
that ny € A;. Therefore, Aj is nonempty. This proves of Lemmas 1.1 and 1.2.

It can easily be checked that o=*(X(ny)) = {m}. It follows from (0.1) that
a fiber of ¢ of general position is a point in PV'(1,2). Hence ¢ is a birational
isomorphism. This proves Proposition 1.3.

Fix n € A and let ay,...,a; be the idempotents of 7.

Consider the cubic mapping

Y =1(n): C* — N2C*~C* ara®Aa.

Lemma 2.2. Consider a; as a linear form on C¥*. Let Q; = Qi(n) be the
cubic corresponding to the cubic form 1*(a;). Then the cubic Q); contains each of
ay,...,ar with multiplicity > 2.

Proof. It is obvious that ); > ay,...,a7;. Let us prove that (); contains @;
with multiplicity > 2. We have

V*(a;) a— a*NaAa; € N>C3 ~ C,
*(a;)(a; + tb) = (a; + tb)* A (a; + tb) N a; = a? A a; A a;+
t((2a; *b) Na; ANa; + a2 ANbAa;)+o(t) =0+t-0+ot)

for any b € C3. [ ]

Lemma 2.3.  Consider (a; — a;)?, i < j as linear forms on C*. Let Q;; =
Qi;(n) be the cubic corresponding to the cubic form ¥*((a; — a;)?). Then Qi;
is the union of the line (a;,a;) and the quadric containing the points
r P AU A -

Proof. It is obvious that Q;; > @y,...,@;. We have to prove that ();; contains
the line (a;,@;). We have

v ((a; — a;)*) sa—a®* Na A (a; — aj)* € A*°C* ~ C,
1/1*(((12 — aj)Z)(tiai + tj(lj) = (tZCLZ + tjaj)Q N (tzaz + t]’CL]’) A (al- — 20@' * CL]' -+ Clj) =
t3a? Na; A (a; — 2a; % a; + aj) + tt;(a? Aaj A (a; — 2a; % aj + aj)+

(2a; % a;) A a; A (a; — 2a; * aj + az)) + tit3 (a5 A a; A (a; — 2a; % a; + a;)+
(207 * ai) A Q; N (ai — 20@' * @y + Clj)) + t?a? VAN Q; A (ai — 2ai * a; + CL]') =0.

Consider the rational morphism

U =U(n): P2 — P, @ ¢(a).
It is not defined exactly on X (7). Let
P2~ z7-2z>n L P

be the regularization of ¥, ¥ = Sox~!. It is well known that Z is a Del Pezzo
surface of degree 2, 7 is the blowing up of the seven points ay,...,a; in P2, 3:
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Z — P? is a double covering with the nonsingular quartic Y = Y(n) C P* as
the branch locus (see [2], Ch. 5).

Let us prove Lemma 1.4 and Theorem 1.5. Consider the nontrivial homo-
geneous SLj-equivariant mapping of degree 6

v 2 V(1,2) — V(0,12) = S12C3,
e ), i (det(25E)2.

It can be checked that the SLs-module S%V/(1,2) contains V/(0,12) with multi-
plicity one. Thus v; = ¢yy, where ¢ # 0. This implies Lemma 1.4 and statement
1. of Theorem 1.5.

The second part of Theorem 1.5 is a corollary of Lemmas 2.2 and 2.3 (see
[2], Ch. 5, Section 4)
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