Ternary Quartics and 3-dimensional Commutative Algebras

Pavel Katsylo and Dmitry Mikhailov*

Communicated by E. B. Vinberg

Abstract. We find a connection between 3-dimensional commutative algebras with trivial trace and plane quartics and their bitangents.

1. Introduction

In this paper a structure of a commutative algebra on \mathbb{C}^3 is called a 3-dimensional algebra. Let \mathcal{A} be the set of 3-dimensional algebras. Consider \mathcal{A} as a linear space. Let $\mathcal{A}_0 \subset \mathcal{A}$ be the linear subspace of algebras with trivial trace. By definition, $\eta \in \mathcal{A}_0$ if the contraction of the structure tensor of η is equal to zero.

By PV we denote the projectivization of a vector space V. For $v \in V$, $v \neq 0$ we denote by \overline{v} the corresponding point of the projective space PV.

Let $\eta \in \mathcal{A}_0$ be an algebra with trivial trace. Recall that an element $a \in \mathbf{C}^3$ is called an idempotent if $a \neq 0$, $a^2 = a$. We say that an element $\overline{a} \in P\mathbf{C}^3 = \mathbf{P}^2$ is a generalized idempotent if $a^2 = \lambda a$, where $\lambda \in \mathbf{C}$. Every idempotent defines a generalized idempotent. Every generalized idempotent $\overline{a} \in \mathbf{P}^2$ such that $a^2 \neq 0$ defines uniquely an idempotent $a' \in \mathbf{C}^3$ such that $\overline{a} = \overline{a'}$. Define the subscheme $X(\eta) \subset \mathbf{P}^2$ of the generalized idempotents by the following equation:

$$a^2 \wedge a = 0. \tag{0.1}$$

Consider the open SL_3 -invariant subset

$$\mathcal{A}_0' = \{ \eta \in \mathcal{A}_0 \mid \dim X(\eta) = 0 \} \subset \mathcal{A}_0.$$

Lemma 1.1. \mathcal{A}'_0 is nonempty

Consider $\eta \in \mathcal{A}_0$. The algebra η defines the quadratic mapping

$$\mathbf{C}^3 \longrightarrow \mathbf{C}^3, \quad a \mapsto a^2.$$

ISSN 0949-5932 / \$2.50 © Heldermann Verlag

 $^{^*}$ Research supported by Max-Planck-Institute fur Mathematik and Grant NMQZ000 of the International Science Foundation.

This quadratic mapping defines the section $\tilde{\eta}$ of the vector bundle $T_{\mathbf{P}^2}(1)$ (see [3], Ch. 1). The scheme of zeros of the section $\tilde{\eta}$ is $X(\eta)$. We have

$$\deg X(\eta) = c_2(T_{\mathbf{P}^2}(1)) = 7,$$

for $\eta \in \mathcal{A}_0$ (see [3], Ch. 1).

Consider the open \mathbf{SL}_3 -invariant subset

$$\mathcal{A}_0'' = \{ \eta \in \mathcal{A}_0' \mid X(\eta) = \{ \overline{a_1}, \dots, \overline{a_7} \}, \ a_i^2 \neq 0, \ 1 \leq i \leq 7,$$

every 3 points of $X(\eta)$ do not lie on a line,
every 6 points of $X(\eta)$ do not lie on a quadric $C \in \mathcal{A}_0'$.

Lemma 1.2. \mathcal{A}_0'' is nonempty.

Consider the rational SL_3 -morphism

$$\varphi: P\mathcal{A}_0 \longrightarrow (\mathbf{P}^2)^{(7)}, \quad \eta \mapsto X(\eta).$$

We use the standard notation $(\mathbf{P}^2)^{(7)}$ for the 7-th symmetric degree of \mathbf{P}^2 .

Proposition 1.3. φ is a birational isomorphism.

In other words, a 3-dimensional algebra in general position with a trivial trace is uniquely (up to a scalar factor) defined by its generalized idempotents.

Fix $\eta \in \mathcal{A}_0''$. Let a_1, \ldots, a_7 be the idempotents of the algebra η . Let

$$\pi = \pi(\eta) : Z = Z(\eta) \longrightarrow \mathbf{P}^2$$

be the blowing up of $X(\eta)$ in \mathbf{P}^2 . It is well known that Z is a Del Pezzo surface of degree 2. We use some facts on the Del Pezzo surfaces, see [2], Ch. 5, section 4 for details. Let

$$\beta = \beta(\eta) : Z \longrightarrow \mathbf{P}^{2*} = P\mathbf{C}^{3*}$$

be the canonical double covering with a nonsingular quartic $Y=Y(\eta)\subset \mathbf{P}^{2*}$ as the branch locus.

The SL_3 -module $S^2\mathcal{A}_0$ contains with multiplicity one a submodule isomorphic to $S^4\mathbf{C}^3$. Therefore, there exists a unique (up to a scalar factor) nontrivial quadratic SL_3 -mapping

$$\varepsilon: \mathcal{A}_0 \longrightarrow S^4 \mathbf{C}^3.$$

Lemma 1.4. $\varepsilon(\eta) \neq 0$.

Consider the quaternary form $\varepsilon(\eta)$ on the space \mathbf{C}^{3*} . This quaternary form defines a quartic $Y' = Y'(\eta) \subset \mathbf{P}^{2*}$. Consider the 28 linear forms $a_1, \ldots, a_7, (a_i - a_j)^2, 1 \le i < j \le 7$ on the space \mathbf{C}^{3*} . These linear forms define 28 lines $A_1, \ldots, A_7, A_{ij} \in \mathbf{P}^{2*}$.

Theorem 1.5. 1. Y is isomorphic to Y'.

2. The 28 bitangents to Y' are $A_1, \ldots, A_7, A_{ij}, 1 \leq i < j \leq 7$.

The authors thank B.Broer for a useful discussion.

2. Proofs

Let e_1, e_2, e_3 be the standard basis in \mathbb{C}^3 , and x_1, x_2, x_3 the dual basis in \mathbb{C}^{3*} . The group \mathbf{SL}_3 acts canonically in the space $S^a \mathbb{C}^3 \otimes S^b \mathbb{C}^{3*}$, $a, b \geq 0$. For $a, b \geq 1$ consider the linear \mathbf{SL}_3 -mapping

$$\Delta = \sum \frac{\partial}{\partial e_i} \otimes \frac{\partial}{\partial x_i} : S^a \mathbf{C}^3 \otimes S^b \mathbf{C}^{3*} \longrightarrow S^{a-1} \mathbf{C}^3 \otimes S^{b-1} \mathbf{C}^{3*}.$$

It is well known that the representation of the group \mathbf{SL}_3 in the space $V(a,b) = \ker \delta$ is irreducible (see [1], part III, section 13). Assume that $V(a,0) = S^a \mathbf{C}^3$, $V(0,b) = S^b \mathbf{C}^{3*}$.

A structure of a commutative algebra on \mathbb{C}^3 is a symmetric bilinear mapping

$$\mathbf{C}^3 \times \mathbf{C}^3 \longrightarrow \mathbf{C}^3$$
.

The set of such symmetric bilinear mappings is $\mathbb{C}^3 \otimes S^2\mathbb{C}^{3*}$. Therefore, the linear space \mathcal{A} of 3-dimensional algebras is $\mathbb{C}^3 \otimes S^2\mathbb{C}^{3*}$. The contraction of structure tensors of algebras is the mapping

$$\Delta: \mathbf{C}^3 \otimes S^2 \mathbf{C}^{3*} \longrightarrow \mathbf{C}^{3*}.$$

Therefore, the linear space A_0 of 3-dimensional algebras with trivial trace is V(1,2).

; From the Littelwood-Richardson rule we get the following $\mathbf{SL}_3\text{-module}$ decomposition

$$V(1,2) \otimes \mathbf{C}^3 \otimes \mathbf{C}^3 \simeq \mathbf{C}^3 \oplus 2V(0,2) \oplus 2V(2,1) \oplus 2V(1,3) \oplus V(3,2)$$

(see [1], App. A). Thus there exists a unique (up to a scalar factor) nontrivial trilinear \mathbf{SL}_3 -mapping

$$\mu: V(1,2) \times \mathbf{C}^3 \times \mathbf{C}^3 \longrightarrow \mathbf{C}^3.$$

Let us give the explicit form of μ :

$$\mu(e_{i_1} \otimes x_{j_1} x_{j_2}, e_{i_2}, e_{i_3}) = \Delta^2(e_{i_1} e_{i_2} e_{i_3} \otimes x_{j_1} x_{j_2}).$$

The algebraic structure corresponding to $\eta \in V(1,2)$ is the bilinear symmetric mapping

$$\mu(\eta,\cdot,\cdot): \mathbf{C}^3 \times \mathbf{C}^3 \longrightarrow \mathbf{C}^3.$$

Example 2.1. Consider the algebra

$$\eta_0 = \frac{1}{4} (e_1 \otimes x_3^2 + e_2 \otimes x_1^2 + e_3 \otimes x_2^2).$$

The multiplication table of η_0 is as following:

$$e_1 * e_2 = e_2 * e_3 = e_3 * e_1 = 0$$
, $e_1^2 = e_2$, $e_2^2 = e_3$, $e_3^2 = e_1$.

It can be easily checked that the subscheme $X(\eta_0) \subset \mathbf{P}^2$ of the generalized idempotents of η_0 is

$$X(\eta_0) = \{ \overline{\theta e_1 + \theta^2 e_2 + \theta^4 e_3} \mid \theta \in \mu_7 \},$$

where $\mu_7 = \{\theta \in \mathbf{C} \mid \theta^7 = 1\}.$

We have $\eta_0 \in \mathcal{A}'_0$. It follows that \mathcal{A}'_0 is nonempty. It can easily be checked that $\eta_0 \in \mathcal{A}''_0$. Therefore, \mathcal{A}''_0 is nonempty. This proves of Lemmas 1.1 and 1.2.

It can easily be checked that $\varphi^{-1}(X(\eta_0)) = \{\overline{\eta_0}\}$. It follows from (0.1) that a fiber of φ of general position is a point in PV(1,2). Hence φ is a birational isomorphism. This proves Proposition 1.3.

Fix $\eta \in \mathcal{A}_0''$ and let a_1, \ldots, a_7 be the idempotents of η . Consider the cubic mapping

$$\psi = \psi(\eta) : \mathbf{C}^3 \longrightarrow \wedge^2 \mathbf{C}^3 \simeq \mathbf{C}^{3*}, \quad a \mapsto a^2 \wedge a.$$

Lemma 2.2. Consider a_i as a linear form on \mathbb{C}^{3*} . Let $Q_i = Q_i(\eta)$ be the cubic corresponding to the cubic form $\psi^*(a_i)$. Then the cubic Q_i contains each of $\overline{a_1}, \ldots, \overline{a_7}$ with multiplicity ≥ 2 .

Proof. It is obvious that $Q_i \ni \overline{a_1}, \dots, \overline{a_7}$. Let us prove that Q_i contains $\overline{a_i}$ with multiplicity ≥ 2 . We have

$$\psi^*(a_i): a \mapsto a^2 \wedge a \wedge a_i \in \wedge^3 \mathbf{C}^3 \simeq \mathbf{C},$$

$$\psi^*(a_i)(a_i + tb) = (a_i + tb)^2 \wedge (a_i + tb) \wedge a_i = a_i^2 \wedge a_i \wedge a_i + t((2a_i * b) \wedge a_i \wedge a_i + a_i^2 \wedge b \wedge a_i) + o(t) = 0 + t \cdot 0 + o(t)$$

for any $b \in \mathbb{C}^3$.

Lemma 2.3. Consider $(a_i - a_j)^2$, i < j as linear forms on \mathbb{C}^{3*} . Let $Q_{ij} = Q_{ij}(\eta)$ be the cubic corresponding to the cubic form $\psi^*((a_i - a_j)^2)$. Then Q_{ij} is the union of the line $\langle \overline{a_i}, \overline{a_j} \rangle$ and the quadric containing the points $\overline{a_1}, \ldots, \widehat{a_i}, \ldots, \widehat{a_j}, \ldots, \overline{a_7}$.

Proof. It is obvious that $Q_{ij} \ni \overline{a_1}, \dots, \overline{a_7}$. We have to prove that Q_{ij} contains the line $\langle \overline{a_i}, \overline{a_j} \rangle$. We have

$$\psi^*((a_i - a_i)^2) : a \mapsto a^2 \wedge a \wedge (a_i - a_i)^2 \in \wedge^3 \mathbf{C}^3 \simeq \mathbf{C},$$

$$\psi^*((a_i - a_j)^2)(t_i a_i + t_j a_j) = (t_i a_i + t_j a_j)^2 \wedge (t_i a_i + t_j a_j) \wedge (a_i - 2a_i * a_j + a_j) = t_i^3 a_i^2 \wedge a_i \wedge (a_i - 2a_i * a_j + a_j) + t_i^2 t_j (a_i^2 \wedge a_j \wedge (a_i - 2a_i * a_j + a_j) + (2a_i * a_j) \wedge a_i \wedge (a_i - 2a_i * a_j + a_j)) + t_i t_j^2 (a_j^2 \wedge a_i \wedge (a_i - 2a_i * a_j + a_j) + (2a_j * a_i) \wedge a_j \wedge (a_i - 2a_i * a_j + a_j)) + t_j^3 a_j^2 \wedge a_j \wedge (a_i - 2a_i * a_j + a_j) = 0.$$

Consider the rational morphism

$$\Psi = \Psi(\eta) : \mathbf{P}^2 \longrightarrow \mathbf{P}^{2*}, \quad \overline{a} \mapsto \overline{\psi(a)}.$$

It is not defined exactly on $X(\eta)$. Let

$$\mathbf{P}^2 \stackrel{\pi}{\longleftarrow} Z = Z(\eta) \stackrel{\beta}{\longrightarrow} \mathbf{P}^{2*}$$

be the regularization of Ψ , $\Psi = \beta \circ \pi^{-1}$. It is well known that Z is a Del Pezzo surface of degree 2, π is the blowing up of the seven points $\overline{a_1}, \ldots, \overline{a_7}$ in \mathbf{P}^2 , β :

 $Z \longrightarrow \mathbf{P}^{2*}$ is a double covering with the nonsingular quartic $Y = Y(\eta) \subset \mathbf{P}^{2*}$ as the branch locus (see [2], Ch. 5).

Let us prove Lemma 1.4 and Theorem 1.5. Consider the nontrivial homogeneous \mathbf{SL}_3 -equivariant mapping of degree 6

$$\gamma_i: V(1,2) \longrightarrow V(0,12) = S^{12} \mathbf{C}^{3*},$$

$$\gamma_1: \eta \mapsto \psi^*(\varepsilon(\eta)), \quad \gamma_2: \eta \mapsto (\det(\frac{\partial \psi^*(e_i)}{\partial x_j}))^2.$$

It can be checked that the \mathbf{SL}_3 -module $S^6V(1,2)$ contains V(0,12) with multiplicity one. Thus $\gamma_1=c\gamma_2$, where $c\neq 0$. This implies Lemma 1.4 and statement 1. of Theorem 1.5.

The second part of Theorem 1.5 is a corollary of Lemmas 2.2 and 2.3 (see [2], Ch. 5, Section 4)

References

- [1] Fulton W. and Harris J., "Representation Theory," Springer-Verlag, 1991.
- [2] Hartshorne R., "Algebraic Geometry," Springer-Verlag, 1977.
- [3] Okonek Ch., M. Schneider, and Spindler H., Vector Bundles on Complex Projective Spaces, Birkhauser, 1980.

Independent University of Moscow, Bolshoi Vlasievkii 11, 121002, Moscow, Russia. katsylo@ium.ips.ras.ru

Received December 9, 1994 and in final form January 30, 1997