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Abstract. In this note we discuss a Theorem of S. Banach which states

that every Baire measurable homomorphism between polish groups is contin-
uous. Furthermore we describe an application to the representation theory

of the infinite dimensional unitary group.

I. Measurable and continuous group homomorphisms

In this note we discuss a Theorem of S. Banach which states that every Baire
measurable homomorphism between polish groups is continuous. Since the as-
sumption of Baire measurability might be difficult to verify, it is natural to ask
to which extend Banach’s Theorem holds under the assumption of Borel mea-
surability. For G locally compact rather strong versions of Banach’s Theorem
can be derived using Haar measure on G (cf. [HR68] and Corollary I.9 below),
so that the crucial case is when G is not locally compact.

The difference between Banach’s original terminology and modern termi-
nology concerning measurability apparently caused some confusion on the type of
measurability assumption needed for Banach’s Theorem. For instance, in [Mo76]
Banach’s Theorem is cited as if it would hold for Borel measurable homomor-
phisms, and there exist other places in the literature where Banach’s Theorem
is cited from Moore’s paper in the same spirit. To clarify this point, we show in
Lemma I.6 below that a Borel measurable function between metric spaces with
a separable arcwise connected range is Baire measurable. Thus we end up with
a version of Banach’s Theorem which only needs Borel measurability for the ho-
momorphism, but separability and arcwise connectedness for the range. We do
not know whether the assumptions on the range are really necessary or not.

On the one hand, the version of Banach’s Theorem mentioned above does
not seem to be well accessible in the literature. Yet, on the other hand, it has
quite remarkable applications to the representation theory of infinite dimensional
groups which we explain in Section II. Therefore is appears to be worthwhile
to put on record a suitable reference for an appropriate version of Banach’s
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Theorem.

Definition I.1. (a) Let X be a topological space. A measurable subset of
X means a Borel subset of X . The set B(X) of Borel subsets of X is the
σ -algebra generated by the open subsets of X .

(b) A subset F of a topological space X is called nowhere dense if its closure F
does not have any interior point, i.e., X \ F is a dense open subset of X . We
say that F is of first category if it is contained in a countable union of nowhere
dense sets and of second category otherwise.

(c) A topological space X is called a Baire space if no subset of first category of
X has interior points.

Since we will need it in the following we recall the following simple facts
on Baire spaces.

Proposition I.2. (a) If X is a Baire space and Y ⊆ X of first category, then
X \ Y is a Baire space. Moreover each subset of first category in X \ Y is also
of first category in X .

(b) An open subset of a Baire space is a Baire space.

(c) A completely metrizable topological space is a Baire space.

Proof. (a) Let F ⊆ X \Y be a subset of first category. Then we find nowhere
dense subsets Fn ⊆ X \Y with F =

⋃∞
n=1 Fn . Let clX , resp. clX\Y , denote the

closure of a set in X , resp. X \ Y . Then the fact that Fn is nowhere dense in
X \Y implies that clX\Y Fn = (X \Y )∩clX Fn has empty interior. We conclude
that for each open subset U ⊆ X with U ⊆ clX Fn we have U ∩ (X \ Y ) = Ø,
i.e., U ⊆ Y . Since Y is of first category in X , the assumption that X is Baire
implies that U is empty. This shows that clX Fn has empty interior, i.e., Fn is
also nowhere dense in X . So F is of first category in X .

If V ⊆ F is an open subset of X \ Y , then there exists an open subset
Ṽ ⊆ X with Ṽ ∩ (X \ Y ) = V , i.e., Ṽ \ Y = V . Then Ṽ ⊆ V ∪ Y ⊆ F ∪ Y is
of first category in X and therefore empty because X is a Baire space. Thus F
has empty interior in X \ Y , and we see that X \ Y is a Baire space.

(b) Let Y ⊆ X be open and F ⊆ Y be a subset of first category. Then we find
nowhere dense subsets Fn ⊆ Y with F =

⋃∞
n=1 Fn . Let clX , resp. clY , denote

the closure of a set in X , resp. Y . Then the fact that Fn is nowhere dense in
Y implies that clY Fn = Y ∩ clX Fn has empty interior. We conclude that for
each open subset U ⊆ X with U ⊆ clX Fn we have U ∩ Y = Ø. Now X \ U is
closed and contains Y and therefore Fn , hence also clX Fn . Thus U ⊆ X \ U
entails that U is empty, and therefore that Fn is also nowhere dense in X . We
conclude that F is of first category in X . If V ⊆ F is an open subset of Y ,
then V is also open in X , and so V = Ø follows from the fact that X is a Baire
space, whence Y is also a Baire space.

(c) [Ru73, Th. 2.2]

Definition I.3. A mapping f :X → Y between metric spaces is called Baire
measurable if it is contained in the smallest class of functions X → Y containing
all the continuous functions which is closed under taking pointwise limits. Note
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that the closedness under pointwise limits is a condition which is stable under
arbitrary intersections, so that there is in fact a smallest set of functions with
this property containing the continuous functions.

In the literature one finds several different names for this class of Baire
measurable functions: they are called “opération measurable (B)” in Banach’s
book [Ba32] or “fonction représentable analytiquement” in Lebesgue’s papers.

Note that if Y is a discrete space and X is connected, each continuous
function X → Y is constant. Hence all Baire measurable functions X → Y
are constant. It follows in particular that not every Borel function is Baire
measurable.

Theorem I.4. (Baire) If X is a Baire space, Y is a metric space, and
f :X → Y Baire measurable, then there exists a subset I ⊆ X of first category
such that f |X\I is continuous.

Proof. (cf. [Ba30]) Since the set of Baire measurable functions is the smallest
class of all functions containing the continuous functions which is closed under
taking pointwise limits, we have to show that the class of functions satisfying
the condition of the theorem is closed under taking pointwise limits because it
trivially contains the continuous functions.

Suppose that the restriction of fn:X → Y to X \In is continuous, where
In is of first category in X . Then I :=

⋃
n∈N In is of first category in X , and

all functions fn are continuous on X1 := X \ I . Suppose that f = limn→∞ fn
holds pointwise on X . We write d:Y × Y → R for the metric on Y . Since the
functions fn are continuous on X1 , the sets

An,ε := {x ∈ X1: (∀m ≥ n)d
(
fn(x), fm(x)

)
≤ ε}

are closed in X1 and f = limn→∞ fn implies that X1 =
⋃∞
n=1 An,ε . We put

Bε :=
⋃
n∈NA

0
n,ε , where A0 denotes the interior of A in X1 . Then Bε is open

and we claim that Bε is dense in X1 . In fact, let U ⊆ X1 be open. We first use
Proposition I.2(a) to see that X1 is a Baire space and then Proposition I.2(b)
to see that U is also a Baire space. Hence U =

⋃∞
n=1(U ∩ An,ε) implies that

at least one of the sets U ∩ An,ε is not nowhere dense in U . But these sets are
closed subsets of U , so that there exists an n ∈ N for which U ∩An,ε has interior
points in U and therefore also in X1 , i.e., A0

n,ε ∩ U 6= Ø. Now Bε ∩ U 6= Ø
entails that Bε is dense in X1 . This means that X1 \ Bε is closed and has no
interior points, i.e., X1 \Bε is nowhere dense. This proves that

J :=
⋃

ε>0

X1 \Bε =

∞⋃

n=1

X1 \B 1
n

is of first category in X1 .

Let x ∈ X1 \ J and ε > 0. Then x ∈ Bε and we find an m ∈ N with
x ∈ A0

m,ε . Then

d
(
f(y), fm(y)

)
= lim
n→∞

d
(
fn(y), fm(y)

)
≤ ε
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for all y ∈ Am,ε implies

d
(
f(y), f(x)

)
≤ 2ε+ d

(
fm(y), fm(x)

)
,

hence that f is continuous in x because x ∈ A0
m,ε . This means that f is

continuous on X1 \ J = X \ (I ∪ J). Now the proof is complete because J is of
first category in X (Proposition I.2(a)).

This proves that the class of all those functions satisfying the assumptions
of the theorem is closed under taking pointwise limits and contains the continuous
functions, hence also the Baire measurable functions.

Theorem I.5. (Banach) If G is a metrizable topological group which is a
Baire space and H is a metrizable topological group, then every Baire measurable
homomorphism f :G→ H is continuous.

Proof. (cf. [Ba55, p.23, Th. 4]) First Theorem I.4 shows that there exists a
subset I ⊆ G of first category such that f is continuous on G \ I . Let xn → 1
in G . Then the set xn.I ⊆ G is of first category for each n ∈ N . Hence the
same holds for

I ∪
⋃

n∈N
xn.I

which, in view of the fact that G is of second category, implies that this set
must be different from G . Let x be in the complement of this set. Then x 6∈ I
and x−1

n x 6∈ I for all n ∈ N . Hence the continuity of f on the complement
of I implies that f(xn)−1f(x) = f(x−1

n x) → f(x) which in turn implies that
f(xn) → 1 . Since G was assumed to be metrizable, i.e., has a countable local
base in 1 , we see that f is continuous in 1 , and therefore f is continuous because
it is a group homomorphism.

Next we will weaken the assumption that f is Baire measurable.

Lemma I.6. Let X , Y be metric spaces, assume that Y is arcwise connected
and separable, and f :X → Y a Borel measurable function. Then f is Baire
measurable.

Proof. First we show that f is the limit of a sequence (fn)n∈N of measurable
functions with at most countably many values. Let ε > 0 and (Yn)n∈N be a
basis for the topology consisting of sets whose diameter does not exceed ε . We
put Z1 := Y1 and Zn := Yn \ (Y1 ∪ . . . ∪ Yn−1) for n > 1. Deleting those of the
Zn which are empty, we may w.l.o.g. assume that the Zn are non-empty. Then
the sets Zn are Borel sets and therefore Xn := f−1(Zn) are Borel subsets of
X . Choosing zn ∈ Zn we define a new function fε:X → Z by fε(x) := zn for
x ∈ Xn . Then

dY
(
f(x), fε(x)

)
≤ ε

for all x ∈ Xn , and fε(X) is countable. Hence f is a uniform limit of functions
with at most countably many values.

So it suffices to assume that f(X) is countable. We write f(X) =
{yn:n ∈ N} and, using the arc connectedness of Y , we find a continuous function
γ:R → Y with γ(n) = yn . We define a real valued function h:X → R by
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h(x) := n whenever f(x) = yn and n is minimal with respect to this property.
Then h is Borel measurable and γ ◦ h = f .

The set of all functions u:X → R for which γ ◦ u:X → Y is Baire
measurable contains the continuous functions and is closed under taking point-
wise limits. This shows that for each Baire function u:X → R the function
γ ◦ u:X → Y is Baire. Since h is a limit of finite linear combinations of char-
acteristic functions, to show that h is a Baire function, it suffices to see that
characteristic functions χB of Borel subsets B ⊆ X are Baire. In fact, the set
of all subsets B ⊆ X for which χB is Baire contains all open subsets because
for an open subset B we have

χB(x) = lim
n→∞

min
(
1, n dist(x,X \B)

)
,

where dist(x,C) := inf{d(x, y): y ∈ C} . Furthermore χX\B = 1− χB and

χ⋂
n∈N Bn

= lim
n→∞

n∏

k=1

χBk .

Therefore the fact that the Baire measurable functions X → R form an algebra
implies that {B ⊆ X:χB Baire measurable} is a σ -algebra containing all Borel
sets. Thus characteristic functions of Borel sets are Baire measurable. This
proves that h is Baire measurable, and hence that f is Baire measurable.

Theorem I.7. Every Borel measurable group homomorphism f :G→ H from
a completely metrizable separable topological group into an arcwise connected
separable metrizable group is continuous.

Proof. In view of Proposition I.2(c), the group G is a Baire space. Then
Lemma I.6 shows that f is a Baire function. Now Banach’s Theorem (Theorem
I.5) implies that f is continuous.

The preceding theorem is cited from [Ba32] in [Mo76] without the as-
sumption that H is arcwise connected. We do not know whether it is true
without this assumption or not, but Banach certainly proves it only for Baire
measurable homomorphisms.

In the monograph of Hewitt and Ross [HR68, Th. 22.18] one finds another
“measurable implies continuity” result for locally compact groups. For the sake
of completeness we recall this result for locally compact groups whose proof relies
heavily on the use of Haar measure.

Theorem I.8. Let G be a locally compact group and H a topological group
which is σ -compact or separable, λ a left Haar measure for G , and f :G→ H a
group homomorphism for which there exists a λ-measurable subset A ⊆ G with
0 < λ(A) < ∞ such that for each open subset U ⊆ H the set f−1(U) ∩ A is
λ-measurable. Then f is continuous.

Corollary I.9. Let G be a locally compact group and H a topological group
which is σ -compact or separable, and f :G → H a Borel measurable group
homomorphism. Then f is continuous.
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II. Applications to representation theory

In this section we show how Banach’s Theorem (Theorem I.7) can be applied to
study representations of groups which are not necessarily locally compact. The
idea for these applications is due to Doug Pickrell (cf. [Pi90]). So this section
can be viewed as a working out of his argument.

Proposition II.1. If H is a separable Hilbert space and U(H) is the unitary
group of H endowed with the strong operator topology, then U(H) is a completely
metrizable topological group.

Proof. The fact that U(H) is a topological group follows easily from the
oberservation that on U(H) the weak and the strong operator topology coincide
(cf. [HN93, Cor. 9.4]).

Let (en)n∈N be an orthonormal basis. Then we obtain a map

η:U(H)→HN, g 7→ (g.en)n∈N
which is injective and continuous with respect to the product toplogy on HN
which turns it into a separable metric space. If gj → g holds on all basis vectors
en , n ∈ N , then gj → g holds pointwise on a dense subspace of H so that
‖gj‖ = 1 for all j implies that gj → g holds pointwise, hence in the strong
operator topology. This proves that η is an embedding and therefore that U(H)
is metrizable.

Unfortunately η
(
U(H)

)
is not a closed subset of HN , i.e., U(H) is not

complete with respect to any inherited metric. The same argument as above
shows that the monoid Iso(H) = {g ∈ B(H): g∗g = 1} of all isometries of H is
complete with respect to the metric inherited from HN . We claim that U(H) is
a Gδ -set in the complete separable metric space Iso(H) ↪→ HN . First we note
that

U(H) = {g ∈ Iso(H): g∗ ∈ Iso(H)}.
Let (vn)n∈N be a dense sequence in the closed unit ball {v ∈ H: ‖v‖ ≤ 1} of H .
Then g∗ ∈ Iso(H)} is equivalent to ‖g∗.vn‖ = ‖vn‖ for all n ∈ N which in turn
means that

sup{|〈vn, g.vm〉|:m ∈ N} = sup{|〈g∗.vn, vm〉|:m ∈ N} = ‖vn‖.
For n, k ∈ N the set

Un,k := {g ∈ Iso(H): (∃m ∈ N)|〈vn, g.vm〉| > (1− 1

k
)‖vn‖}

= {g ∈ Iso(H): ‖g∗.vn‖ > (1− 1

k
)‖vn‖}

is open and
∞⋂

k,n=1

Un,k = {g ∈ Iso(H): (∀n ∈ N)‖g∗.vn‖ = ‖vn‖} = U(H).

Thus U(H) is a Gδ -set in the completely metrizable separable topological space
Iso(H) and therefore U(H) itself is completely metrizable (cf. [Sch73, Th. II.1,
p.93]).
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If (en)n∈N is an orthonormal basis in a separable Hilbert space, then the
permutation

e1 7→ e2 7→ e3 7→ . . . 7→ en 7→ e1

which fixes em for m > n defines a unitary map gn ∈ U(H) and this sequnence
converges strongly to the isometry g:H→ H mapping en 7→ en+1 for all n ∈ N .
So g is not surjective and therefore not unitary.

We have just seen that for a separable Hilbert space H the group U(H)s
endowed with the strong operator topology is a Baire space. Let U(H)n denote
the same group endowed with the norm topology. Then the identity map

φ:U(H)n → U(H)s

is bijective and continuous. Moreover, the map φ−1:U(H)s → U(H)n is Borel
measurable. In fact, for each ε > 0 we have

{g ∈ U(H): ‖g − 1‖ ≤ ε} =
⋂

n∈N
{g ∈ U(H): ‖g.vn − vn‖ ≤ ε}

for any dense sequence (vn)n∈N in the unit ball of H . Since the set on the right
hand side is a Borel set, we see that φ−1 is Borel measurable, so that φ is a
Borel isomorphism.

Furthermore the group U(H)n is arc connected because the exponential
function

exp: iHerm(H)→ U(H)

is surjective (cf. [Ru73, Th. 12.37]). Nevertheless Lemma I.6 does not apply
because the group U(H)n is not separable. Otherwise Theorem I.7 would imply
that φ is a homeomorphism which is false.

Theorem II.2. (Pickrell’s Theorem) If π:U(H)n → U(V )s is a continu-
ous representation of U(H)n on the separable Hilbert space V , then π is also
continuous as a homomorphism U(H)s → U(V )s .

Proof. We know that π ◦ φ−1:U(H)s → U(V )s is a Borel measurable group
homomorphism. Further the group U(V )s is separable (cf. [HN93, Prop. 9.5])
so that Theorem I.7 shows that π:U(H)s → U(V )s is continuous.

The implications of Pickrell’s Theorem are explained in detail in [Pi88]
(cf. also [Pi90]). Basically it implies that the separable representation theory
of the group U(H)n is as well behaved as the representation theory of the
group U(H)s which in turn is the same as for the dense subgroup U∞(H) =
U(H) ∩

(
1 + K(H)

)
, where K(H) denotes the set of all compact operators on

H .
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